По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В проводной сети любые два устройства, которые должны взаимодействовать друг с другом, соединяются проводом. В качестве провода может выступать медный или волоконно-оптический кабель. Функциональные возможности по передаче данных по проводу, ограничены физическими свойствами провода. Строгие требования к проводам Ethernet определены в стандарте IEEE 802.3, в котором описаны способы подключения устройств, способы отправки и получения данных по проводным соединениям. Проводные сети имеют ограничения для передачи данных по каналам связи, что не способствует, успешной коммуникации. Качество передачи данных, их успешная доставка до получателя, очень сильно зависит от типа и размера провода, количества витков, межвиткового расстояния, и максимальной длины кабеля. Все эти требования должны соответствовать стандарту IEEE 802.3. Проводная сеть является ограниченной по длине и количеству подключаемых устройств, а именно напрямую по проводу могут подключиться только два устройства. К основным недостаткам проводных сетей так же относится стационарность сетевого оборудования и компьютеров. Это означает, что соединенные проводами устройства, не могут легко перемещаться по помещению. Все устройства привязаны к сетевым разъемам. В современном мире очень много стало мобильных устройств и поэтому нецелесообразно привязывать их к конкретной розетке или разъёму коммуникационного оборудования. Понятие беспроводной сети следует из ее названия, то есть данная сеть устраняет необходимость в проводе. Первостепенным становится удобство и мобильность, давая пользователям свободу перемещения в любом направлении, оставаясь подключенными к сети. Пользователь может использовать любое беспроводное устройство, которое имеет возможность подключения к сети. Передача данных в беспроводных сетях осуществляется "по воздуху" при отсутствии препятствий и помех. При использовании беспроводной среды передачи данных, для их качественной доставки необходимо учитывать две вещи: Беспроводные устройства должны соответствовать единому стандарту (IEEE 802.11). Беспроводное покрытие должно охватывать ту область, на которой планируется использование устройствами. Топологии Wireless LAN Беспроводная связь осуществляется "по воздуху" посредством радиосигналов. Предположим, что одно устройство, передатчик, посылает радиосигналы другому устройству, приемнику. Как показано на рисунке, связь между передатчиком и приемником осуществляется в любое время, если оба устройства настроены на одну и ту же частоту (или канал) и используют одну и ту же схему для передачи данных между ними. Все это выглядит просто, за исключением того, что на самом деле это не удобно и не практично. Для эффективного использования беспроводной сети данные должны передаваться в обоих направлениях, как показано на рисунке. Для отправки данных с устройства А на устройство В, устройство В должно дождаться прихода данных к себе и когда канал освободится отправить на устройство А. В беспроводной связи, при одновременной передаче данных, могут возникнуть помехи, т.е. передаваемые сигналы будут мешать друг другу. Чем больше беспроводных сетей, тем выше вероятность возникновения помех. Например, на рисунке изображены четыре устройства, работающие на одном и том же канале, и то, что может произойти, если часть из них или все одновременно начнут передавать данные. Вышенаписанное сильно напоминает нам традиционную (некоммутируемую) локальную сеть Ethernet, где несколько хостов могут подключаться к общему ресурсу и совместно использовать канал передачи данных. Чтобы эффективно использовать общий ресурс, все хосты должны работать в полудуплексном режиме, во избежание столкновений с другими уже выполняемыми передачами. Побочным эффектом является то, что ни один хост не может передавать и принимать одновременно в общей среде. Аналогичное происходит и в беспроводной сети. Так как несколько хостов могут совместно использовать один и тот же канал, они также совместно используют "эфирное время" или доступ к этому каналу в любой момент времени. Что бы избежать конфликтных ситуаций и создание помех, хосты должны передавать данные в определенный момент времени, ожидая освобождения канала. Для работы в беспроводных сетях все устройства должны соответствовать стандарту 802.11. Важно понимать, что по умолчанию беспроводная среда не учитывает количество устройств и не контролирует устройства, которые могут передавать данные. Любое устройство, имеющее адаптер беспроводной сети, может в любой момент подключиться к беспроводной сети. Как минимум, беспроводная сеть должна уметь определять, что каждое устройство, подключаемое к каналу передачи данных, поддерживает общий набор параметров. Кроме того, должен быть способ контроля устройств (и пользователей), которым разрешено использовать беспроводную среду и методы, используемые для обеспечения безопасности беспроводной передачи данных. Базовый набор услуг (BSS) Идея состоит в том, чтобы сделать каждую беспроводную зону обслуживания замкнутой для группы мобильных устройств, которая формируется вокруг фиксированного устройства. Прежде чем устройство сможет подключиться, оно должно объявить о своих возможностях, а затем получить разрешение на подключение. В стандарте 802.11 это называется базовым набором услуг (BSS, Basic Service Set). В центре каждого BSS находится беспроводная точка доступа (AP). AP работает в инфраструктурном режиме, что означает, что он предлагает услуги, необходимые для формирования инфраструктуры беспроводной сети. AP также устанавливает свой BSS по одному беспроводному каналу. AP и члены BSS должны использовать один и тот же канал для правильной связи. Поскольку работа BSS зависит от точки доступа, то BSS ограничена областью, равной расстоянию, на которое может распространяться сигнал точки доступа. Это называется базовой зоной обслуживания (BSA) или ячейкой. На рисунке ячейка показана в виде окружности, в центре которой имеется точка доступа. Ячейки могут выглядеть по-разному: зависит от устройств, подключенных к AP; зависит от физического окружения, которое может повлиять на сигналы AP; Точка доступа (АР) служит единственной точкой контакта для каждого устройства, которое хочет использовать BSS. Она объявляет о существовании BSS, чтобы устройства могли найти его и попытаться присоединиться. Для этого AP использует уникальный идентификатор BSS (BSSID), основанный на собственном MAC-адресе. Кроме того, точка доступа присваивает беспроводной сети идентификатор набора услуг (SSID-текстовую строку, содержащую логическое имя). Представьте себе, что BSSID - это машинный код, который однозначно идентифицирует BSS (AP). А SSID - это символьная строка, задаваемая человеком, который идентифицирует беспроводную службу. Членство в BSS называется ассоциацией. Беспроводное устройство должно отправить запрос на ассоциацию точке доступа, и точка доступа должна либо предоставить, либо отклонить запрос. При разрешении, устройство становится клиентом, или станцией 802.11 (STA) в BSS. И что же дальше? Пока клиент беспроводной сети остается подключенным к BSS, все данные, приходящие к нему и исходящие от клиента, проходят через точку доступа, как показано на рисунке. Используя BSSID в качестве адреса источника или назначения, фреймы данных можно ретранслировать в точку доступа или из нее. На рисунке изображено движение трафика внутри BSS. BSS содержит четыре устройства, подключенные к точке доступа по беспроводному соединению. Идентификатор набора служб (SSID) носит название "Моя сеть". Базовый идентификатор набора услуг (BSSID) - это MAC-адрес точки доступа d4:20:6d:90:ad:20. Любой клиент, связанный с BSS, не может напрямую связаться с любым другим клиентом в BSS. Весь трафик проходит через точку доступа. Почему же два клиента должны общаться именно через точку доступа, а не напрямую? Это связано с тем, что все подключения через точку доступа и BSS стабильны и контролируются. Система распределения Нужно учитывать то, что BSS имеет одну точку доступа AP и не имеет явного подключения к обычной сети Ethernet. В этом случае точка доступа и связанные с ней клиенты образуют автономную сеть. Но роль точки доступа не ограничивается только управлением BSS, рано или поздно появится необходимость взаимодействия беспроводных клиентов с другими устройствами, которые не являются членами BSS. К счастью, точка доступа имеет возможность подключаться к сети Ethernet, как по беспроводным каналам, так и по проводам. Стандарт 802.11 позволяет подключаться по проводам Ethernet и использовать их в качестве распределительной системы (DS) для беспроводной BSS (см. рис.6). Вообще можно сказать, что точка доступа выступает в качестве моста между разнородными средами передачи данных (проводной и беспроводной). Проще говоря, точка доступа отвечает за сопоставление виртуальной локальной сети (VLAN) с SSID. На рисунке точка доступа сопоставляет VLAN 10 с беспроводной локальной сетью, используя SSID "Моя сеть". Клиенты, связанные с SSID "Моя сеть", будут, подключены к VLAN 10. Рисунок иллюстрирует систему распределения, поддерживающую BSS. Система распределения состоит из коммутатора третьего уровня в сети VLAN 10. Данный коммутатор подключен к интернету с помощью кабеля. AP (точка доступа) подключается к коммутатору так же с помощью кабеля. Точка доступа формирует BSS (базовый набор услуг). Устройства, входящие в область BSS - это все устройства, подключенные по беспроводной связи к точке доступа. Идентификатор SSID "Моя сеть" и BSSID- d4:20:6d:90:ad:20. Данный принцип подключения позволяет сопоставлять несколько VLAN с несколькими SSID. Для этого точка доступа должна быть соединена с коммутатором магистральным каналом. На рисунке 7 VLAN 10, 20 и 30 соединены с точкой доступа через распределительную систему (DS). Точка доступа использует тег 802.1Q для сопоставления номеров VLAN с соответствующими SSID. Например, VLAN 10 сопоставляется с SSID "Моя сеть", VLAN 20 сопоставляется с SSID "Чужая сеть" и VLAN 30 к SSID "Гости". На рисунке показан процесс поддержки нескольких SSID одной точкой доступа: Несмотря на то, что точка доступа поддерживает одновременно несколько логических беспроводных сетей, каждый из SSID работают в одной зоне (области). Причина в том, что точка доступа использует один и тот же передатчик, приемник, антенну и канал для каждого SSID. Однако это утверждение может ввести в некоторое заблуждение: несколько SSID могут создать иллюзию масштабируемости сети. Хоть и беспроводные клиенты могут быть распределены по разным SSDI, но все же они используют совместно одну точку доступа. А это в свою очередь приводит к "борьбе" за эфирное время на канале. Расширенный набор услуг Обычно одна точка доступа не может охватить всю зону (область), где могут находиться клиенты. Например, потребуется беспроводное покрытие на всем этаже торгового центра, гостиницы, больницы или другого крупного здания. Что бы покрыть большую площадь, которую может охватить одна ячейка точки доступа, просто необходимо добавить больше точек доступа и распределить их по этажу (этажам). Когда точки доступа расположены в разных местах, все они могут быть связаны между собой коммутируемой инфраструктурой. В стандарте 802.11 эта возможность называется расширенным набором услуг (extended service set (ESS)) Расширенный набор услуг показан на рисунке. Идея состоит в том, чтобы заставить несколько точек доступа взаимодействовать так, чтобы беспроводное подключение было не заметным для клиента. В идеале, любые SSID, определенные на одной точке доступа, так же должны быть определены на всех остальных точках доступа в ESS (Extended Service Set). В противном случае клиенту приходилось бы каждый раз переподключаться, как только бы он попадал в ячейку другой точки доступа. Как видно из рисунка, что каждая ячейка имеет уникальный BSSID, но обе ячейки имеют общий SSID. Независимо от местоположения клиента в пределах ESS, SSID останется тем же самым, но клиент всегда может отличить одну точку доступа от другой. На рисунке показан принцип работы расширенного набора услуг. Коммутатор (VLAN 10) подключен к интернету по кабелю. Две точки доступа подключены к этому коммутатору так же проводами. Эти точки располагаются рядом так, что области их действия пересекаются. BSS двух точек доступа, объединены, и образуют расширенный набор услуг (ESS). AP-1 имеет BSSID d4:20:6d:90:ad:20, а её базовый набор услуг-BSS-1. Точка доступа подключена к клиенту по беспроводной сети. AP2 имеет BSSID e6:22:47:af:c3:70, а её базовый набор услуг-BSS-2. Точка доступа подключена к клиенту по беспроводной сети. SSID обоих BSS - это "Моя сеть". Переход клиента от одной точки доступа к другой называется роумингом. В ESS беспроводной клиент может связываться с одной точкой доступа, пока он физически расположен рядом с этой точкой. При перемещении клиента в другое место, он автоматически подключается к ближайшей точке доступа. Переход от одной точки доступа к другой называется роумингом. Имейте в виду, что каждая точка предлагает свой собственный BSS на своем собственном канале, чтобы предотвратить помехи между точками доступа. Так как беспроводное устройство (клиентское) может перемещаться от одной точки доступа к другой, оно должно уметь сканировать доступные каналы, чтобы найти новую точку доступа (и BSS) для переподключения. Фактически клиент перемещается от BSS к BSS и от канала к каналу. Независимый базовый набор услуг Обычно беспроводная сеть использует точку доступа для организации, контроля и масштабируемости. Иногда это невозможно или неудобно в различных ситуациях. Например, два человека, которые хотят обменяться электронными документами на встрече, могут не найти доступную BSS или не смогут пройти аутентификацию в сети. Кроме того, многие принтеры могут печатать документы по беспроводной сети, не полагаясь на обычный BSS или точку доступа. Стандарт 802.11 позволяет двум или более беспроводным клиентам напрямую связываться друг с другом, без каких-либо посредников сетевого подключения. Это называется специальной беспроводной сетью (ad hoc) или независимым базовым набором услуг (IBSS), как показано на рисунке. Чтобы это работало, одно из устройств должно стать главным и разослать в эфир свое сетевое имя, необходимые параметры беспроводного подключения, так же как это сделала бы точка доступа. Любое другое устройство может затем присоединиться по мере необходимости. IBSS предназначены для организации небольшой беспроводной сети для восьми - десяти устройств. Эта сеть не масштабируема.
img
Управление компьютерными сетями - дело непростое. В последние годы всеобщая компьютеризация вызвала огромный скачок в расширении компьютерных сетей. Это добавило работы системному администратору. Ведь если ранее были распространены небольшие сети, то добавление и настройка новых устройств, либо обновление ПО на уже находящихся требовали ручной настройки операционной системы, а то и установки на каждом из них. Это требовало времени и нервов администратора. Сейчас же, когда сети насчитывают сотни, а то и тысячи машин, ручная настройка требует либо участия многих специалистов (а это порождает проблему плохой совместимости согласно человеческому фактору, каждый админ мыслит по-своему), либо очень долгого времени, если этим будет заниматься один специалист. Такая проблема, с учетом технического прогресса, породила решение об автоматизации. На сегодняшний день существует специализированное программное обеспечение, которое позволяет присоединиться к удаленным машинам, и в автоматическом режиме произвести настройки операционной системы для корректной работы сети. Однако, как быть, если на нужных компьютерах в рамках одной сети установлены разные операционные системы? Ведь сейчас компьютеры под Linux, FreeBSD и Windows, объединенные в одну сеть - далеко не редкость. Поэтому одним из требований к управляющей программе стала кроссплатформенность. В этом случае одним из самых эффективных решений является такая программа, как Puppet. Puppet это один из самых нужных инструментов сетевого администратора. Это приложение создано специально для управления конфигурацией операционных систем внутри одной сети. Оно имеет клиент-серверную архитектуру, то есть администратор, находящийся за сервером, может отправлять данные конфигурации на периферийные машины, на которых установлена клиентская часть. На этих рабочих станциях система в автоматическом режиме сконфигурирует себя в соответствии с присланными с сервера настройками. Важным моментом является кроссплатформенность. Простота настройки и управления самыми распространенными операционными системами делает Puppet одним из самых актуальных решений по управлению компьютерными сетями на сегодняшний день. Как же работает Puppet? Разберем подробнее. Для начала, на сервер нужно установить серверную часть программы. Поскольку приложение написано на Ruby, на серверной рабочей станции обязательно должна быть установлена нужная программная среда. Серверная часть программы создана для хранения манифестов так в программной терминологии Puppet называются файлы с настройками конфигурации. В процессе работы сервер принимает обращения с клиентских машин и автоматически отсылает им обновленные файлы конфигурирования ОС для работы в сети. На клиентских компьютерах также должно быть установлено программное обеспечение Puppet, уже в виде клиентской части. Как правило, данные установочные пакеты включаются в саму операционную систему, что позволяет быстро развертывать компьютерную сеть, однако, в случае их отсутствия, придется скачивать необходимую сборку с сайта разработчика. Дополнительное удобство данного решения в том, что один администратор с помощью сервера может осуществить настройку и управление сотен и тысяч машин, объединенных в сеть. Если возникнут какие-то проблемы, то отклик с мест позволит админу быстро поправить код и устранить их. Хотя в данном случае возрастают требования к внимательности админа - одна неверно написанная строка кода конфигурации может привести к неполадкам по всей сети. Хотя, если разобраться, в данном случае можно запустить работающий манифест предыдущей сборки и восстановить все достаточно оперативно.
img
Пока не начали, ознакомьтесь с материалом про обнаружение соседей в сетях. Реактивное распределение достижимости Возвращаясь к рисунку 9 в качестве справки, предположим, что развернута реактивная плоскость управления, и B хотел бы начать обмен потоками данных с G. Как C может разработать информацию о пересылке, необходимую для правильного переключения этого трафика? Маршрутизатор может отправить запрос по сети или отправить запрос контроллеру, чтобы обнаружить путь к месту назначения. Например: Когда B впервые подключается к сети, и C узнает об этом вновь подключенном хосте, C может отправить информацию о B в качестве достижимого пункта назначения на контроллер, подключенный к сети. Точно так же, когда G подключается к сети и D узнает об этом вновь подключенном хосте, D может отправить информацию о G как о достижимом пункте назначения контроллеру, подключенному к сети. Поскольку контроллер узнает о каждом хосте (или достижимом месте назначения), подключенном к сети (а в некоторых системах, также обо всей топологии сети), когда C необходимо узнать, как достичь хоста G, маршрутизатор может запросить контроллер, который может предоставить эту информацию. Примечание. Концепция централизованного контроллера подразумевает, что один контроллер предоставляет информацию для всей сети, но это не то, как термин централизованная плоскость управления обычно используется в мире сетевой инженерии. Однако идея централизации в сетевой инженерии довольно расплывчата. Вместо того, чтобы указывать на отдельное устройство, термин "централизованный" обычно используется для обозначения непереносимых скачков по сети и не вычисляемых каждым сетевым устройством независимо. Маршрутизатор (или хост) может отправить пакет проводника, который записывает маршрут от источника к месту назначения и сообщает эту информацию источнику проводника, который затем используется как исходный маршрут. Рисунок 10 иллюстрирует это. Используя рисунок 10 и предполагая исходную маршрутизацию на основе хоста: Хосту A необходимо отправить пакет H, но у него нет пути. A отправляет explorer на свой шлюз по умолчанию, маршрутизатор C. C не имеет маршрута к месту назначения, поэтому он пересылает explorer пакет по всем каналам, кроме того, по которому он получил пакет; следовательно, к B, D и E. B является хостом, не имеет дополнительных интерфейсов и не является целью explorer, поэтому он игнорирует explorer пакет. Ни у D, ни у E нет пути к H, поэтому они оба перенаправляют explorer на все интерфейсы, кроме того, на котором они получили пакет; следовательно, на канал с множественным доступом, совместно используемый между ними и F. F получает две копии одного и того же explorer пакета; он выбирает один на основе некоторых локальных критериев (таких как первый полученный или некоторая политика плоскости управления) и пересылает его на все интерфейсы, на которых он не получил пакет, к G. G получает пакет и, учитывая, что у него нет пути к H, пересылает его на единственное другое соединение, которое у него есть, что ведет к H. H принимает explorer и отвечает. В этой схеме каждое устройство на пути добавляет себя в список пройденных узлов перед пересылкой explorer пакета на все интерфейсы, кроме того, на котором он был получен. Таким образом, когда H получает explorer пакет (который в конечном итоге направлен на поиск пути к H), пакет теперь описывает полный путь от A до H. Когда H отвечает explorer, он помещает этот путь в тело пакета; когда A получит ответ, у него теперь будет полный путь от A до H. Примечание. В некоторых реализациях A не будет ни генерировать, ни получать ответ на пакет explorer. А с первого роутера, может выполнять эти функции. Точно так же сам H может не отвечать на эти пакеты explorer, а скорее G или любое другое сетевое устройство вдоль пути, имеющее информацию о том, как добраться до G. Однако в этих случаях общая концепция и обработка остаются теми же. Затем, чтобы отправить пакеты в H, A вставляет этот путь в заголовок пакета в виде исходного маршрута, содержащего путь [A, C, D, F, G, H]. Когда каждый маршрутизатор получает этот пакет, он проверяет исходный маршрут в заголовке, чтобы определить, на какой маршрутизатор перенаправить трафик следующему. Например, C проверит информацию о маршруте от источника в заголовке пакета и определит, что пакет должен быть отправлен в D следующим, в то время как D изучит эту информацию и определит, что ему нужно отправить пакет F. Примечание. В некоторых реализациях каждый explorer фактически отправляется в пункт назначения, который затем определяет, по какому пути должен идти трафик. На самом деле существует несколько различных способов реализации исходной маршрутизации; процесс, приведенный здесь, является лишь одним примером, объясняющим общую идею исходной маршрутизации. Упреждающее распределение доступности Проактивные плоскости управления, в отличие от реактивных плоскостей управления, распределяют информацию о достижимости и топологии по всей сети, когда информация становится доступной, а не тогда, когда она необходима для пересылки пакетов. Основная проблема, с которой сталкиваются плоскости упреждающего управления, заключается в обеспечении надежной передачи информации о доступности и топологии между узлами в сети, в результате чего все устройства имеют одинаковую информацию о доступности. Удаление информации о плоскости управления может привести к возникновению постоянных петель маршрутизации или к созданию черных дыр маршрутизации (так называемых, потому что они потребляют трафик, передаваемый в пункты назначения без следа), и то и другое серьезно снижает полезность сети для приложений. Существует несколько широко используемых механизмов для обеспечения надежной передачи информации плоскости управления по сети. Плоскость управления может периодически передавать информацию, задерживая более старую информацию. Это похоже на формирование соседей, поскольку каждый маршрутизатор в сети будет передавать имеющуюся информацию о доступности всем соседям (или на всех интерфейсах, в зависимости от плоскости управления) на основе таймера, обычно называемого таймером обновления или объявления. Информация о доступности, однажды полученная, хранится в локальной таблице и истекает по таймауту в течение некоторого периода времени, часто называемого таймером удержания (опять же, как при обнаружении соседа). Остальные описанные здесь механизмы полагаются на существующую систему обнаружения соседей, чтобы гарантировать надежную доставку - и постоянную надежность - информации о доступности. Во всех этих системах: Список соседей используется не только для управления передачей новой информации о доступности, но и для проверки правильности получения информации о доступности. Список соседей используется не только для управления передачей новой информации о доступности, но и для проверки правильности получения информации о доступности. В контексте распределения достижимости на основе соседей существует несколько обычно используемых механизмов для передачи определенной информации о доступности с устройства на устройство; часто любая заданная плоскость управления будет использовать более одного из описанных здесь методов. Плоскость управления может использовать порядковые номера (или какой-либо другой механизм) для обеспечения правильной репликации. Порядковые номера могут фактически использоваться для описания отдельных пакетов и больших блоков информации о доступности; Рисунок 11 иллюстрирует это. Получив пакет, получатель может отправить подтверждение получения пакета, отметив порядковые номера, которые он получил. Отдельный порядковый номер может использоваться для описания достижимости отдельного сетевого уровня. Информация (NLRI), передаваемая по сети. Информация NLRI, распределенная по нескольким пакетам, затем может быть описана с использованием одного порядкового номера. Плоскость управления может описывать базу данных для обеспечения правильной репликации. Например, плоскость управления может описывать информацию в базе данных как: Список порядковых номеров, соответствующих отдельным записям, содержащий информацию о доступности, содержащуюся в базе данных. Группы смежных порядковых номеров, содержащиеся в базе данных (несколько более компактный способ представления всех порядковых номеров) Набор порядковых номеров в паре с хешами информации в каждой записи информации о доступности; это имеет то преимущество, что не только описывает записи в базе данных, но также дает возможность получателю проверять содержимое каждой записи, но без переноса всей базы данных для выполнения проверки. Хэш по блокам записей о достижимости, содержащихся в базе данных, который может быть вычислен получателем для тех же записей и напрямую сравнен, чтобы определить, отсутствуют ли записи. Эти типы дескрипторов баз данных могут передаваться периодически, или только при наличии изменений, или даже в других конкретных ситуациях, чтобы не только обеспечить синхронизацию баз данных сетевыми устройствами, но и определить, что отсутствует или находится в ошибке, поэтому дополнительная информация может быть запрошена. Каждая из этих схем имеет преимущества и недостатки. Как правило, протоколы реализуют схему, которая позволяет реализации не только проверять отсутствующую информацию, но также информацию, которая была случайно повреждена либо в памяти, либо во время передачи.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59