По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В семиуровневой модели OSI на различных уровнях имеются разные типы адресов. На канальном это MAC-адрес, а на сетевом это IP-адрес. И для того чтобы установить соответствие между этими адресами используется протокол Address Resolution Protocol – ARP. Именно о нем мы поговорим в этой статье. Адресация Адреса 2-го уровня используются для локальных передач между устройствами, которые связаны напрямую. Адреса 3-го уровня используются устройств, которые подключены косвенно в межсетевой среде. Каждая сеть использует адресацию для идентификации и группировки устройств, чтобы передачи прошла успешно. Протокол Ethernet использует MAC-адреса, которые привязаны к сетевой карте. Чтобы устройства могли общаться друг с другом, когда они не находятся в одной сети MAC-адрес должен быть сопоставлен с IP-адресом. Для этого сопоставления используются следующие протоколы: Address Resolution Protocol (ARP) Reverse ARP (RARP) Serial Line ARP (SLARP) Inverse ARP (InARP) Address Resolution Protocol Устройству 3го уровня необходим протокол ARP для сопоставления IP-адреса с MAC-адресом, для отправки IP пакетов. Прежде чем устройство отправит данные на другое устройство, оно заглянет в свой кеш ARP где хранятся все сопоставления IP и MAC адресов, чтобы узнать, есть ли MAC-адрес и соответствующий IP-адрес для устройства, которому идет отправка. Если записи нет, то устройство-источник отправляет широковещательное сообщение каждому устройству в сети чтобы узнать устройству с каким MAC-адресом принадлежит указанный IP-адрес. Все устройства сравнивают IP-адрес с их собственным и только устройство с соответствующим IP-адресом отвечает на отправляющее устройство пакетом, содержащим свой MAC-адрес. Исходное устройство добавляет MAC-адрес устройства назначения в свою таблицу ARP для дальнейшего использования, создает пакет с новыми данными и переходит к передаче. Проще всего работу ARP иллюстрирует эта картинка: Первый компьютер отправляет broadcast сообщение всем в широковещательном домене с запросом “У кого IP-адрес 10.10.10.2? Если у тебя, то сообщи свой MAC-адрес” и на что компьютер с этим адресом сообщает ему свой MAC. Когда устройство назначения находится в удаленной сети, устройства третьего уровня одно за другим, повторяют тот же процесс, за исключением того, что отправляющее устройство отправляет ARP-запрос для MAC-адреса шлюза по умолчанию. После того, как адрес будет получен и шлюз по умолчанию получит пакет, шлюз по умолчанию передает IP-адрес получателя по связанным с ним сетям. Устройство уровня 3 в сети где находится устройство назначения использует ARP для получения MAC-адреса устройства назначения и доставки пакета. Кэширование ARP Поскольку сопоставление IP-адресов с MAC-адресами происходит на каждом хопе в сети для каждой дейтаграммы, отправленной в другую сеть, производительность сети может быть снижена. Чтобы свести к минимуму трансляции и ограничить расточительное использование сетевых ресурсов, было реализовано кэширование протокола ARP. Кэширование ARP - это способ хранения IP-адресов и связанных c ними MAC-адресов данных в памяти в течение определенного периода времени, по мере изучения адресов. Это минимизирует использование ценных сетевых ресурсов для трансляции по одному и тому же адресу каждый раз, когда отправляются данные. Записи кэша должны поддерживаться, потому что информация может устаревать, поэтому очень важно, чтобы записи кэша устанавливались с истечением срока действия. Каждое устройство в сети обновляет свои таблицы по мере передачи адресов. Статические и динамические записи в кеше ARP Существуют записи статического ARP-кэша и записи динамического ARP-кэша. Статические записи настраиваются вручную и сохраняются в таблице кеша на постоянной основе. Статические записи лучше всего подходят для устройств, которым необходимо регулярно общаться с другими устройствами, обычно в одной и той же сети. Динамические записи хранятся в течение определенного периода времени, а затем удаляются. Для статической маршрутизации администратор должен вручную вводить IP-адреса, маски подсети, шлюзы и соответствующие MAC-адреса для каждого интерфейса каждого устройства в таблицу. Статическая маршрутизация обеспечивает больший контроль, но для поддержания таблицы требуется больше работы. Таблица должна обновляться каждый раз, когда маршруты добавляются или изменяются. Динамическая маршрутизация использует протоколы, которые позволяют устройствам в сети обмениваться информацией таблицы маршрутизации друг с другом. Таблица строится и изменяется автоматически. Никакие административные задачи не требуются, если не добавлен лимит времени, поэтому динамическая маршрутизация более эффективна, чем статическая маршрутизация. Устройства, которые не используют ARP Когда сеть делится на два сегмента, мост соединяет сегменты и фильтрует трафик на каждый сегмент на основе MAC-адресов. Мост создает свою собственную таблицу адресов, которая использует только MAC-адреса, в отличие от маршрутизатора, который имеет кэш ARP адресов, который содержит как IP-адреса, так и соответствующие MAC-адреса. Пассивные хабы - это устройства центрального соединения, которые физически соединяют другие устройства в сети. Они отправляют сообщения всем портам на устройства и работают на уровне 1, но не поддерживают таблицу адресов. Коммутаторы уровня 2 определяют, какой порт подключен к устройству, к которому адресовано сообщение, и отправлять сообщение только этому порту, в отличие от хаба, который отправляет сообщение всем его портам. Однако коммутаторы уровня 3 - это маршрутизаторы, которые создают кеш ARP (таблица). Inverse ARP Inverse ARP (InARP), который по умолчанию включен в сетях ATM, строит запись карты ATM и необходим для отправки одноадресных пакетов на сервер (или агент ретрансляции) на другом конце соединения. Обратный ARP поддерживается только для типа инкапсуляции aal5snap. Для многоточечных интерфейсов IP-адрес может быть получен с использованием других типов инкапсуляции, поскольку используются широковещательные пакеты. Reverse ARP Reverse ARP (RARP) - работает так же, как и протокол ARP, за исключением того, что пакет запроса RARP запрашивает IP-адрес вместо MAC-адреса. RARP часто используется бездисковыми рабочими станциями, потому что этот тип устройства не имеет способа хранить IP-адреса для использования при их загрузке. Единственный адрес, который известен - это MAC-адрес, поскольку он выжигается в сетевой карте. Для RARP требуется сервер RARP в том же сегменте сети, что и интерфейс устройства. Proxy ARP Прокси-ARP был реализован для включения устройств, которые разделены на физические сегменты сети, подключенные маршрутизатором в той же IP-сети или подсети для сопоставления адресов IP и MAC. Когда устройства не находятся в одной сети канала передачи данных (2-го уровня), но находятся в одной и той же IP-сети, они пытаются передавать данные друг другу, как если бы они находились в локальной сети. Однако маршрутизатор, который отделяет устройства, не будет отправлять широковещательное сообщение, поскольку маршрутизаторы не передают широковещательные сообщения аппаратного уровня. Поэтому адреса не могут быть сопоставлены. Прокси-сервер ARP включен по умолчанию, поэтому «прокси-маршрутизатор», который находится между локальными сетями, отвечает своим MAC-адресом, как если бы это был маршрутизатор, к которому адресована широковещательная передача. Когда отправляющее устройство получает MAC-адрес прокси-маршрутизатора, он отправляет данные на прокси-маршрутизатор, который по очереди отправляет данные на указанное устройство. Proxy ARP вызывается следующими условиями: IP-адрес назначения не находится в той же физической сети (LAN), на которой получен запрос. Сетевое устройство имеет один или несколько маршрутов к IP-адресу назначения. Все маршруты к IP-адресу назначения проходят через интерфейсы, отличные от тех, на которых получен запрос. Когда proxy ARP отключен, устройство отвечает на запросы ARP, полученные на его интерфейсе, только если IP-адрес назначения совпадает с его IP-адресом или если целевой IP-адрес в ARP-запросе имеет статически настроенный псевдоним ARP. Serial Line Address Resolution Protocol Serial Line ARP (SLARP) используется для последовательных интерфейсов, которые используют инкапсуляцию High Link Level Link Control (HDLC). В дополнение к TFTP-серверу может потребоваться сервер SLARP, промежуточное (промежуточное) устройство и другое устройство, предоставляющее услугу SLARP. Если интерфейс напрямую не подключен к серверу, промежуточное устройство требуется для пересылки запросов сопоставления адреса на сервер. В противном случае требуется напрямую подключенное устройство с сервисом SLARP.
img
Возможность эксплуатации уязвимости OpenSLP может быть устранена при помощи решения CVE-2019-5544, если следовать шагам, описанным в разделе решения в данной статье. Предупреждение: Данное обходное решение применимо только для ESXi. Не используйте это временное решение c другими программами VMware. Техническое влияние: С данным решением клиенты CIM, которые применяют SLP протокол для поиска сервисов через порт 427, не смогут подключиться к программе. Решение Для реализации данного решения для CVE-2019-5544 соблюдайте следующие шаги: Остановите протокол обнаружения сервисов на ESXi хосте с помощью данной команды: /etc/init.d/slpd stop Протокол обнаружения сервисов может быть остановлен только когда сервис не используется. Используйте следующие команды для просмотра рабочего состояния протокола обнаружения сервиса Deamon: esxcli system slp stats get Для отключения сервиса SLP выполните следующую команду: esxcli network firewall ruleset set -r CIMSLP -e 0 Чтобы внести это изменение, сохранитесь перед перезагрузкой: chkconfig slpd off Проверьте, чтобы сохранилось: chkconfig --list | grep slpd output: slpd off Для того, чтобы удалить обходное решение CVE-2019-5544, выполните следующие шаги: Чтобы включить набор правил сервиса SLP, выполните следующую команду: esxcli network firewall ruleset set -r CIMSLP -e 1 Для изменения текущей информации о запуске сервиса slpd выполните следующую команду: chkconfig slpd on Введите следующую команду, чтобы проверить изменения после предыдущего шага: chkconfig --list | grep slpd output: slpd on Введите следующую команду для того ,чтобы включить SLP: /etc/init.d/slpd start Деактивируйте и разблокируйте агента CIM
img
Интересным вопросом в Linux системах, является управление регулярными выражениями. Это полезный и необходимый навык не только профессионалам своего дела, системным администраторам, но, а также и обычным пользователям линуксоподобных операционных систем. В данной статье я постараюсь раскрыть, как создавать регулярные выражения и как их применять на практике в каких-либо целях. Основной областью применение регулярных выражений является поиск информации и файлов в линуксоподобных операционных системах. Для работы в основном используются следующие символы: " ext" - слова начинающиеся с text "text/" - слова, заканчивающиеся на text "^" - начало строки "$" - конец строки "a-z" - диапазон от a до z "[^t]" - не буква t "[" - воспринять символ [ буквально "." - любой символ "a|z" - а или z Регулярные выражения в основном используются со следующими командами: grep - утилита поиска по выражению egrep - расширенный grep fgrep - быстрый grep rgrep - рекурсивный grep sed - потоковый текстовый редактор. А особенно с утилитой grep. Данная утилита используется для сортировки результатов чего либо, передавая ей результаты по конвейеру. Эта утилита осуществляет поиск и передачу на стандартный вывод результат его. ЕЕ можно запускать с различными ключами, но можно использовать ее другие варианты, которые представлены выше. И есть еще потоковый текстовый редактор. Это не полноценный текстовый редактор, он просто получает информацию построчно и обрабатывает. После чего выводит на стандартный вывод. Он не изменяет текстовый вывод или текстовый поток, он просто редактирует перед тем как вывести его для нас на экран. Начнем со следующего. Создадим один пустой файл file1.txt, через команду touch. Создадим в текстовом редакторе в той же директории файл file.txt. Как мы видим в файле file.txt просто набор слов. Далее мы с помощью данных слов посмотрим, как работают команды. Первая команда - grep man grep Получаем справку по данной команде. Как можно понять из справки команда grep и ее производные - это печать линий совпадающих шаблонов. Проще говоря, команда grep помогает сортировать те данные, что мы даем команде, через знак конвейера на ввод. Причем в мануале мы можем видеть egrep, fgrep и т.д. данные команды мы можем не использовать. Использовать можно только grep с ключами различными, т.е. ключи просто заменяют эти команды. Можно на примере посмотреть, как работает данная команда. Например, grep oo file.txt На картинке видно, что команда из указанного файла выбрала по определенному шаблону "oo". Причем даже делает красным цветом подсветку. Можно добавить еще ключик -n, тогда данная команда еще и выведет номер строки в которой находится то, что ищется по шаблону. Это полезно, когда работаем с каким-нибудь кодом или сценарием. Когда необходимо, что-то найти. Сразу видим, где находится объект поиска или что-то ищем по логам. При использовании шаблона очень важно понимать, что команда grep, чувствительна к регистрам в шаблонах. Это означает, что Boo и boo это разные шаблоны. В одном случае команда найдет слово, а в другом нет. Можно команде сказать, чтобы она не учитывала регистр. Это делается с помощью ключа -i. Посмотрим содержимое нашего каталога командой ls, а затем отфильтруем только то, что заканчивается на "ile". Получается следующее, когда мы даем на ввод команде grep шаблон и где искать, он работает с файлом, а когда мы даем команду ls она выводи содержимое каталога и мы это содержимое передаем по конвейеру на команду grep с заданным шаблоном. Соответственно grep фильтрует переданное содержимое согласно шаблона и выводит на экран. Получается, что команде grep дали, то команда и обработала. Наглядно можно посмотреть на рисунке выше. Мы просматриваем командой cat содержимое файла и подаем на ввод команде grep с фильтрацией по шаблону. Давайте найдем файлы в которых содержится сочетание "ple". grep ple file.txt в данном случае команда нашла оба слова содержащие шаблон. Давайте найдем слово, которое будет начинаться с "ple". Команда будет выглядеть следующим образом: grep ^ple file.txt. Значок "^" указывает на начало строки. Противоположная задача найти слова, заканчивающиеся на "ple". Команда будет выглядеть следующим образом grep ple$ file.txt. Т.е. применять к концу строки, говорит значок "$" в шаблоне. Можно дать команду grep .o file.txt. В данном выражении знак "." , заменяет любую букву. Как вы видите вывод шаблона ".ple" вывел только одно слово т.к только слово couple удовлетворяло шаблону , т.к перед "ple" должен был содержаться еще один символ любой. Попробуем рассмотреть другую команду egrep. egrep (Extended grep) man egrep - отошлет к справке по grep. Данная команда позволяет использовать более расширенный набор шаблонов. Рассмотрим следующий пример команды: egrep '^(b|d)' file.txt Шаблон заключается в одинарные кавычки, для того чтобы экранировать символы, и команда egrep поняла, что это относится к ней и воспринимала выражение как шаблон. Сам же шаблон означает, что поиск будет искать слова, в начале строки (знак ^) содержащие букву b или d. Мы видим, что команда вернула слова, начинающиеся с буквы b или d. Рассмотрим другой вариант использования команды egrep. Например: egrep '^[a-k]' file.txt Получим все слова, начинающиеся с "a" по "к". Знак "[]" - диапазона. Как мы видим слова, начинающиеся с большой буквы, не попали. Все эти регулярные выражения очень пригодятся, когда мы что-то ищем в файлах логах. Усложним еще шаблон. Возьмем следующий: egrep '^[a-k]|[A-K]' file.txt Усложняя выражение, мы добавили диапазон заглавных букв сказав команде grep искать диапазон маленьких или диапазон больших букв с начала строки. Вот теперь все хорошо. Слова с Заглавными буквами тоже отобразились. Как вариант egrep можно запускать просто grep с ключиком -e. Про fgrep man fgrep - отошлет к справке по grep. Команда fgrep не понимает регулярных выражений вообще. Получается следующим образом если мы вводим: egrep c$ file.txt. То команда согласно шаблону, ищет в файле букву "c" в конце слова. В случае же с командой fgrep c$ file.txt, команда будет искать именно сочетание "с$". Т.е. команда fgrep воспринимает символы регулярных выражений, как обычные символы, которые ей нужно найти, как аргументы. Рекурсивный rgrep Создадим каталог mkdir folder . Создадим файл great.txt в созданной директории folder со словом Hello при помощью команды echo "Hello" folder/great.txt И если мы скажем grep Hello * , поищи слово Hello в текущей директории. Получится следующая картина. Как мы видим grep не может искать в папках. Для таких случаев и используется утилита rgrep. rgrep Hello * Дает следующую картину. Совершенно спокойно в папке найдено было, то что подходило под шаблон. Данная утилита пробежалась по всем папкам и файлам в них и нашла подходящее под шаблон слово. Т.е. если нам необходимо провести поиск по всем файлам и папкам, то необходимо использовать утилиту rgrep. Команда sed man sed - стрим редактор. Т.е потоковый редактор для фильтрации и редактирования потока данных. Например, sed -e ‘s/oo/aa’ file.txt - открыть редактор sed и заменить вывод всех oo на aa в файле file.txt. Нужно понимать, что в результате данной команды изменения в файле не произойдут. Просто данные из файла будут взяты и с изменениями выведены на стандартный вывод, т.е. экран. Для сохранения результатов мы можем сказать, чтобы вывел в новый файл указав направление вывода. sed -e ‘s/oo/aa’ file.txt newfile.txt В данном редакторе мы можем ему сказать использовать регулярные выражения, для этого необходимо добавить ключ -r. У данного редактора очень большой функционал.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59