По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Все маршрутизаторы добавляют подключенные маршруты. Затем в большинстве сетей используются протоколы динамической маршрутизации, чтобы каждый маршрутизатор изучал остальные маршруты в объединенной сети. Сети используют статические маршруты - маршруты, добавленные в таблицу маршрутизации посредством прямой настройки - гораздо реже, чем динамическая маршрутизация. Однако статические маршруты иногда могут быть полезны, и они также могут быть полезными инструментами обучения. Статические сетевые маршруты IOS позволяет назначать отдельные статические маршруты с помощью команды глобальной конфигурации ip route. Каждая команда ip route определяет пункт назначения, который может быть сопоставлен, обычно с идентификатором подсети и маской. Команда также перечисляет инструкции пересылки, обычно перечисляя либо исходящий интерфейс, либо IP-адрес маршрутизатора следующего перехода. Затем IOS берет эту информацию и добавляет этот маршрут в таблицу IP-маршрутизации. Статический маршрут считается сетевым, когда пункт назначения, указанный в команде ip route, определяет подсеть или всю сеть класса A, B или C. Напротив, маршрут по умолчанию соответствует всем IP-адресам назначения, а маршрут хоста соответствует одному IP-адресу (то есть адресу одного хоста). В качестве примера сетевого маршрута рассмотрим рисунок 1. На рисунке показаны только детали, относящиеся к статическому сетевому маршруту на R1 для подсети назначения 172.16.2.0/24, которая находится справа. Чтобы создать этот статический сетевой маршрут на R1, R1 настроит идентификатор и маску подсети, а также либо исходящий интерфейс R1 (S0/0/0), либо R2 в качестве IP-адреса маршрутизатора следующего перехода (172.16.4.2). Схема сети устанавливает соединение между двумя маршрутизаторами R1, R2 и двумя хостами 1 и 2. Порт G0/0 .1 R1 подключен к шлейфу слева, который, в свою очередь, подключен к хосту 1, имеющему подсеть 172.16. 1.9. Интерфейс S0/0/0 R1 последовательно подключен к R2 с IP-адресом 172.16.4.2. Интерфейс G0/0.2 на R2 подключен к шлейфу, который, в свою очередь, подключен к хосту 2 с IP-адресом 172.16.2.0.9. Здесь маршрутизатор R1 предназначен для адреса 172.16.2.0/24 в подсети. Пакеты должны перемещаться либо с интерфейса S0/0/0 маршрутизатора R1, либо с маршрутизатора R2 с IP-адресом 172.16.2.0/24. В примере 1 показана конфигурация двух примеров статических маршрутов. В частности, он показывает маршруты на маршрутизаторе R1 на рисунке 2 для двух подсетей в правой части рисунка. При настройке сети маршрутизатор R1 имеет соединение с двумя маршрутизаторами R2 и R3 справа. Интерфейс G0/0 .1 маршрутизатора R1 подключен к заглушке слева и, в свою очередь, подключен к хосту A, имеющему подсеть 172.16.1.9 с маской подсети 172.16.1.0 /24. Справа-интерфейс S0/0/1.1 из R1 с маской подсети 172.16.4.0 / 24 подключается к интерфейсу S0/0/1.2 из R2 с маской подсети 172.16.2.0 / 24 через последовательную линию. Кроме того, интерфейс G0/1/ 0.1 из R1 с маской подсети 172.16.5.0 / 24 подключается к интерфейсу G0/0/0 .3 из R3 с маской подсети 172.16.3.0 / 24 через глобальную сеть. Заглушка подключается к интерфейсу G0/0 .2 из R2, где маска подсети равна 172.16.2.0 / 24 и, в свою очередь, подключена к хосту B, имеющему подсеть 172.16.2.9. Заглушка подключается к интерфейсу G0/0 .3 из R3, где маска подсети равна 172.16.3.0 / 24 и, в свою очередь, подключена к хосту C, имеющему подсеть 172.16.3.9. ip route 172.16.2.0 255.255.255.0 S0/0/0 ip route 172.16.3.0 255.255.255.0 172.16.5.3 Пример 1 Добавление статических маршрутов в R1 В двух примерах команд ip route показаны два разных стиля инструкций пересылки. Первая команда показывает подсеть 172.16.2.0, маска 255.255.255.0, которая находится в локальной сети рядом с маршрутизатором R2. Эта же первая команда перечисляет интерфейс S0 / 0/0 маршрутизатора R1 как исходящий интерфейс. Этот маршрут в основном гласит: Чтобы отправить пакеты в подсеть с маршрутизатора R2, отправьте их через мой собственный локальный интерфейс S0/0/0 (который подключается к R2). Второй маршрут имеет такую же логику, за исключением использования различных инструкций пересылки. Вместо того, чтобы ссылаться на исходящий интерфейс R1, он вместо этого перечисляет IP-адрес соседнего маршрутизатора на WAN-канале в качестве маршрутизатора следующего прыжка. Этот маршрут в основном говорит следующее:чтобы отправить пакеты в подсеть с маршрут. Маршруты, созданные этими двумя командами ip route, на самом деле выглядят немного иначе в таблице IP-маршрутизации по сравнению друг с другом. Оба являются статическими маршрутами. Однако маршрут, который использовал конфигурацию исходящего интерфейса, также отмечается как подключенный маршрут; это всего лишь причуда вывода команды show ip route. В примере 2 эти два маршрута перечислены с помощью статической команды show ip route. Эта команда выводит подробную информацию не только о статических маршрутах, но также приводит некоторые статистические данные обо всех маршрутах IPv4. Например, в этом примере показаны две строки для двух статических маршрутов, настроенных в примере 2, но статистика утверждает, что этот маршрутизатор имеет маршруты для восьми подсетей. IOS динамически добавляет и удаляет эти статические маршруты с течением времени в зависимости от того, работает исходящий интерфейс или нет. Например, в этом случае, если интерфейс R1 S0/0/0 выходит из строя, R1 удаляет статический маршрут к 172.16.2.0/24 из таблицы маршрутизации IPv4. Позже, когда интерфейс снова открывается, IOS добавляет маршрут обратно в таблицу маршрутизации. Обратите внимание, что большинство сайтов используют протокол динамической маршрутизации для изучения всех маршрутов к удаленным подсетям, а не статические маршруты. Однако если протокол динамической маршрутизации не используется, сетевому администратору необходимо настроить статические маршруты для каждой подсети на каждом маршрутизаторе. Например, если бы маршрутизаторы имели только конфигурацию, показанную в примерах до сих пор, ПК А (из рис. 2) не смог бы получать пакеты обратно от ПК В, потому что маршрутизатор R2 не имеет маршрута для подсети ПК А. R2 понадобятся статические маршруты для других подсетей, как и R3. Наконец, обратите внимание, что статические маршруты, которые будут отправлять пакеты через интерфейс Ethernet - LAN или WAN, - должны использовать параметр IP-адреса следующего перехода в команде ip address, как показано в примере 2. Маршрутизаторы ожидают, что их интерфейсы Ethernet смогут достичь любого количества других IP-адресов в подключенной подсети. Ссылка на маршрутизатор следующего перехода определяет конкретное устройство в подключенной подсети, а ссылка на исходящий интерфейс локального маршрутизатора не определяет конкретный соседний маршрутизатор. Статические маршруты хоста Ранее в этой лекции маршрут хоста определялся как маршрут к одному адресу хоста. Для настройки такого статического маршрута команда ip route использует IP-адрес плюс маску 255.255.255.255, чтобы логика сопоставления соответствовала только этому одному адресу. Сетевой администратор может использовать маршруты хоста для направления пакетов, отправленных одному хосту по одному пути, а весь остальной трафик - в подсеть этого хоста по другому пути. Например, вы можете определить эти два статических маршрута для подсети 10.1.1.0 / 24 и Хоста 10.1.1.9 с двумя различными адресами следующего перехода следующим образом: ip route 10.1.1.0 255.255.255.0 10.2.2.2 ip route 10.1.1.9 255.255.255.255 10.9.9.9 Обратите внимание, что эти два маршрута перекрываются: пакет, отправленный в 10.1.1.9, который поступает на маршрутизатор, будет соответствовать обоим маршрутам. Когда это происходит, маршрутизаторы используют наиболее конкретный маршрут (то есть маршрут с наибольшей длиной префикса). Таким образом, пакет, отправленный на 10.1.1.9, будет перенаправлен на маршрутизатор следующего прыжка 10.9.9.9, а пакеты, отправленные в другие пункты назначения в подсети 10.1.1.0/24, будут отправлены на маршрутизатор следующего прыжка 10.2.2.2. Плавающие статические маршруты Затем рассмотрим случай, когда статический маршрут конкурирует с другими статическими маршрутами или маршрутами, изученными протоколом маршрутизации. То есть команда ip route определяет маршрут к подсети, но маршрутизатор также знает другие статические или динамически изученные маршруты для достижения этой же подсети. В этих случаях маршрутизатор должен сначала решить, какой источник маршрутизации имеет лучшее административное расстояние, а чем меньше, тем лучше, а затем использовать маршрут, полученный от лучшего источника. Чтобы увидеть, как это работает, рассмотрим пример, проиллюстрированный на рисунке 3, который показывает другую конструкцию, чем в предыдущих примерах, на этот раз с филиалом с двумя каналами WAN: одним очень быстрым каналом Gigabit Ethernet и одним довольно медленным (но дешево) Т1. В этом проекте сеть Open Shortest Path First Version 2 (OSPFv2) по первичному каналу, изучая маршрут для подсети 172.16.2.0/24. R1 также определяет статический маршрут по резервному каналу к той же самой подсети, поэтому R1 должен выбрать, использовать ли статический маршрут или маршрут, полученный с помощью OSPF. Сетевая диаграмма показывает интерфейс G0 / 0 маршрутизатора R1, который подключен к маршрутизатору R2 через ethernet через облако MPLS. Интерфейс S0 / 0 / 1 R1 соединен с маршрутизатором R3 по последовательной линии. R2 и R3 соединены в ядре облака корпоративной сети, имеющего подсеть 172.16.2.0/24. Маршрутизатор R1 достигает подсети либо по OSPF v1 по основному каналу, либо по статическому маршруту по резервному каналу. По умолчанию IOS отдает предпочтение статическим маршрутам, чем маршрутам, изученным OSPF. По умолчанию IOS предоставляет статическим маршрутам административное расстояние 1, а маршрутам OSPF-административное расстояние 110. Используя эти значения по умолчанию на рисунке 3, R1 будет использовать T1 для достижения подсети 172.16.2.0 / 24 в этом случае, что не является удачным решением. Вместо этого сетевой администратор предпочитает использовать маршруты, изученные OSPF, по гораздо более быстрому основному каналу и использовать статический маршрут по резервному каналу только по мере необходимости, когда основной канал выходит из строя. Чтобы отдавать предпочтение маршрутам OSPF, в конфигурации необходимо изменить настройки административного расстояния и использовать то, что многие сетевики называют плавающим статическим маршрутом. Плавающий статический маршрут перемещается в таблицу IP-маршрутизации или перемещается из нее в зависимости от того, существует ли в настоящее время лучший (меньший) маршрут административного расстояния, полученный протоколом маршрутизации. По сути, маршрутизатор игнорирует статический маршрут в то время, когда известен лучший маршрут протокола маршрутизации. Чтобы реализовать плавающий статический маршрут, вам необходимо использовать параметр в команде ip route, который устанавливает административное расстояние только для этого маршрута, делая значение больше, чем административное расстояние по умолчанию для протокола маршрутизации. Например, команда ip route 172.16.2.0 255.255.255.0 172.16.5.3 130 на маршрутизаторе R1 будет делать именно это - установив административное расстояние статического маршрута равным 130. Пока основной канал остается активным, а OSPF на маршрутизаторе R1 изучает маршрут для 172.16.2.0/24, с административным расстоянием по умолчанию 110, R1 игнорирует статический маршрут. Наконец, обратите внимание, что хотя команда show ip route перечисляет административное расстояние большинства маршрутов в виде первого из двух чисел в двух скобках, команда show ip route subnet явно указывает административное расстояние. В примере 3 показан образец, соответствующий этому последнему примеру. Статические маршруты по умолчанию Когда маршрутизатор пытается маршрутизировать пакет, он может не совпадать с IP-адресом назначения пакета ни с одним маршрутом. Когда это происходит, маршрутизатор обычно просто отбрасывает пакет. Маршрутизаторы могут быть сконфигурированы таким образом, чтобы они использовали либо статически настроенный, либо динамически изучаемый маршрут по умолчанию. Маршрут по умолчанию соответствует всем пакетам, так что, если пакет не соответствует какому-либо другому более конкретному маршруту в таблице маршрутизации, маршрутизатор может, по крайней мере, переслать пакет на основе маршрута по умолчанию. Классический пример, когда компании могут использовать статические маршруты по умолчанию в своих корпоративных сетях TCP / IP, - это когда компания имеет много удаленных узлов, каждый из которых имеет одно относительно медленное WAN-соединение. Каждый удаленный узел имеет только один возможный физический маршрут для отправки пакетов в остальную часть сети. Таким образом, вместо использования протокола маршрутизации, который отправляет сообщения по глобальной сети и использует драгоценную полосу пропускания глобальной сети, каждый удаленный маршрутизатор может использовать маршрут по умолчанию, который направляет весь трафик на центральный сайт, как показано на рисунке 4. Соединение состоит из трех маршрутизаторов: Core, B1 и B1000. Последовательные соединения показаны между маршрутизаторами Core - B1 и Core - B1000. Все эти маршрутизаторы подключены к подсети индивидуально. Маршрутизатор B1 отправляет все нелокальные пакеты в Core через интерфейс S0/0/1. Существует также связь между B1 и B1000. IOS позволяет настроить статический маршрут по умолчанию, используя специальные значения для полей подсети и маски в команде ip route: 0.0.0.0 и 0.0.0.0. Например, команда ip route 0.0.0.0 0.0.0.0 S0/0/1 создает статический маршрут по умолчанию на маршрутизаторе B1-маршрут, который соответствует всем IP-пакетам-и отправляет эти пакеты через интерфейс S0/0/1. В примере 4 показан пример статического маршрута по умолчанию с использованием маршрутизатора R2 с рисунка 1. Ранее на этом рисунке вместе с примером 3 был показан маршрутизатор R1 со статическими маршрутами к двум подсетям в правой части рисунка. Пример 4 завершает настройку статических IP-маршрутов путем настройки R2 в правой части рисунка 1 со статическим маршрутом по умолчанию для маршрутизации пакетов обратно к маршрутизаторам в левой части рисунка. Вывод команды show ip route содержит несколько новых и интересных фактов. Во-первых, он перечисляет маршрут с кодом S, что означает статический, но также со знаком *, что означает, что это кандидат в маршрут по умолчанию. Маршрутизатор может узнать о нескольких маршрутах по умолчанию, и затем маршрутизатор должен выбрать, какой из них использовать; * означает, что это, по крайней мере, кандидат на то, чтобы стать маршрутом по умолчанию. Чуть выше "шлюз последней надежды" относится к выбранному маршруту по умолчанию, который в данном случае является только что настроенным статическим маршрутом с исходящим интерфейсом S0/0/1.
img
Стандарт JSON Web Tokens (JWT) – это лаконичный метод передачи данных, поддающихся проверке. Каждый токен содержит подпись, с помощью которой эмитент может проверить целостность сообщения. С помощью этой статьи вы можете узнать, что из себя представляет структура JWT и как можно создать свои собственные токены. JWT – это популярный способ защиты API и аутентификации сеансов пользователей, так как они достаточно просты и являются автономными.  Как работают JWT? Одна из самых распространенных задач в любом API – это проверка того факта, что пользователи являются теми, за кого себя выдают. Как правило, аутентификация выполняется тогда, когда клиент использует ключ API для запросов, которые он отправляет на сервер. Этот ключ содержит информацию, которая подтверждает личность пользователя. Но все еще остается вопрос: как сервер проверяет, что пользователь сначала предоставил ключ? JWT с легкостью решают эту проблему с помощью секретного ключа, который используется для подписи каждого токена. Сервер проверяет действительность токена, повторно пересчитывая подпись с помощью своего секретного ключа. Любое несанкционированное вмешательство приведет к тому, что проверка не будет выполнена.  Структура JWT JWT состоят из трех отдельных компонентов: Заголовок (header) – содержит метаданные о токене, например, алгоритм подписи, который был использован. Полезная нагрузка (payload) – в качестве полезной нагрузки могут выступать любые случайные данные, которые так или иначе относятся к вашей системе. Полезная нагрузка может содержать ID пользователя и набор определенных функций, с которыми пользователь может взаимодействовать.  Подпись (signature) – подпись позволяет в дальнейшем проверить целостность токена. Подпись создается путем подписания заголовка и полезной нагрузки с помощью секретного ключа, который знает только сервер.  Для того, чтобы сформировать JWT, все эти три компонента нужно записать через точку: header.payload.signature Каждый компонент кодируется с помощью стандарта Base-64. Готовый токен представляет собой строку текста, которую можно использовать в средах разработки программ и отправлять вместе с HTTP-запросами.  Создание JWT Создать JWT можно на любом языке программирования. В данном случае мы будем использовать PHP, но вы можете использовать и другой язык, процесс будет аналогичным.  Начнем с создания заголовка. Как правило, он включает в себя два поля –  alg и  typ : alg – это алгоритм хеширования, который мы будем использовать для создания подписи. Как правило, используют HMAC SHA256 ( HS256 ). typ – это тип токена, который мы создаем. Здесь мы должны указать  JWT . Вот так выглядит объект JSON, который определяет заголовок: {    "alg": "HS256",    "typ": "JWT" } Заголовок необходимо закодировать с помощью Base-64: $headerData = ["alg" => "HS256", "typ" => "JWT"]; $header = base64_encode(json_encode($headerData)); Затем нам необходимо определить еще один объект JSON - полезную нагрузку токена. Что из себя будет представлять полезная нагрузка зависит от приложения. В данном примере мы используем информацию об учетной записи аутентифицированного пользователя и информацию о самом токене.  exp ,  iat и  nbf – это условные поля, которые используются для того, чтобы указать время истечения срока действия токена, время его создания и момент времени (начальный), до которого он считается недействительным. Полезную нагрузку также необходимо закодировать с помощью Base-64. $payloadData = [    "userId" => 1001,    "userName" => "demo",    "licensedFeatures" => ["todos", "calendar", "invoicing"],    "exp" => (time() + 900),    "iat" => time(),    "nbf" => time() ]; $payload = base64_encode(json_encode($payloadData)); Нам остается только создать подпись. Для этого сначала нужно объединить заголовок и полезную нагрузку в одну сроку, разделив их точкой: $headerAndPayload = "$header.$payload"; Затем мы должны сгенерировать уникальный секретный ключ, который мы будем использовать в качестве секретного ключа подписи. Этот ключ должен надежно храниться на вашем сервере, и его ни в коем случае нельзя передавать клиентам. Если значение секретного ключа будет раскрыто, то любой пользователь сможет создавать действительные токены.  // PHP method to generate 32 random characters $secret = bin2hex(openssl_random_pseudo_bytes(16)); И мы завершаем процесс с помощью подписи объединенной строки (заголовка и полезной нагрузки) с помощью секретного ключа. Для этого мы будем использовать алгоритм хеширования, который мы указали в заголовке. Получившаяся подпись также, как и другие компоненты, должна быть закодирована с помощью Base-64.  $signature = base64_encode(hash_hmac("sha256", $headerAndPayload, $secret, true)); Итак, у нас теперь есть заголовок, полезная нагрузка и подпись. Они представляют собой отдельные текстовые компоненты. Для того, чтобы создать JWT, мы должны объединить из с помощью точки. И теперь мы можем отправить его клиенту: $jwt = "$header.$payload.$signature"; Проверка входящих JWT Клиентское приложение может определить, какие функции доступны пользователю, если расшифрует полезную нагрузку токена. Вот пример, написанный на JavaScript: const tokenComponents = jwt.split("."); const payload = token[1]; const payloadDecoded = JSON.parse(atob(payload)); // ["todos", "calendar", "invoicing"] console.log(payloadDecoded.licensedFeatures); Злоумышленник может подумать, что эти данные представляют собой простой текст и его легко изменить. Он может попробовать убедить сервер в том, что у него есть некая дополнительная доступная ему функция, изменив полезную нагрузку токена в своем запросе: // Create a new payload component const modifiedPayload = btoa(JSON.stringify({    ...payloadDecoded,    licensedFeatures: ["todos", "calendar", "invoicing", "extraPremiumFeature"] })); // Stitch the JWT back together with the original header and signature const newJwt = `${token[0]}.${modifiedPayload}.${token[2]}` Как же сервер защищается от подобных атак? Ответ заключается в процессе создания подписи. Значение подписи учитывает, как заголовок токена, так и его полезную нагрузку. В случае данного примера изменение полезной нагрузки ведет к тому, что подпись становится недействительной.  Серверная программа проверяет входящие JWT путем пересчета их подписей. Если подпись, отправленная клиентом, не совпадает с подписью, посчитанной на сервере, то можно сделать вывод о том, что токен был подделан.  $tamperedToken = $_POST["apiKey"]; list($header, $payload, $signature) = $tamperedToken; // Determine the signature this token *should* have // when the server's secret is used as the key $expectedSignature = hash_hmac("sha256", "$header.$payload", $secret, true); // The token has been tampered with because its // signature is incorrect for the data it includes if ($signature !== $expectedSignature) {    http_response_code(403); } // The signatures match - we generated this // token and can safely trust its data else {    $user = fetchUserById($payload["userId"]); } Злоумышленник не может создать действительный токен, если он не знает секретный ключ, который хранится на сервере. Также это означает, что случайная утеря или преднамеренная передача секретного ключа сразу же делает все ранее созданные токены недействительными.  В реальной ситуации ваш код аутентификации должен проверять срок действия токена, а также должен убедиться, что он уже является действительным ( nbf в полезной нагрузке). Это все необходимо для того, чтобы определить, является ли сеанс пользователя действительным. Когда нужно использовать JWT JWT, как правило используют для аутентификации API, поскольку их достаточно просто реализовать на сервере, легко использовать на клиентской стороне и просто передавать через границы сети. Но несмотря на то, что они такие простые, они обеспечивают хороший уровень безопасности за счет того, что каждый токен подписывается с помощью секретного ключа, который хранится на сервере.  JWT – это механизм, который не фиксирует текущее состояние, поэтому нет необходимости фиксировать информацию о созданных токенах на вашем сервере. Информацию о клиенте, который предоставляет вам JWT, вы можете получить из полезной нагрузки, а не искать ее в базе данных. После того, как подпись будет проверена, эта информация будет считаться достоверной.  Если вам необходимо обмениваться информацией между двумя сторонами без какого-либо постороннего вмешательства, то использование JWT – это отличный вариант. Однако у этого механизма есть слабые места, о которых следует знать заранее. В случае, если произойдет утечка секретного ключа или если ваш код проверки подписи содержит ошибку, то будет скомпрометирована вся система. Именно поэтому для реализации процесса создания и проверки JWT многие разработчики используют библиотеку с открытым исходным кодом. Функции доступны для всех популярных языков программирования, и они исключают риск ошибок при проверке токена.   Заключение Стандарт JWT – это формат обмена данными, который включает в себя проверку целостности. Как правило, JWT используют для защиты взаимодействия между серверами API и клиентскими приложениями. Сервер может доверять входящим токенам, если у него получается воспроизвести их подписи. С помощью информации, полученной из полезной нагрузки, можно обеспечить безопасность при выполнении каких-либо действий  JWT достаточно удобны, но при этом имеют некоторые недостатки. Текстовое представление JWT в кодировке Base-64 может быть слишком объемным, если в полезной нагрузке будет слишком много полей. Это будет недопустимым потреблением ресурсов, если ваш клиент собирается отправлять JWT с каждым запросом.  Еще одним возможным недостатком может оказаться то, что JWT не фиксирует текущее состояние. После того, как токен был создан, он является неизменяемым и должен использоваться как есть до истечения своего срока действия. Клиенты, которые используют полезные данные JWT для определения прав доступа пользователя или для использования лицензированных функций, должны будут получать новый токен с сервера каждый раз, когда что-то из этого меняется. 
img
При подключении к vCenter Server через vSphere Web Client вы можете увидеть такое сообщение: 503 Service Unavailable (Failed to connect to endpoint: [N7Vmacore4Http20NamedPipeServiceSpecE:0x7f009c095810] _serverNamespace = / _isRedirect = false _pipeName =/var/run/vmware/vpxd-webserver-pipe) 503 Service Unavailable (Failed to connect to endpoint: [class Vmacore::Http::LocalServiceSpec:00000000006F92F0] _serverNamespace = /vsphere-client 503 Service Unavailable (Failed to connect to endpoint: [N7Vmacore4Http20NamedPipeServiceSpecE:0x7f0c6005e4c0] _serverNamespace = / _isRedirect = false _pipeName =/var/run/vmware/vpxd-webserver-pipe) 503 service unavailble fail to connect to end point. 503 Service Unavailable (Failed to connect to endpoint: [N7Vmacore4Http16LocalServiceSpecE:0x7f65e7834610] _serverNamespace = /vsphere-client _isRedirect = false _port = 909 503 Service Unavailable (Failed to connect to endpoint: [N7Vmacore4Http16LocalServiceSpecE:0x00007f2470005950] _serverNamespace = /sdk action = Allow _port = 8085) Ошибка 503 возникает, если один или более сервис или конечная точка недоступны. Например, когда сервис vSphere Web Client запущен, сервис vCenter Server может быть отключён или иметь статус Stopped. Рассказываем как исправить ошибку "503 Service Unavailable" в vSphere Web Client при подключении через vCenter. Решение Для устранения этой ошибки: Убедитесь, что соединение существует с устройства, пытающегося получить доступ к vCenter Server с помощью vSphere Web Client с telnet, выполнив следующую команду: telnet vcenter_fqdn 9443 Проверьте достаточно ли свободного места на разделе диска в vCenter Server Appliance, введя команду: df -h Убедитесь, что vCenter Server работает, введя эту команду: service-control --status –all Если сервис неожиданно прекратил работу, то можно запустить его следующей командой: service-control --start –all Если PSC имеет внешнее подключение, то также следует проверить работоспособность сервисов с PSC. Убедитесь, что VCSA имеет достаточно ресурсов для обработки запроса, стоит проверить потребление процессора/памяти на стороне хоста и VCSA с помощью команды top. Если все сервисы VC работают правильно и веб-клиент не открывается, то узнать подробнее о проблеме можно по вирго логам, расположенным по пути: Windows vCenter Server: C:ProgamDataVMwarevCenterServerlogsvsphere-clientlogs vCenter Server Appliance: /var/log/vmware/vsphere-client/logs/ Также изучите файл vpxd.log, находящийся: Windows vCenter Server: C:ProgramDataVMwarevCenterServerlogsvmware-vpx vCenter Server Appliance: /var/log/vmware/vpxd
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59