По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Пинг. Что может быть проще? Стандартная операция отправки эхо-запроса ICMP (Internet Control Message Protocol) для проверки доступности. Пишете в командной строке ping, затем адрес и готово! Действительно, проще некуда. А что если нам наоборот, нужно что-то посложнее? Для этого в Linux вам поможет утилита fping. /p> Что такое fping? Fping – это инструмент, аналогичный утилите ping, но гораздо более производительный в случае, когда нам нужно сделать пинг до нескольких узлов. С fping можно использовать файлы со списком адресов или даже указывать целые диапазоны сетей с маской. Установка В большинстве дистрибутивов Linux пакет fping можно установить из репозиториев: # sudo apt install fping [ДляDebian/Ubuntu] # sudo yum install fping [Для CentOS/RHEL] # sudo dnf install fping [Для Fedora 22+] # sudo pacman -S fping [Для Arch Linux] Если нужно установить из исходного пакета, то используются следующие команды: $ wget https://fping.org/dist/fping-4.0.tar.gz $ tar -xvf fping-4.0.tar.gz $ cd fping-4.0/ $ ./configure $ make && make install Готово! Теперь посмотрим, что мы сможем сделать с помощью fping Пинг множества адресов Используйте команду fping, а затем через пробел укажите нужные IP адреса # fping 192.168.1.1 192.168.1. 192.168.1.3 192.168.1.1 is alive 192.168.1.1 is unreachable 192.168.1.3 is unreachable Пинг диапазона адресов Используйте ключи –s и –g, после которых укажите первый и последний адрес диапазона. # fping -s -g 192.168.0.1 192.168.0.9 192.168.0.1 is alive 192.168.0.2 is alive ICMP Host Unreachable from 192.168.0.2 for ICMP Echo sent to 192.168.0.3 ICMP Host Unreachable from 192.168.0.2 for ICMP Echo sent to 192.168.0.3 ICMP Host Unreachable from 192.168.0.2 for ICMP Echo sent to 192.168.0.3 ICMP Host Unreachable from 192.168.0.2 for ICMP Echo sent to 192.168.0.4 192.168.0.3 is unreachable 192.168.0.4 is unreachable 8 9 targets 2 alive 2 unreachable 0 unknown addresses 4 timeouts (waiting for response) 9 ICMP Echos sent 2 ICMP Echo Replies received 2 other ICMP received 0.10 ms (min round trip time) 0.21 ms (avg round trip time) 0.32 ms (max round trip time) 4.295 sec (elapsed real time) Пинг целой подсети Укажите маску подсети через слеш, чтобы пропинговать всю подсеть. Ключ –r 1 указывает на то, что будет одно повторение операции # fping -g -r 1 192.168.0.0/24 Пинг с адресами из файла Можно записать в файл список адресов (в нашем случае мы назвали его merionfping.txt), и зачитать из него адреса для пинга # fping < fping.txt 192.168.1.20 is alive 192.168.1.100 is alive
img
Всякий раз, когда мы отправляем данные из одного узла в другой в компьютерной сети, данные инкапсулируются на стороне отправителя, а деинкапсулируются на стороне получателя. В этой статье мы узнаем, что такое инкапсуляция. Мы также подробно изучим процесс инкапсуляции и деинкапсуляции в моделях OSI и TCP/IP. Инкапсуляция данных Инкапсуляция данных - это процесс, в котором некоторая дополнительная информация добавляется к элементу данных, чтобы добавить к нему некоторые функции. В нашей сети мы используем модель OSI или TCP/IP, и в этих моделях передача данных происходит через различные уровни. Инкапсуляция данных добавляет к данным информацию протокола, чтобы передача данных могла происходить надлежащим образом. Эта информация может быть добавлена в заголовок (header) или в конец (footer или trailer) данных. Данные инкапсулируются на стороне отправителя, начиная с уровня приложения и заканчивая физическим уровнем. Каждый уровень берет инкапсулированные данные из предыдущего слоя и добавляет некоторую дополнительную информацию для их инкапсуляции и некоторые другие функции с данными. Эти функции могут включать в себя последовательность данных, контроль и обнаружение ошибок, управление потоком, контроль перегрузки, информацию о маршрутизации и так далее. Деинкапсуляция данных Деинкапсуляция данных - это процесс, обратный инкапсуляции данных. Инкапсулированная информация удаляется из полученных данных для получения исходных данных. Этот процесс происходит на стороне получателя. Данные деинкапсулируются на том же уровне на стороне получателя, что и инкапсулированный уровень на стороне отправителя. Добавленная информация заголовка и футера удаляется из данных в этом процессе. На рисунке показано, как футер и хедер добавляются и удаляются из данных в процессе инкапсуляции и деинкапсуляции соответственно. Данные инкапсулируются на каждом уровне на стороне отправителя, а также деинкапсулируются на том же уровне на стороне получателя модели OSI или TCP/IP. Процесс инкапсуляции (на стороне отправителя) Шаг 1. Уровень приложения, представления и сеанса в модели OSI принимает пользовательские данные в виде потоков данных, инкапсулирует их и пересылает данные на транспортный уровень. Тут не обязательно добавится к данным какой-либо хедер или футер - это зависит от приложения. Шаг 2. Транспортный уровень берет поток данных с верхних уровней и разделяет его на несколько частей. Транспортный уровень инкапсулирует данные, добавляя соответствующий заголовок к каждой части. Эти фрагменты данных теперь называются сегментами данных. Заголовок содержит информацию о последовательности, так что сегменты данных могут быть повторно собраны на стороне получателя. Шаг 3. Сетевой уровень берет сегменты данных с транспортного уровня и инкапсулирует их, добавляя дополнительный заголовок к сегменту данных. Этот заголовок данных содержит всю информацию о маршрутизации для правильной доставки данных. Здесь инкапсулированные данные называются пакетом данных или дейтаграммой. Шаг 4: Канальный уровень берет пакет данных или дейтаграмму с сетевого уровня и инкапсулирует ее, добавляя дополнительный заголовок и нижний футер. Заголовок содержит всю информацию о коммутации для правильной доставки данных соответствующим аппаратным компонентам, а футер содержит всю информацию, связанную с обнаружением ошибок и контролем. Здесь инкапсулированные данные называются фреймом данных. Шаг 5: Физический уровень берет кадры данных с уровня канала передачи данных и инкапсулирует их, преобразовывая их в соответствующие сигналы данных или биты, соответствующие физической среде. Процесс деинкапсуляции (на стороне получателя) Шаг 1: Физический уровень принимает инкапсулированные сигналы данных или биты от отправителя и деинкапсулирует их в форме кадра данных, который будет перенаправлен на верхний уровень, то есть на канальный уровень. Шаг 2: Канальный уровень берет кадры данных с физического уровня. Он деинкапсулирует фреймы данных и проверяет заголовок фрейма, скоммутирован ли фрейм данных на правильное оборудование или нет. Если кадр пришел в неправильное место назначения, он отбрасывается, иначе он проверяет информацию в футере. Если есть какая-либо ошибка в данных, запрашивается повторная передача данных, если нет, то они деинкапсулируются, и пакет данных пересылается на верхний уровень. Шаг 3. Сетевой уровень принимает пакет данных или дейтаграмму из канального уровня. Он деинкапсулирует пакеты данных и проверяет заголовок пакета, направлен ли пакет в правильное место назначения или нет. Если пакет направляется в неправильный пункт назначения, пакет отбрасывается, если все ок, то он деинкапсулируется, и сегмент данных пересылается на верхний уровень. Шаг 4: Транспортный уровень берет сегменты данных с сетевого уровня и деинкапсулирует их. Сначала он проверяет заголовок сегмента, а затем повторно собирает сегменты данных для формирования потоков данных, а затем эти потоки данных пересылаются на верхние уровни. Шаг 5: Уровень приложения, представления и сеанса в модели OSI берет инкапсулированные данные с транспортного уровня, деинкапсулирует их, и данные, относящиеся к конкретному приложению, пересылаются в приложения.
img
FHRP (Протокол резервирования первого перехода) - это группа протоколов способные обеспечить клиентов отказоустойчивым шлюзом. Что за первый переход такой?. У нас есть коммутируемая среда (SW1) и есть Internet . Internet это маршрутизируемая среда . И для того чтобы перейти из коммутируемой среды , в маршрутизируемую среду для того чтобы выйти в интернет , как раз эти роутеры(R1,R2,VR - Virtual Router) обеспечивают данный переход и для того ,чтобы обеспечить отказоустойчивость этого перехода , его нужно резервировать . А потому и называется протоколы резервирования первого перехода. И все протоколы группы FHRP будут работать в единой логике: R1 , R2 будут прикидываться VR и в случае отказа одного из маршрутизаторов, то его работу возьмет другой. Forwarding Router ( FR ) - это роутер ,который данный момент активен и маршрутизирует трафик . Standby Router ( SR ) - это роутер ,который стоит в резерве и ждет , когда накроется FR ,чтобы перехватите его работу на себя , в случае сбоя маршрутизатора. FHRPs - это группа ,а значит пришло время познакомить вас с этими протоколами. HSRP (Hot Standby Router Protocol) - Проприетарный протокол разработанный Cisco; VRRP (Virtual Router Redundancy Protocol) - Свободный протокол ,сделан на основе HSRP; GLBP (Gateway Load Balancing Protocol) - Проприетарный протоколCisco , обеспечивающий распределение нагрузки на несколько маршрутизаторов( шлюзов) используя 1 виртуальный адрес. CARP( Common Address Redundancy Protocol) - свободный , разработан как часть OpenBSD , портирован во FreeBSD. Итак начнём с HSRP Протокол HSRP рассчитан на 2 роутера, 3 это уже лишний и с этим уже справиться протокол GLBP Предположим ,что R1 это маршрутизатор выхода в интернет и для этого мы поднимем на нём Loopback 1 с адресом 200.200.200.200 и пропишем его в маршруте по умолчанию. Между маршрутизаторами будет настроен RIPv2 и будут анонсированы 2 классовые сети( network 10.0.0.0 и network 192.168.0.0) для простоты анонсирования маршрутов. R2,R1 настраивается также. А теперь по порядку , настроим HSRP: R1(config)# interface e 0/0 - переходим на интерфейс ethernet 0/0 (этот интерфейс смотрит в локальную сеть на коммутатор ) R1(config-if)# ip address 192.168.0.2 255.255.255.0 - задаем ip адрес для физического интерфейса R1(config-if)# standby 1 ip 192.168.0.254 - задаем виртуальный ip адрес (который будет основным шлюзом для свитчей, смотрящих на конфигурируемый роутер). У обоих роутеров он одинаковый R1(config-if)# stanby 1 priority 110 - устанавливаем приоритет данного роутера в 110 (по умолчанию приоритет 100) R1(config-if)# standby 1 preempt - задаем режим приемтинга R1(config-if)# standby 1 authentication md5 key-string MyPassword - задаем аутентификацию, если необходимо. Пароль будет передаваться с защитой алгоритмом хеширования md5, пароль будет MyPassword R1(config-if)# standby 1 timers 100 255 - регулировка таймеров hsrp, где 100 - hello интервал в секундах (как часто посылаются пакеты hello пакеты keep-alive) и 255 - hold interval в секундах (через какой промежуток времени признавать соседа недоступным) R1(config-if)# standby 1 preempt delay minimum 300 - настройка времени задержки (в секундах), через которое роутер будет становиться главным. Эта команда требуется для того,чтобы сначала отработали другие протоколы,прежде чем заработает HSRP . Пример: OSPF включенный на роутере в большой сети не успеет передать маршруты все ,а тут сразу заработает HSRP ,естественно он знать все маршруты не будет,а значить и стабильно гнать трафик тоже. Как раз время delay он будет использовать для того,чтобы дать OSPF передать все маршруты и после этого вкл HSRP. Сам VPC должен получить следующие настройки: IP : 192.168.0.10/24 GW: 192.168.0.254 Главное ,чтобы клиент был в одной подсети и в качестве шлюза был виртуальный IP адрес. TRACKING Также полезно вешать TRACK на интерфейсы ,так как HSRP работает только в сторону ,куда направлен интерфейс ,то он не сможет отработать,когда упадут линки ,смотрящие на роутеры выше.(в данном случае это R3) Router(config)# track 1 interface fa0/1 line-protocol - отслеживаем состояние интерфейса fa0/1, если он падает, то сработает объект отслеживания track 1. Router(config-if)# standby 1 track 1 decrement 15 - если сработает объект отслеживания track 1, то текущий приоритет будет понижен на 15 единиц. Router(config-if)# standby 1 track 1 fa0/1 20 - работает только в HSRP. Позволяет отслеживать интерфейс без дополнительного создания объекта отслеживания. R1,R2,R0 будут настраиваться одинаково, принцип сохраняется. А теперь нюансы HSRP При работе нескольких VLAN , HSRP может идти трафик не совсем рационально из-за протокола STP. Представим ,что R1 это root primary за 10 VLAN, а R2 это ACTIVE router в HSRP . Это значит ,что любой трафик за этот VLAN будет идти следующим образом:VPC - R2 - R1 - R3 вместо того,чтобы идти напрямую VPC - R1 - R3. (L2 трафик всегда ходит через root во избежание петель) Поэтому рекомендуют использовать HSRP version 2(по умолчанию вкл 1 максимум 255 процессов,а во 2 их 4095) и использовать наилучший приоритет для того роутера, который сейчас в сети root primary за текущий VLAN. И хорошей практикой будет если номер VLAN будет совпадать с номером процесса HSRP. ( № HSRP = VLAN ) 3 Роутера в HSRP не имеет смысла держать,так как он всё равно будет в состоянии Listen и включиться только тогда,если active пропадет, standby займет его место , и только тогда он перейдет в состоянии standby.(речь идет о 3 роутере) Тоже самое будет касаться 4,5 ...n роутеров. SLA Бывает и другая ситуация ,когда не сам линк от R1 падает ,а устройство находящиеся за ним,к примеру SW2 упал link до R3. Проблему способен решить сервис SLA - Service Level Agreement. Суть его проста,он ping сервис до провайдера и если он падает ,то отрабатывает track. R1(config)# ip sla 1 - создаем зонд R1(config-ip-sla)# icmp-echo 215.215.215.2 source-interface e0/2 - посылаем icmp echo ping на 215.215.215.2 R1(config-ip-sla-echo)# frequency 10 - посылаем icmp echo ping с частотой каждые 10 секунд R1(config)# ip sla schedule 1 start-time now life forever - задаем расписание работы ip sla. В данном случае зон будет запущен прямо сейчас, при этом время окончания не задано (навсегда) R1(config)# track 1 ip sla 1 reachability - устанавливаем объект отслеживания на доступность того хоста, на который посылаем icmp echo ping R1(config)# ip route 0.0.0.0 0.0.0.0 2.2.2.2 track 1 - направляем трафик по этому маршруту если объект трекинга track 1 работает (хост пингуется) R1(config)# ip route 0.0.0.0 0.0.0.0 3.3.3.3 10 - если не пингуется, направляем трафик в интернет по другому маршруту (Внимание! Здесь важно задать именно плохую метрику, например 10, иначе будут работать оба маршрута! (балансировка)) R1# show track 1 - показать состояние объекта отслеживания VRRP Настройка VRRP не сильно отличается от HSRP . Настраивается он также как и HSRP, только вместо standby используется vrrp. Router(config-if)# vrrp 1 ip 192.168.1.1 - включение vrrp. Проще пройтись по отличиям ,чем заново описывать все команды. У VRRP тоже только 2 состояния Master и Backup(HSRP active и standby) Preempt включен по умолчанию (HSRP он отключен) При падении линка VRRP проводит выборы роутера(HSRP имеет запасной). Главного выбирают по IP адресу, когда проводят выборы. Поддержка Аутентификации в VRRP отсутствует (RFC отсутствует),но в Cisco она реализована(HSRP по умолчанию) VRRP по умолчанию hello таймер равен 1 секунде , dead таймер равен 3(у HSRP 3 и 10 соответственно) Виртуальный адрес может совпадать с адресом интерфейса(HSRP такой адрес не даст прописать) Использует Multicast HSRP равен 224.0.0.2 ( version 1) 224.0.0.102 (version 2) ,а VRRP 224.0.0.18 Может отслеживать только объекты , а HSRP и интерфейсы , и объекты.(смотри раздел tracking) Диагностика Router# show standby (vrrp or glbp) - показать общую информацию по протоколу группы FHRP Router# show standby brief - показать информацию по протоколу группы FHRP в виде таблицы
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59