По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитать лекцию №20 про протоколы передачи данных нижнего уровня можно тут. Обычно называется и маркируется как Wi-Fi 802.11, который широко используется для передачи данных по беспроводной сети в радиочастотах 2,4 и 5 ГГц. Микроволновые печи, радиолокационные системы, Bluetooth, некоторые любительские радиосистемы и даже радионяня также используют радиочастоту 2,4 ГГц, поэтому WiFi может создавать помехи и мешать работе другим системам. Мультиплексирование Спецификации 802.11 обычно используют форму частотного мультиплексирования для передачи большого количества информации по одному каналу или набору частот. Частота сигнала-это просто скорость, с которой сигнал меняет полярность в течение одной секунды; следовательно, сигнал 2,4 ГГц-это электрический сигнал, передаваемый по проводу, оптическому волокну или воздуху, который меняет полярность с положительной на отрицательную (или отрицательную на положительную) 2,4 × 109 раз в секунду. Чтобы понять основы беспроводной передачи сигналов, лучше всего начать с рассмотрения идеи несущей и модуляции. Рисунок 1 иллюстрирует эти концепции. На рисунке 1 выбрана одна центральная частота; канал будет представлять собой диапазон частот по обе стороны от этой центральной частоты. В результирующем канале две несущие частоты выбираются таким образом, чтобы они были ортогональны друг другу-это означает, что сигналы, передаваемые на этих двух несущих частотах, не будут мешать друг другу. Они обозначены на рисунке как OSF 1 и OSF 2. Каждая из этих несущих частот, в свою очередь, фактически является более узким каналом, позволяя модулировать фактический сигнал "0" и "1" на канале. Модуляция, в данном случае, означает изменение фактической частоты сигнала вокруг каждой из частот. Модуляция просто означает изменение несущей таким образом, чтобы сигнал передавался так, чтобы приемник мог его надежно декодировать. Таким образом, в спецификации 802.11 используется схема мультиплексирования с ортогональным частотным разделением каналов (Orthogonal Frequency Division Multiplexing- OFDM), а фактические данные кодируются с использованием частотной модуляции (Frequency Modulation-FM). Важно Один из сбивающих с толку моментов мультиплексирования заключается в том, что оно имеет два значения, а не одно. Либо это означает размещение нескольких битов на одном носителе одновременно, либо возможность одновременного взаимодействия нескольких хостов с использованием одного и того же носителя. Какое из этих двух значений подразумевается, можно понять только в конкретном контексте. В этой лекции применяется первое значение мультиплексирования, разбиение одного носителя на каналы, чтобы можно было передавать несколько битов одновременно. Скорость, с которой данные могут передаваться в такой системе (полоса пропускания), напрямую зависит от ширины каждого канала и способности передатчика выбирать ортогональные частоты. Таким образом, для увеличения скорости 802.11 были применены два разных метода. Первый - просто увеличить ширину канала, чтобы можно было использовать больше несущих частот для передачи данных. Второй - найти более эффективные способы упаковки данных в один канал с помощью более сложных методов модуляции. Например, 802.11b может использовать канал шириной 40 МГц в диапазоне 2,4 ГГц, а 802.11ac может использовать канал шириной 80 или 160 МГц в диапазоне 5 ГГц. Пространственное мультиплексирование Другие формы мультиплексирования для увеличения пропускной способности между двумя устройствами также используются в серии спецификаций 802.11. Спецификация 802.11n представила Multiple Input Multiple Output (MIMO), которые позволяют сигналу проходить разными путями через единую среду (воздух). Это может показаться невозможным, поскольку в комнате только один "воздух", но беспроводные сигналы фактически отражаются от различных объектов в комнате, что заставляет их проходить через пространство разными путями. Рисунок 2 демонстрирует это. На рисунке 2, если предположить, что передатчик использует антенну, которая будет передавать во всех направлениях (всенаправленная антенна), есть три пути через одно пространство, помеченные 1, 2 и 3. Передатчик и приемник не могут "видеть" три отдельных пути, но они могут измерять силу сигнала между каждой парой антенн и пытаться посылать различные сигналы между внешне разделенными парами, пока не найдут несколько путей, по которым могут быть отправлены различные наборы данных. Второй способ использования нескольких антенн - это формирование луча. Обычно беспроводной сигнал, передаваемый от антенны, охватывает круг (3D-шар). При формировании луча, он формируется с помощью одного из различных методов, чтобы сделать его более продолговатым. Рисунок 3 иллюстрирует эти концепции. В несформированном узоре сигнал представляет собой шар или шар вокруг кончика антенны- нарисованный сверху, он выглядит как простой круг, простирающийся до самой дальней точки в форме шара. С помощью отражателя луч может быть сформирован или сформирован в более продолговатую форму. Пространство позади отражателя и по бокам луча будет получать меньше (или вообще не получать, для очень плотных лучей) мощности передачи. Как можно построить такой отражатель? Самый простой способ - это физический барьер, настроенный на отражение силы сигнала, подобно тому, как зеркало отражает свет или стена отражает звук. Ключ - это точка в сигнале передачи, в которой устанавливается физический барьер. Рисунок 4 будет использоваться для объяснения ключевых моментов в форме сигнала, отражении и гашении. Типичная форма волны следует за синусоидальной волной, которая начинается с нулевой мощности, увеличивается до максимальной положительной мощности, затем возвращается к нулевой мощности, а затем проходит цикл положительной и отрицательной мощности. Каждый из них представляет собой цикл- частота относится к числу повторений этого цикла в секунду. Вся длина волны в пространстве вдоль провода или оптического волокна называется длиной волны. Длина волны обратно пропорциональна частоте- чем выше частота, тем короче длина волны. Ключевой момент, который следует отметить на этой диаграмме, - это состояние сигнала в точках четверти и половины длины волны. В четвертьволновой точке сигнал достигает наивысшей мощности; если объект или другой сигнал интерферирует в этой точке, сигнал будет либо поглощен, либо отражен. В точке полуволны сигнал находится на минимальной мощности; если нет смещения или постоянного напряжения на сигнале, сигнал достигнет нулевой мощности. Чтобы отразить сигнал, вы можете расположить физический объект так, чтобы он отражал мощность только в точке четверти волны. Физическое расстояние, необходимое для этого, будет, конечно, зависеть от частоты, так же как длина волны зависит от частоты. Физические отражатели просты. Что делать, если вы хотите иметь возможность динамически формировать луч без использования физического отражателя? Рисунок 5 иллюстрирует принципы, которые вы можете использовать для этого. Светло-серые пунктирные линии на рисунке 5 представляют собой маркер фазы; два сигнала находятся в фазе, если их пики выровнены, как показано слева. Два сигнала, показанные в середине, находятся на четверть вне фазы, так как пик одного сигнала совпадает с нулевой точкой или минимумом второго сигнала. Третья пара сигналов, показанная в крайнем правом углу, является комплементарной, или на 180 градусов вне фазы, так как положительный пик одного сигнала совпадает с отрицательным пиком второго сигнала. Первая пара сигналов будет складываться вместе; третья пара сигналов будет погашена. Вторая пара может, если она правильно составлена, отражать друг друга. Эти три эффекта позволяют сформировать пучок, как показано на рисунке 6. Одна система формирования луча может использовать или не использовать все эти компоненты, но общая идея состоит в том, чтобы ограничить луч в пределах физического пространства в среде - как правило, свободное распространение в воздухе. Формирование луча позволяет использовать общую физическую среду в качестве нескольких различных каналов связи, как показано на рисунке 7. На рисунке 7 беспроводной маршрутизатор использовал свои возможности формирования луча для формирования трех разных лучей, каждый из которых направлен на другой хост. Маршрутизатор теперь может отправлять трафик по всем трем из этих сформированных лучей с более высокой скоростью, чем если бы он обрабатывал все пространство как единую совместно используемую среду, потому что сигналы для A не будут мешать или перекрываться с информацией, передаваемой в B или C. Совместное использование канала Проблема мультиплексирования в беспроводных сигналах связана с совместным использованием одного канала, как в системах проводных сетей. В решениях, разработанных для совместного использования единой беспроводной среды, преобладают две специфические проблемы: проблема скрытого узла и проблема мощности передачи / приема (которую также иногда называют перегрузкой приемника). На рисунке 8 показана проблема со скрытым узлом. Три круга на рисунке 8 представляют три перекрывающихся диапазона беспроводных передатчиков в точках A, B и C. Если A передает в сторону B, C не может слышать передачу. Даже если C прослушивает свободный канал, A и C могут передавать одновременно, что вызывает конфликт в B. Проблема скрытого узла усугубляется из-за того, что мощность передачи по сравнению с мощностью принятого сигнала, и реальность воздуха как среды. Главное практическое правило для определения мощности радиосигнала в воздухе - сигнал теряет половину своей мощности на каждой длине волны в пространстве, которое он проходит. На высоких частотах сигналы очень быстро теряют свою силу, что означает, что передатчик должен послать сигнал с мощностью на несколько порядков больше, чем его приемник способен принять. Очень сложно создать приемник, способный "слушать" локальный передаваемый сигнал в полную силу, не разрушая приемную схему, а также способный "слышать" сигналы очень низкой мощности, необходимые для расширения диапазона действия устройства. Другими словами, передатчик насыщает приемник достаточной мощностью, чтобы во многих ситуациях "уничтожить" его. Это делает невозможным в беспроводной сети для передатчика прослушивать сигнал во время его передачи и, следовательно, делает невозможным реализацию механизма обнаружения коллизий, используемого в Ethernet (как пример). Механизм, используемый 802.11 для совместного использования одного канала несколькими передатчиками, должен избегать проблем со скрытым каналом и приемником. 802.11 WiFi использует множественный доступ с контролем несущей / предотвращение конфликтов (Carrier Sense Multiple Access/Collision Avoidance -CSMA/CA) для согласования использования канала. CSMA/CA похож на CSMA/CD: Перед передачей отправитель прослушивает сообщение, чтобы определить, передает ли его другое устройство. Если слышна другая передача, отправитель "замирает" на определенный случайный период времени перед повторной попыткой- эта отсрочка предназначена для предотвращения того, чтобы несколько устройств, слышащие одну и ту же передачу, не пытались передать данные одновременно. Если никакой другой передачи не слышно, отправитель передает весь кадр- отправитель не может принять сигнал, который он передает, поэтому в этой точке нет способа обнаружить коллизию. Получатель отправляет подтверждение кадра при получении; если отправитель не получает подтверждения, он предполагает, что произошла коллизия, отключается на случайное количество времени и повторно отправляет кадр. Некоторые системы WiFi также могут использовать Request to Send/Clear to Send (RTS / CTS). В таком случае: Отправитель передает RTS. Когда канал свободен, и никакая другая передача не запланирована, получатель отправляет CTS. Получив CTS, отправитель передает данные Какая система будет обеспечивать более высокую пропускную способность, зависит от количества отправителей и получателей, использующих канал, длины кадров и других факторов. Маршалинг данных, контроль ошибок и управление потоком данных Маршалинг данных в 802.11 аналогичен Ethernet; в каждом пакете есть набор полей заголовка фиксированной длины, за которыми следуют транспортируемые данные и, наконец, четыре октетная Frame Check Sequence (FCS), которая содержит CRC для содержимого пакета. Если получатель может исправить ошибку на основе информации CRC, он это сделает, в противном случае получатель просто не подтверждает получение кадра, что приведет к повторной передаче кадра отправителем. Порядковый номер также включен в каждый кадр, чтобы гарантировать, что пакеты принимаются и обрабатываются в том порядке, в котором они были переданы. Управление потоком обеспечивается в системе RTS / CTS приемником, ожидающим отправки CTS, пока у него не будет достаточно свободного места в буфере для приема нового пакета, чтобы промежуточные системы могли обнаруживать конечные системы; это называется протоколом End System to Intermediate System (ES-IS).
img
Сегодня в статье мы расскажем как перезапустить Агентов Управления (Management agents) в ESXi. Это может быть необходимо в случае если невозможно подключение напрямую к хосту ESXi или управление с помощью vCenter Server или если vCenter Server отображает сообщение об ошибке: Virtual machine creation may fail because agent is unable to retrieve VM creation options from the host (создание ВМ может потерпеть неудачу, из-за невозможности получения параметров создания виртуальных машин с хоста). Решение Для устранения неполадок с подключением ESXi перезапустите Агентов Управления на хосте ESXi Предупреждение: если LACP настроен на сеть VSAN не перезагружайте Агентов Управления при хостах ESXi под управлением vSAN. Перезапуск Агентов Управления может повлиять на задачи, которые выполняются на хосте ESXi в момент перезапуска Проверьте наличие каких-либо проблем с хранилищем перед перезапуском службы host deamon hostd или services.sh Перезапустите Агентов Управления ESXi используя Direct Console User Interface (DCUI) Подключитесь к консоли вашего ESXi хоста. Нажмите F2, чтобы настроить систему. Войдите в систему с правами администратора. Используйте стрелки вверх/вниз, чтобы перейти к устранению неполадок Troubleshooting Options -> Restart Management Agents (Функции -> Перезапустить Management Agents). Нажмите Enter. Нажмите F11 для перезапуска сервера. После перезапуска сервера, нажми Enter. Нажмите Esc для выхода Примечание: Вы можете также перезапустить службы с помощью Host Client. В Host Client выберите Host>> Manage>> Services и Restart (Хост >> Управление >> Услуги) и выберите услугу перезапуска. Перезапуск Агентов Управления с помощью ESXi Using ESXi Shell или Secure Shell (SSH) Войдите в систему ESXi Shell или SSH с правами администратора Перезапустите службы host deamon ESXi и vCenter Agent с помощью следующих команд: /etc/init.d/hostd restart /etc/init.d/vpxa restart Или Чтобы сбросить сеть управления на определенном интерфейсе VMkernel, по умолчанию vmk0 выполните команду: esxcli network ip interface set -e false -i vmk0; esxcli network ip interface set -e true -i vmk0 Примечание: Использование точки с запятой ; между двумя командами гарантирует то, что интерфейс VMkernel будет отключен, а затем снова включен. Если интерфейс управления не работает на vmk0, измените приведенную выше команду в соответствии с используемым интерфейсом VMkernel. Чтобы перезапустить все Агенты Управления на хосте, выполните команду: services.sh restart Внимание: Если LACP включен и настроен, не перезапускайте службы управления с помощью команды services.sh. Вместо этого перезапустите независимые службы, используя команду /etc/init.d/module restart Если проблема не устранена, и вы перезапускаете все службы, которые являются частью сценария services.sh, подождите, прежде чем переходить к сценарию. Если NSX настроен в среде, не запускайте для перезапуска команду /sbin/services.sh restart, поскольку это перезапустит все службы на хосте ESXi. Если вам нужно перезапустить management agents на хосте ESXi, перезапустите vpxa, host.d и fdm по отдельности. Если вам также необходимо выполнить команду перезапуска /sbin/services.sh restart, поскольку перезапуск каждого management agent не работает, то перенесите все VM с хоста ESXi и переведите хост в режим обслуживания, если это возможно. Если вы не уверены в том, что NSX для vSphere установлен на хосте ESXi, выполните эту команду, для проверки: esxcli software vib list --rebooting-image | grep esx-* Найдите следующие VIB, чтобы определить, установлен ли NSX на хосте ESXi: vsip-esx esx-vxlan Если вы используете общую графику в среде View (VGPU, vDGA, vSGA), не используйте services.sh. Это отключит службу xorg, которая отвечает за графику на уровне гостевого ОС. Отключив графику из гостевого уровня ОС, вы вызовете сбой нагрузки VDI с использованием общей графики. Убедитесь, что вы используете общую графику для перезапуска только hostd и vpxa, если вы не в режиме обслуживания.
img
Введение Однажды в организации, где я работаю, случился Asterisk Случился не без моего участия, а если быть точным, то я и был главным виновником, и как следствие - главным исполнителем. Напасть была локальной, но достаточно быстро получила широкое распространение, хотя, в отдельных уголках приходилось нести прогресс в массы с применением тяжелой артиллерии и напалма. В итоге Asterisk`ом было охвачено порядка полутора тысяч абонентов. Процесс настройки абонента изначально выглядел следующим образом: Включил телефон, обновил прошивку. Пока он перезагружается, завел абонента на Asterisk (создал запись для регистрации SIP-клиента). Далее, самый очевидный способ настройки телефона - web-интерфейс; набрал в адресной строке браузера IP-адрес телефона, авторизовался, настроил два десятка параметров и готово. На всё ушло 2-3 минуты. Следующий абонент - повторяем. На втором десятке абонентов начало надоедать, появилось желание как-нибудь упростить процесс. Заглянул в настройки: экспорт и импорт конфигурации присутствует; сохранил конфигурацию телефона в файл, заглянул в него - обычный текстовый файл, в котором перечислены параметры с их значениями. Нашел параметры, значения которых менял в web-интерфейсе, причем большинство из этих параметров, хоть и отличается от дефолтных, но одинаково для всех настраиваемых в рамках данной организации телефонов. Таким образом, имея эталонный файл конфигурации и редактируя в нем всего 5-6 строк, я получал конфигурации для остальных телефонов, которые "заливал" в аппараты всё через тот же web-интерфейс. Спустя какое-то время количество абонентов заметно выросло, компания продолжала развиваться, сотрудники мигрировали между подразделениями, увольнялись, появлялись новые, некоторые телефоны выходили из строя, и возня с файлами стала постепенно отнимать много времени и раздражала с каждым днем всё больше. Тут я вспомнил про пункт меню из web-интерфейса, в котором были написаны многообещающие слова "Auto Provision". Обратимся за определением к производителям телефонов. У Dlink или Fanvil мы получим следующее: Auto Provisioning используется для реализации удаленной/автоматической инсталляции, развертывания конфигурационных и некоторых других связанных файлов. Snom дает нам практически такое же: Auto Provisioning может использоваться для предоставления общих и специфических параметров конфигурации на телефоны и для актуализации прошивки. Вроде бы всё устраивает, значит, будем для наших целей отталкиваться от этих определений. Вариантов автоматической настройки предусмотрено несколько, и без долгих терзаний, как наиболее понятный и доступный был выбран следующий: Развертывание конфигурации с tftp сервера, адрес которого телефон будет получать по DHCP в Option 66. Разберемся вкратце, что есть что. TFTP - простой протокол передачи файлов (Trivial File Transfer Protocol). В отличие от FTP основан на транспортном протоколе UDP и в нем отсутствует возможность аутентификации (однако, возможна фильтрация по IP-адресу). Одно из основных преимуществ TFTP - простота реализации клиента, поэтому он достаточно широко используется в частности для загрузки обновлений и конфигураций сетевых устройств. DHCP - протокол динамической настройки узла (Dynamic Host Configuration Protocol); сетевой протокол, позволяющий сетевым устройствам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP. Не вдаваясь глубоко в подробности, схема обмена сообщениями DHCP при получении параметров выглядит следующим образом: DHCPDISCOVER: клиент (в нашем случае, телефон) передает это сообщение broadcast, и использует его для поиска DHCP-серверов в своей канальной среде. В одном из полей этого пакета, в поле options, клиент передает список необходимых ему опций, наиболее распространенными из которых являются: (1) - Subnet Mask (3) - Router (6) - Domain Name Server (15) - Domain Name именно в этом поле клиент сообщает о том, что ему нужен адрес tftp сервера для загрузки конфигурационного и/или других связанных файлов. Номер опции, которая его содержит - 66 (у cisco есть аналогичная опция 150, основное отличие которой в том, что она может содержать адреса нескольких tftp серверов). DHCPOFFER: cервер отвечает на запрос клиента. Сервер может передать это сообщение как broadcast так и unicast (зависит от значений полей полученных от клиента). В этом сообщении сервер предлагает клиенту параметры, которые он может отдать в текущей конфигурации. Если в сегменте сети клиента несколько DHCP серверов, то получив запрос, они все отправляют OFFER-ы. После того, как клиент выбрал, OFFER какого из DHCP серверов принять, он отправляет следующий пакет: DHCPREQUEST: казалось бы, если клиент определился, какой DHCP сервер "пришелся ему по душе", можно передать unicast-запрос этому серверу; однако предается broadcast, чтобы уведомить остальные DHCP серверы о своём выборе (добавляется опция 54, указывающая адрес выбранного DHCP-сервера), и они могли освободить зарезервированные OFFER-ы. DHCPACK: cервер отправляет подтверждение клиенту. После этого клиент настраивает свой сетевой интерфейс, используя предоставленные параметры и опции. В различных ситуациях могут еще возникать DHCPDECLINE, DHCPNAK, DHCPRELEASE, DHCPINFORM, но их рассмотрение в рамки данной статьи не входит. Для получения исчерпывающей информации о работе DHCP можно обратиться к RFC 2131: https://tools.ietf.org/html/rfc2131 Про опции 66 и 150 можно почитать здесь: https://wiki.merionet.ru/ip-telephoniya/67/dhcp-opciya-150-i-66/ https://blog.router-switch.com/2013/03/dhcp-option-150-dhcp-option-66/ Про настройку DHCP сервера и Option 66 на Mikrotik можно почитать здесь: https://wiki.merionet.ru/seti/5/nastrojka-dhcp-servera-na-mikrotik/ Чтобы передать телефону адрес tftp сервера, с которого он может получить конфигурационный файл, на DHCP сервере в параметрах области задаем Option 66, в которой указываем hostname либо IP адрес нашего tftp сервера. Настройки по-умолчанию в большинстве телефонов подразумевают получение IP-адреса по DHCP и запрос Option 66. В итоге, телефон получает IP, получает адрес tftp сервера и пытается "стянуть" оттуда файл своей конфигурации. Согласно документации Dlink, загрузка файла конфигурации происходит следующим образом: Устанавливается соединение с сервером. Проверяется наличие файла с соответствующим именем: - в первую очередь проверяется файл с именем соответствующим аппаратной платформе; - во вторую - соответствующий MAC адресу устройства; - в третью - соответствующий ID устройства; - файл с произвольным именем проверяется либо в последнюю очередь (DHCP option, UpnP) либо в первую, если он явно указан в конфигурации телефона. Проверяется версия конфигурационного файла. Если версия выше, чем текущая на телефоне, файл конфигурации применяется. Как уже говорилось ранее, файл конфигурации представляет собой текстовый документ определенного вида: Первая строка: <<VOIP CONFIG FILE>>Version:2.0002 Для того, чтобы конфигурация была применена, версия файла должна быть выше, нежели текущая на телефоне, инкрементировать требуется последний разряд версии. По-умолчанию версия конфигурации 2.0002 Пример: Текущая версия конфигурации 2.0002 на одном телефоне и 2.0004 на еще двух. Для того чтобы конфигурация применилась только на один телефон в первой строке файла конфигурации ставим <<VOIP CONFIG FILE>>Version:2.0004 для того чтобы обновить конфигурацию на всех телефонах ставим в первой строке <<VOIP CONFIG FILE>>Version:2.0005 Разделы: <GLOBAL CONFIG MODULE - содержит данные о сетевых настройках, серверах DNS, SNTP... <LAN CONFIG MODULE> - содержит данные о настройках LAN, режимах работы LAN <TELE CONFIG MODULE> - настройки расширенных функций телефонной части (Call Feature) <DSP CONFIG MODULE> - настройка кодеков <SIP CONFIG MODULE> - настройки SIP, серверы, регистрация etc... <PPPoE CONFIG MODULE> - настройки PPPoE <MMI CONFIG MODUL>E - настройки доступа и WEB интерфейса <QOS CONFIG MODULE> - qos и vlan <DHCP CONFIG MODULE> - настройки внутреннего DHCP <NAT CONFIG MODULE> - настройки NAT и ALG <PHONE CONFIG MODULE> - настройки телефонной части, в этом же разделе настраивается remote phonebook и extension key. <SCREEN KEY CONFIG MODULE> - настройка программных клавиш (для версии F3) <AUTOUPDATE CONFIG MODULE> - настройки Autoprovision <VPN CONFIG MODULE> - настройки VPN <TR069 CONFIG MODULE> - настройки TR069 Заканчивается файл строкой <<END OF FILE>> Для обновления какой-либо опции конфигурации телефона, чтобы файл конфигурации был принят телефоном достаточно наличие следующих полей: <<VOIP CONFIG FILE>> Version:2.0002 <Название необходимого раздела> Название опции: значение <<END OF FILE>> Например, для обновления имени хоста телефона необходимо создать следующий файл конфигурации: <<VOIP CONFIG FILE>>Version:2.0003 <GLOBAL CONFIG MODULE> Host Name :ReceptionPhone <<END OF FILE>> Все остальные элементы являются необязательными. Итак, овал нарисован. Остались сущие мелочи - реализовать инструмент для создания конфигураций и дальнейшего управления ими. Займемся этим в следующей публикации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59