По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему. На рисунке 1 Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов? Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E? Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example? Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте? Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения. Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области: Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект. Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений. Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации: Использование известных и/или настроенных вручную идентификаторов Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов. Объявление сопоставления между двумя идентификаторами в протоколе Вычисление одного вида идентификатора из другого Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения. Хорошо известные и/или настраиваемые вручную идентификаторы Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если: Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ... Количество сопоставлений между идентификаторами относительно невелико, и ... Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ... Самым простым решением является ведение какой-либо таблицы сопоставления вручную. Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную. Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping. База данных и протокол сопоставления Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети. Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов. Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов. Сопоставления идентификаторов объявления в протоколе Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический). Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND). Вычисление одного идентификатора из другого В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу. Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
img
Зевс, вечный царь богов, преодолел немало сложностей сохраняя свою власть. Аид почти узурпировал своего брата Зевса в битве за трон. Когда началось столкновение, большинство богов приняло сторону Зевса, так как никто не хотел бы выйти против парня, который метет молнии. Но некоторые боги, недовольные властью Зевса, перешли на сторону Аида и битва бушевала. Бэк-энд программирование мало отличается от горы Олимп. До сих пор идет вечная борьба за превосходство, и в 2020 ом эта борьба продолжается между Python и Java. И, подобно древним грекам, большинство девелоперов выбирают в качестве "вероисповедания" один или два наиболее используемых языков программирования. Тем не менее, в отличии от древних греков, современные программисты гораздо гибче. Есть полиглоты-кодеры, которые используют более чем один язык программирования и пользуются одной средой для написания кода. Кто-то зовёт их богохульниками, мы же предпочитаем звать их миротворцами. Если вы один из таких и ищете способ эффективного программирования на питоне в среде IntelliJ IDEA то этот пост для вас. Мы составили список расширений, которые добавят функцию кодирования на питоне, а также помогут сделать это эффективнее. Программирования на Python в IntelliJ IDEA против PyCharm. Прежде чем углубиться в поддержку IntelliJ IDEA Питона, стоит отметить среду программирования от JetBrain для Python и Django PyCharm. Имеющая бесплатную версию PyCharm, неудивительно что является самым популярным автономным IDE для программирования на Python и имеет большую поддержку профессионалов. Он предоставляет простой интерфейс для управления проектами, настройки среды разработки и другие возможности. Основное преимущество IntelliJ IDEA над PyCharm это полный спектр функций поддержки Jython (многоязычная навигация, компиляция и рефакторинг). Jython это реализация языка Python на языке Java. PyCharm поддерживает только Jython. как среду выполнения для запуска приложений. Поэтому, если в проекте совместили Java и Pyhon, то PyCharm в одиночку с этим не справится. Другая причина, по которой отношения между средами разработки JetBrain актуальны этот тот факт, кто плагины поддерживание PyCharm обычно совместимы с IntelliJ IDEA. Идеальная связь стала возможной благодаря тому, что основаны они на одинаковой среде разработки. Итак, давайте начнем с азов: установки расширения для поддержки Python на IntelliJ IDEA. Как добавить Python в IntelliJ IDEA Чтобы добавить IntelliJ IDEA всю функциональность популярной PyCharm все что вам нужно это установить официальное расширении Python от JetBrains. Единственное, что нужно проверить прежде чем скачать и установить расширение это тип лицензии IntelliJ IDEA. Расширение Python совместимо только с платной версией IntelliJ IDEA. 7 расширений Python для IntelliJ IDEA Базовое расширение даст вам возможность умного редактирования сценариев Python, эффективно расширяя функциональность IntelliJ IDEA, чтобы соответствовать всем возможностям PyCharm. Тем не менее, опытные программисты имеют несколько дополнительных плагинов, чтобы сделать разработки на Python в среде IntelliJ IDEA более эффективным и продуктивным. 1. Pylint Как и говорит само название, этот плагин анализатор Python. Он предоставляет возможность сканирование файлов Python как в реальном времени, так и по запросу через IntelliJ IDEA. Pylint проект с открытым исходным кодом, так что он может быть полностью настроен под ваши нужды. Кроме этого, на сайте плагина можете найти подробную документацию. 2. Python Smart Execute Этот удобный небольшой плагин является умной альтернативой команде "Выполнить строку в консоли". Он автоматически определяет строк для отправки на консоль Python и легко доступен с помощью сочетания клавиш Alt+Shift+A. Нужно отметить, что этот плагин может устареть в предстоящей версии Intellij IDEA и PyCharm, так как запрос на его реализацию в JetBrains IDEs был подан в конце 2019 года. 3.Tabnine Tabnine не является плагином Python в прямом смысле. Скорее это инструмент для повышения производительности, который помогает писать код быстрее. Tabnine использует GPT-2 (нейросеть) для обеспечения точных подсказок как для языка Python, так и для других языков. Tabnine сейчас входит в семейство Codota. 4. MyPy MyPy является опциональным средством проверки статического типа и анализатором исходного кода для Python, призванным сочетать преимущества динамического и статического ввода. Среди прочих, он ищет ошибки программирования, помогает применять стандарт кодирования и обнаруживает некоторые кодовые паттерны. Этот плагин от JetBrains интегрирует MyPy в ваш Intellij IDEA. Если вам нужны рекомендации, веб-сайт MyPy содержит обширную документацию, помогающую установить и использовать MyPy для улучшения кода Python. 5. DeepBugs for Python Плагин, разработанный отделом исследования JetBrains призван обнаруживать потенциальны ошибки и проблемы с качеством в коде Python используя при этом модели глубокого обучения. DeepBugs обнаруживает такие ошибки как неверные аргументы функций, неправильные операции сравнения и другие ошибки на основе извлечённой семантики кода. 6. Live Coding in Python Зачем ждать запуска программы, чтобы увидеть, как происходит магия? Этот подключаемый модуль позволяет запускать код Python по мере ввода. Она будет отображать переменные значения, matplotlib и Pyglet в выделенной панели справа от рабочего пространства Intellij IDEA. 7. Python Enhancements Этот последний плагин в нашем списке представляет собой удобную коллекцию из трех проверок, которые вы можете запустить на вашем Python код, чтобы попытаться обнаружить потенциально мертвый код и намерения для генерации безликого кода. Этот плагин будет искать потенциально неиспользуемые классы, функции (включая методы) и имена (в глобальных назначениях и назначениях на уровне классов) в вашем коде.
img
Механизм передачи данных или информации между двумя связанными устройствами, соединенными по сети, называется режимом передачи. Режим передачи также называется режимом связи. Он указывает направление потока сигнала между двумя связанными устройствами. Шины и сети предназначены для обеспечения связи между отдельными устройствами, связанными по сети. Категории режимов транзакций Существует три категории режимов передачи: симплексный режим полудуплексный режим полнодуплексный режим Симплексный режим В этом типе режима передачи связь является однонаправленной, то есть данные могут передаваться только в одном направлении. Это означает, что вы не можете отправить сообщение обратно отправителю, как на улице с односторонним движением. Из этих двух устройств только одно может отправлять или передавать по каналу связи, а другое-только принимать данные. Пример: Симплексную дуплексную передачу можно увидеть между компьютером и клавиатурой. Телевизионное вещание, телевидение и пульт дистанционного управления также являются примерами симплексной дуплексной передачи. Другой пример симплексной передачи включает в себя акустическую систему. Диктор говорит в микрофон, и голос передается через усилитель, а затем на динамики. Преимущество Симплексного режима В этом режиме станция может использовать всю пропускную способность канала связи, поэтому одновременно может передаваться больше данных. Недостаток Симплексного режима В основном коммуникации требуют двустороннего обмена данными, но это однонаправленный обмен, поэтому здесь нет связи между устройствами. Полудуплексный Режим В полудуплексном режиме каждая станция может также передавать и принимать данные. Поток сообщений может идти в обоих направлениях, но не одновременно. Вся пропускная способность канала связи используется в одном направлении за один раз. В полудуплексном режиме отправитель отправляет данные и ожидает их подтверждения, а если есть какая-либо ошибка, то получатель может потребовать от него повторной передачи этих данных. Благодаря этому возможно обнаружение ошибок. Примером полудуплексного режима является рация. В рации с одной стороны говорят в микрофон устройства, а с другой-кто-то слушает. После паузы другой говорит, и первое лицо слушает. Пример: Это как однополосная дорога с двунаправленным движением. Пока машины едут в одном направлении, машины, идущие в другую сторону, должны ждать. Преимущество Полудуплексного режима В полудуплексном режиме вся пропускная способность канала берется на себя любым из двух устройств, передающих одновременно. Недостаток Полудуплексного режима Это вызывает задержку в отправке данных в нужное время, так как когда одно устройство отправляет данные, то другое должно ждать отправки данных. Полный Дуплексный Режим В полнодуплексном режиме связь является двунаправленной, то есть поток данных идет в обоих направлениях одновременно. С обоих концов прием и передача данных возможны одновременно. Полнодуплексный режим имеет два физически отдельных пути передачи, один из которых предназначен для движения трафика в одном направлении, а другой-для движения трафика в противоположном направлении. Это один из самых быстрых способов связи между устройствами. Пример: По телефонной линии два человека общаются друг с другом, оба могут говорить и слушать друг друга одновременно, это полнодуплексная передача. Другой пример - улица с двусторонним движением, движение по которой осуществляется одновременно в обоих направлениях. Преимущество Полнодуплексного режима Обе станции могут отправлять и получать данные одновременно, поэтому емкость канала может быть разделена. Недостаток Полнодуплексного режима Полоса пропускания канала связи делится на две части, если между устройствами нет выделенного пути.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59