По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Транспортный уровень OSI (уровень 4) определяет несколько функций, наиболее важными из которых являются восстановление после ошибок и управление потоком. Точно так же протоколы транспортного уровня TCP / IP также реализуют те же типы функций. Обратите внимание, что и модель OSI, и модель TCP / IP называют этот уровень транспортным. Но, как обычно, когда речь идет о модели TCP / IP, имя и номер уровня основаны на OSI, поэтому любые протоколы транспортного уровня TCP / IP считаются протоколами уровня 4. Ключевое различие между TCP и UDP заключается в том, что TCP предоставляет широкий спектр услуг приложениям, а UDP-нет. Например, маршрутизаторы отбрасывают пакеты по многим причинам, включая битовые ошибки, перегрузку и случаи, в которых не известны правильные маршруты. Известно, что большинство протоколов передачи данных замечают ошибки (процесс, называемый error detection), и затем отбрасывают кадры, которые имеют ошибки. TCP обеспечивает повторную передачу (error recovery) и помогает избежать перегрузки (управление потоком), в то время как UDP этого не делает. В результате многие прикладные протоколы предпочитают использовать TCP. Разница между TCP и UDP в одном видео Однако не думайте, что отсутствие служб у UDP делает UDP хуже TCP. Предоставляя меньше услуг, UDP требует меньше байтов в своем заголовке по сравнению с TCP, что приводит к меньшему количеству байтов служебных данных в сети. Программное обеспечение UDP не замедляет передачу данных в тех случаях, когда TCP может замедляться намеренно. Кроме того, некоторым приложениям, особенно сегодня, к передаче голоса по IP (VoIP) и видео по IP, не требуется восстановление после ошибок, поэтому они используют UDP. Итак, сегодня UDP также занимает важное место в сетях TCP / IP. В таблице 1 перечислены основные функции, поддерживаемые TCP/UDP. Обратите внимание, что только первый элемент, указанный в таблице, поддерживается UDP, тогда как TCP поддерживаются все элементы в таблице. Таблица № 1 Функции транспортного уровня TCP/IP Функции Описание Мультиплексирование с использованием портов Функция, которая позволяет принимающим хостам выбирать правильное приложение, для которого предназначены данные, на основе номера порта. Восстановление после ошибок (надежность) Процесс нумерации и подтверждения данных с помощью полей заголовка Sequence и Acknowledgment Управление потоком с использованием окон Процесс, использующий размеры окна для защиты буферного пространства и устройств маршрутизации от перегрузки трафиком. Установление и завершение соединения Процесс, используемый для инициализации номеров портов, а также полей Sequence и Acknowledgment. Упорядоченная передача данных и сегментация данных Непрерывный поток байтов от процесса верхнего уровня, который "сегментируется" для передачи и доставляется процессам верхнего уровня на принимающем устройстве с байтами в том же порядке Далее описываются возможности TCP, а затем приводится краткое сравнение с UDP. Transmission Control Protocol Каждое приложение TCP / IP обычно выбирает использование TCP или UDP в зависимости от требований приложения. Например, TCP обеспечивает восстановление после ошибок, но для этого он потребляет больше полосы пропускания и использует больше циклов обработки. UDP не выполняет исправление ошибок, но требует меньшей пропускной способности и меньшего количества циклов обработки. Независимо от того, какой из этих двух протоколов транспортного уровня TCP / IP приложение выберет для использования, вы должны понимать основы работы каждого из этих протоколов транспортного уровня. TCP, как определено в Request For Comments (RFC) 793, выполняет функции, перечисленные в таблице 1, через механизмы на конечных компьютерах. TCP полагается на IP для сквозной доставки данных, включая вопросы маршрутизации. Другими словами, TCP выполняет только часть функций, необходимых для доставки данных между приложениями. Кроме того, роль, которую он играет, направлена на предоставление услуг для приложений, установленных на конечных компьютерах. Независимо от того, находятся ли два компьютера в одном Ethernet или разделены всем Интернетом, TCP выполняет свои функции одинаково. На рисунке 1 показаны поля заголовка TCP. Хотя вам не нужно запоминать названия полей или их расположение, оставшаяся часть этой лекции относится к нескольким полям, поэтому весь заголовок включен сюда для справки. Сообщение, созданное TCP, которое начинается с заголовка TCP, за которым следуют данные приложения, называется сегментом TCP. В качестве альтернативы также может использоваться более общий термин PDU уровня 4 или L4PDU. Мультиплексирование с использованием номеров портов TCP И TCP, и UDP используют концепцию, называемую мультиплексированием. Поэтому этот подраздел начинается с объяснения мультиплексирования с TCP и UDP. После этого исследуются уникальные возможности TCP. Мультиплексирование по TCP и UDP включает в себя процесс того, как компьютер думает при получении данных. На компьютере может быть запущено множество приложений, таких как веб-браузер, электронная почта или приложение Internet VoIP (например, Skype). Мультиплексирование TCP и UDP сообщает принимающему компьютеру, какому приложению передать полученные данные. Определенные примеры помогут сделать очевидной необходимость мультиплексирования. Сеть из примера состоит из двух компьютеров, помеченных как Анна и Гриша. Анна использует написанное ею приложение для рассылки рекламных объявлений, которые появляются на экране Григория. Приложение отправляет Григорию новое объявление каждые 10 секунд. Анна использует второе приложение, чтобы отправить Грише деньги. Наконец, Анна использует веб-браузер для доступа к веб-серверу, который работает на компьютере Григория. Рекламное приложение и приложение для электронного перевода являются воображаемыми, только для этого примера. Веб-приложение работает так же, как и в реальной жизни. На рисунке 2 показан пример сети, в которой Гриша запускает три приложения: Рекламное приложение на основе UDP Приложение для банковских переводов на основе TCP Приложение веб-сервера TCP Грише необходимо знать, в какое приложение передавать данные, но все три пакета поступают из одного и того же Ethernet и IP-адреса. Вы могли подумать, что Григорий может посмотреть, содержит ли пакет заголовок UDP или TCP, но, как вы видите на рисунке, два приложения (wire transfer и web) используют TCP. TCP и UDP решают эту проблему, используя поле номера порта в заголовке TCP или UDP соответственно. Каждый из сегментов TCP и UDP Анны использует свой номер порта назначения, чтобы Григорий знал, какому приложению передать данные. На рисунке 3 показан пример. Мультиплексирование основывается на концепции, называемой сокетом. Сокет состоит из трех частей: IP-адрес Транспортный протокол Номер порта Итак, для приложения веб-сервера Григория, сокет будет (10.1.1.2, TCP, порт 80), потому что по умолчанию веб-серверы используют хорошо известный порт 80. Когда веб-браузер Анны подключается к веб-серверу, Анна также использует сокет - возможно, такой: (10.1.1.1, TCP, 49160). Почему 49160? Что ж, Анне просто нужен номер порта, уникальный для Анны, поэтому Анна видит этот порт 49160. Internet Assigned Numbers Authority (IANA), организация, которая управляет распределением IP-адресов во всем мире, и подразделяет диапазоны номеров портов на три основных диапазона. Первые два диапазона резервируют номера, которые IANA затем может назначить конкретным протоколам приложений через процесс приложения и проверки, а третья категория резервирует порты, которые будут динамически выделяться для клиентов, как в примере с портом 49160 в предыдущем абзаце. Имена и диапазоны номеров портов (более подробно описано в RFC 6335): Хорошо известные (системные) порты: номера от 0 до 1023, присвоенные IANA, с более строгим процессом проверки для назначения новых портов, чем пользовательские порты. Пользовательские (зарегистрированные) порты: номера от 1024 до 49151, присвоенные IANA с менее строгим процессом назначения новых портов по сравнению с хорошо известными портами. Эфемерные (динамические, частные) порты: номера от 49152 до 65535, не назначены и не предназначены для динамического выделения и временного использования для клиентского приложения во время его работы. На рисунке 4 показан пример, в котором используются три временных порта на пользовательском устройстве слева, а сервер справа использует два хорошо известных порта и один пользовательский порт. Компьютеры используют три приложения одновременно; следовательно, открыто три сокетных соединения. Поскольку сокет на одном компьютере должен быть уникальным, соединение между двумя сокетами должно идентифицировать уникальное соединение между двумя компьютерами. Эта уникальность означает, что вы можете использовать несколько приложений одновременно, разговаривая с приложениями, запущенными на одном или разных компьютерах. Мультиплексирование на основе сокетов гарантирует, что данные будут доставлены в нужные приложения. Номера портов являются важной частью концепции сокетов. Серверы используют хорошо известные порты (или пользовательские порты), тогда как клиенты используют динамические порты. Приложения, которые предоставляют услуги, такие как FTP, Telnet и веб-серверы, открывают сокет, используя известный порт, и прослушивают запросы на подключение. Поскольку эти запросы на подключение от клиентов должны включать номера портов источника и назначения, номера портов, используемые серверами, должны быть известны заранее. Таким образом, каждая служба использует определенный хорошо известный номер порта или номер пользовательского порта. Как общеизвестные, так и пользовательские порты перечислены на www.iana.org/assignments/servicenames-port-numbers/service-names-port-numbers.txt. На клиентских машинах, откуда исходят запросы, можно выделить любой локально неиспользуемый номер порта. В результате каждый клиент на одном и том же хосте использует другой номер порта, но сервер использует один и тот же номер порта для всех подключений. Например, 100 веб-браузеров на одном и том же хост-компьютере могут подключаться к веб-серверу, но веб-сервер со 100 подключенными к нему клиентами будет иметь только один сокет и, следовательно, только один номер порта (в данном случае порт 80). Сервер может определить, какие пакеты отправлены от какого из 100 клиентов, посмотрев на порт источника полученных сегментов TCP. Сервер может отправлять данные правильному веб-клиенту (браузеру), отправляя данные на тот же номер порта, который указан в качестве порта назначения. Комбинация сокетов источника и назначения позволяет всем участвующим хостам различать источник и назначение данных. Хотя в примере объясняется концепция использования 100 TCP-соединений, та же концепция нумерации портов применяется к сеансам UDP таким же образом. Почитайте продолжение цикла про популярные приложения TCP/IP.
img
Channel event logging (события на канале) – система, созданная для детального логирования телефонных событий. Система CEL позволяет пошагово отслеживать сложные сценарии вызовов, последовательно записывая их в таблицу данных. Сегодня расскажем о типах событий CEL и о содержимом таблицы ‘cel’ ? Как и обычно, подключаемся к базе данных asteriskcdrdb: [root@asterisk]# mysql // подключаемся к MySQL mysql> use asteriskcdrdb; Reading table information for completion of table and column names You can turn off this feature to get a quicker startup with -A Database changed Смотрим содержимое таблица cel, видим поля и типы данных: mysql> show columns from cel; +-------------+--------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-------------+--------------+------+-----+---------+----------------+ | id | int(11) | NO | PRI | NULL | auto_increment | | eventtype | varchar(30) | NO | | NULL | | | eventtime | datetime | NO | | NULL | | | cid_name | varchar(80) | NO | | NULL | | | cid_num | varchar(80) | NO | | NULL | | | cid_ani | varchar(80) | NO | | NULL | | | cid_rdnis | varchar(80) | NO | | NULL | | | cid_dnid | varchar(80) | NO | | NULL | | | exten | varchar(80) | NO | | NULL | | | context | varchar(80) | NO | MUL | NULL | | | channame | varchar(80) | NO | | NULL | | | appname | varchar(80) | NO | | NULL | | | appdata | varchar(80) | NO | | NULL | | | amaflags | int(11) | NO | | NULL | | | accountcode | varchar(20) | NO | | NULL | | | uniqueid | varchar(32) | NO | MUL | NULL | | | linkedid | varchar(32) | NO | MUL | NULL | | | peer | varchar(80) | NO | | NULL | | | userdeftype | varchar(255) | NO | | NULL | | | extra | varchar(512) | NO | | NULL | | +-------------+--------------+------+-----+---------+----------------+ 20 rows in set (0.00 sec) К описанию таблицы CEL мы вернемся чуть позже, а сейчас давайте разберем возможные события в рамках системы Channel Event Logging : Событие Описание CHAN_START Канал связи был создан CHAN_END Канал связи был разорван LINKEDID_END Канал связи с указанным ID был разорван ANSWER На созданном канале связи ответили на звонок. При звонке в город, данное событие генерируется когда удаленный (вызываемый абонент) поднимет трубку HANGUP Была повешена трубка. Как правило, это событие сразу же сопровождается событием CHAN_END. Разница в том, что HANGUP происходит когда трубка положена, а CHAN_END, когда Asterisk освободил все ресурсы, занимаемые этим каналом APP_START Определенное приложение было запущено для этого канала. Например, это может быть Dial, Busy или Congestion APP_END Указанное приложение в событие APP_START завершило свое выполнение PARK_START Была произведена «Парковка» вызова. Функция парковки, представляет собой определенный номер, в который помещается вызов, работу с которым, могут продолжить другие сотрудники. PARK_END Вызов был снят с «Парковки» BRIDGE_START Между двумя каналами образовалось соединение (мост). Данное событие сопровождает такие приложения, как Dial() или Queue() BRIDGE_END Мост между каналами был разрушен BRIDGE_UPDATE В соединении между каналами произошло обновление. Это события появляется тогда, например, если изменится имя или прочая канальная информация BLINDTRANSFER Был выполнен «слепой» (без предварительной консультации) трансфер ATTENDEDTRANSFER На канале был выполнен трансфер с предварительной консультацией USER_DEFINED Кастомное событие, которое определяется в приложении CELGenUserEvent() В таблице выше мы перечислили основные события в рамках системы CEL. Теперь перейдем к описанию таблицы ‘cel’ в рамках базы asteriskcdrdb: Столбец Пример значения Описание eventtype CHAN_START Имя произошедшего события (все события описаны в таблице выше) eventtime 2016-04-01 14:53:54 Время, в которое произошло указанное выше событие cidname Oleg Ivanov Имя, передаваемое в рамках CallerID (CID), закрепленное за данным каналом cidnum 84991111111 Номер, передаваемый в рамках CallerID (CID), закрепленный за данным каналом в рамках соответствующего события cidani 84991111111 Automatic Number Identification (ANI), или другими словами – автоматическое определение номера на данном канале в рамках соответствующего события cidrdnis 84991111234 Номер перенаправления на данном канале в рамках соответствующего события ciddnid 84993456458 Набранный номер на канале в рамках соответствующего события exten 7057 Добавочный номер, который был набран, в рамках плана нумерации context Local Контекст для добавочного номера, который был набран channame SIP/0007B3060EB4-00000010 Имя установленного канала appname Dial Название приложения, которое было выполнено appdata SIP/0007B3060EB4 Параметры, которые были переданы в приложении согласно плана нумерации amaflags DOCUMENTATION Метка Automatic Message Accounting (AMA) – автоматический учет стоимости вызова. accountcode 6473 Идентификатор аккаунта. Данное значение пустое по умолчанию, и определяется параметрами конкретного пользователя. uniqueid 6547653456.18332 Уникальный идентификатор для канала userfield Chto ugodno Пользовательское поле linkedid 6547653456.18332 Данный идентификатор, позволяет связать воедино звонок по частям. Например, если одна часть звонка была входящей из города, следом был трансфер, потом еще один – у все этих вызовов будет разный uniqueid, но одинаковый linkedid peer SIP/0007B306054F-00000020 Название канала, к которому, который соединен (bridge) с каналом с идентификатором channame Теперь, давайте рассмотрим как выглядит запись в таблице ‘cel’. Для этого выполним нижеследующий запрос к базе данных asteriskcdrdb: mysql> SELECT * FROM `cel` WHERE `uniqueid` = '1459503113.15'; +------+------------+---------------------+-------------+-------------+-------------+-----------+----------+-------------+------------------+--------------------------------------------+------------+----------------------------------------------------------------------------------+----------+-------------+---------------+---------------+------+-------------+----------------------------------------------------------------------------+ | id | eventtype | eventtime | cid_name | cid_num | cid_ani | cid_rdnis | cid_dnid | exten | context | channame | appname | appdata | amaflags | accountcode | uniqueid | linkedid | peer | userdeftype | extra | +------+------------+---------------------+-------------+-------------+-------------+-----------+----------+-------------+------------------+--------------------------------------------+------------+----------------------------------------------------------------------------------+----------+-------------+---------------+---------------+------+-------------+----------------------------------------------------------------------------+ | 2339 | CHAN_START | 2016-04-01 12:31:53 | | | | | | 89641111111 | from-internal | Local/89641111111@from-internal-00000004;2 | | | 3 | | 1459503113.15 | 1459503090.11 | | | | | 2346 | APP_START | 2016-04-01 12:31:53 | 79252222222 | 79252222222 | 79252222222 | | | recordcheck | sub-record-check | Local/89641111111@from-internal-00000004;2 | MixMonitor | 2016/04/01/out-89641111111-79252222222-20160401-123153-1459503113.15.wav,ai(LOCA | 3 | | 1459503113.15 | 1459503090.11 | | | | | 2347 | APP_END | 2016-04-01 12:31:53 | 79252222222 | 79252222222 | 79252222222 | | | recordcheck | sub-record-check | Local/89641111111@from-internal-00000004;2 | MixMonitor | 2016/04/01/out-89641111111-79252222222-20160401-123153-1459503113.15.wav,ai(LOCA | 3 | | 1459503113.15 | 1459503090.11 | | | | | 2364 | HANGUP | 2016-04-01 12:32:10 | | 79252222222 | 79252222222 | | | h | from-internal | Local/89641111111@from-internal-00000004;2 | | | 3 | | 1459503113.15 | 1459503090.11 | | | {"dialstatus":"CANCEL","hangupcause":16,"hangupsource":"dialplan/builtin"} | | 2365 | CHAN_END | 2016-04-01 12:32:10 | | 79252222222 | 79252222222 | | | h | from-internal | Local/89641111111@from-internal-00000004;2 | | | 3 | | 1459503113.15 | 1459503090.11 | | | | +------+------------+---------------------+-------------+-------------+-------------+-----------+----------+-------------+------------------+--------------------------------------------+------------+----------------------------------------------------------------------------------+----------+-------------+---------------+---------------+------+-------------+----------------------------------------------------------------------------+ 5 rows in set (0.00 sec) В указанном выше запросе мы извлекли все содержимое таблицы ‘cel’, где поле uniqueid = 1459503113.15. Полученные данные можно обрабатывать и использовать для глубокой аналитики
img
Понимать состояние ваших серверов с точки зрения их загрузки и производительности - крайне важная задача. В этой статье мы опишем несколько самых популярных методов для проверки и мониторинга загрузки ЦПУ на Linux хосте. Методы проверки Проверяем загрузку процессора с помощью команды top Отличным способом проверки загрузки является команда top. Вывод этой команды выглядит достаточно сложным, зато если вы в нем разберетесь, то точно сможете понять какие процессы занимают большую часть ваших вычислительных мощностей. Команда состоит всего из трех букв: top У вас откроется окно в терминале, которое будет отображать запущенные сервисы в реальном времени, долю системных ресурсов, которую эти сервисы потребляют, общую сводку по загрузке CPU и т.д Будем идти по порядку: первая строчка отображает системное время, аптайм, количество активных пользовательских сессий и среднюю загруженность системы. Средняя загруженность для нас особенно важна, т.к дает понимание о среднем проценте утилизации ресурсов за некоторые промежутки времени. Три числа показывают среднюю загрузку: за 1, 5 и 15 минут соответственно. Считайте, что эти числа - это процентная загрузка, т.е 0.2 означает 20%, а 1.00 - стопроцентную загрузку. Это звучит и выглядит достаточно логично, но иногда там могут проскакивать странные значения - вроде 2.50. Это происходит из-за того, что этот показатель не прямое значение загрузки процессора, а нечто вроде общего количества "работы", которое ваша система пытается выполнить. К примеру, значение 2.50 означает, что текущая загрузка равна 250% и ваша система на 150% перегружена. Вторая строчка достаточна понятна и просто показывает количество задач, запущенных в системе и их текущий статус. Третья строчка позволит вам отследить загрузку ЦПУ с подробной статистикой. Но здесь нужно сделать некоторые комментарии: us: процент времени, когда ЦПУ был загружен и которое было затрачено на user space (созданные/запущенные пользователем процессы) sy: процент времени, когда ЦПУ был загружен и которое было затрачено на на kernel (системные процессы) ni: процент времени, когда ЦПУ был загружен и которое было затрачено на приоритезированные пользовательские процессы (системные процессы) id: процент времени, когда ЦПУ не был загружен wa: процент времени, когда ЦПУ ожидал отклика от устройств ввода - вывода (к примеру, ожидание завершения записи информации на диск) hi: процент времени, когда ЦПУ получал аппаратные прерывания (например, от сетевого адаптера) si: процент времени, когда ЦПУ получал программные прерывания (например, от какого-то приложения адаптера) st: сколько процентов было "украдено" виртуальной машиной - в случае, если гипервизору понадобилось увеличить собственные ресурсы Следующие две строчки показывают сколько занято/свободно оперативно памяти и файла подкачки, и не так релевантны относительно задачи проверки нагрузки на процессор. Под информацией о памяти вы увидите список процессов и процент ЦПУ, который они тратят. Также вы можете нажимать на кнопку t, чтобы прокручивать между различными вариантами вывода информации и использовать кнопку q для выхода из top Немного более модный способ: htop Существует более удобная утилита под названием htop, которая предоставляет достаточно удобный интерфейс с красивым форматированием. Установка утилиты экстремально проста:Для Ubuntu и Debian: sudo apt-get install htop Для CentOS и Red Hat: yum install htop Для Fedora: dnf install htop После установки просто введите команду ниже: htop Как видно на скриншоте, htop гораздо лучше подходит для простой проверки степени загрузки процессора. Выход также осуществляется кнопкой q Прочие способы проверки степени загрузки ЦПУ Есть еще несколько полезных утилит, и одна из них (а точнее целый набор) называется sysstat.Установка для Ubuntu и Debian: sudo apt-get install sysstat Установка для CentOS и Red Hat: yum install sysstat Как только вы установите systat, вы сможете выполнить команду mpstat - опять же, практически тот же вывод, что и у top, но в гораздо лаконичнее. Следующая утилита в этом пакете это sar. Она наиболее полезна, если вы ее вводите вместе с каким-нибудь числом, например 6. Это определяет временной интервал, через который команда sar будет выводить информацию о загрузке ЦПУ. К примеру, проверяем загрузку ЦПУ каждые 6 секунд: sar 6 Если же вы хотите остановить вывод после нескольких итераций, например 10, добавьте еще одно число: sar 6 10 Так вы также увидите средние значения за 10 выводов. Как настроить оповещения о слишком высокой нагрузке на процессор Одним из самых правильных способов является написание простого bash скрипта, который будет отправлять вам алерты о слишком высокой степени утилизации системных ресурсов. #!/bin/bash CPU=$(sar 1 5 | grep "Average" | sed 's/^.* //') CPU=$( printf "%.0f" $CPU ) if [ "$CPU" -lt 20 ] then echo "CPU usage is high!" | sendmail admin@example.com fi Скрипт будет использовать обработчик sed и среднюю загрузку от команды sar. Как только нагрузка на сервер будет превышать 85%, администратор будет получать письмо на электронную почту. Соответственно, значения в скрипте можно изменить под ваши требования - к примеру поменять тайминги, выводить алерт в консоль, отправлять оповещения в лог и т.д. Естественно, для выполнения этого скрипта нужно будет запустить его по крону: crontab -e Для ежеминутного запуска введите: * * * * * /path/to/cpu-alert.sh Заключение Соответственно, лучшим способом будет комбинировать эти способы - например использовать htop при отладке и экспериментах, а для постоянного контроля держать запущенным скрипт.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59