По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
3CX программная IP-АТС на открытых стандартах с технологиями Унифицированных коммуникаций и интеграцией услуг в режиме реального времени. Это простая в установке, настройке и сопровождении IP-АТС. /p> В данной статье мы рассмотрим процесс настройки IP-DECT-базы Gigaset N870 IP PRO для работы с IP-АТС 3CX и последующего подключения IP-DECT-телефонов Gigaset серии PRO. DECT (Digital Enhanced Cordless Telecommunication) технология беспроводной связи, использующая частоты 1880-1900 МГц с модуляцией GMSK (ВТ = 0,5). Используется в современных радиотелефонах. Пользуется высокой популярностью благодаря простоте развертывания DECT-сетей, широкому спектру предоставляемых пользовательских услуг и высокому качеству связи. Достоинства DECT хорошая помехоустойчивость канала связи благодаря цифровой передаче сигнала. хорошая интеграция с системами корпоративной телефонии меньшее облучение абонента (по сравнению с мобильными телефонами) Недостатки DECT небольшая дальность связи невысокая скорость передачи данных (по сравнению с Wi-Fi) Микросотовая SIP DECT система на базе Gigaset N870 IP PRO позволяет развернуть бесшовную масштабируемую микросотовую систему вплоть до 20000 абонентов. О настройке DECT станции для работы с 3CX и пойдет речь в данной статье. Поддержка данной DECT-базы со стороны 3CX возможна, начиная с версии DECT-базы 2.16.2 и выше. Шаг 1. Включение DHCP мода (All in One) Зажмите кнопку базы на 10 секунд, до тех пор, пока не выключатся LED индикаторы. Нажав на кнопку, выберите роль устройства. В зависимости от цвета и сочетания LED индикаторов, база будет иметь разные роли. Нажмите кнопку базы. Оба LED индикатора станут синими и база получит роль Интегратор/DECT-менеджера/База с динамическим IP-адресом. Зажмите кнопку базы на 5 секунд для подтверждения новой роли. Устройству необходимы 5 минут на перезагрузку и появления в сети как Интегратора/DECT-менеджера/Базы с настройками по умолчанию. После перезагрузки, LED-светодиоды на базовой станции показывают разными цветами когда изменяется роль. Шаг 2. Обновление базы до рекомендуемой версии программного обеспечения Последние поддерживаемые версии программного обеспечения (ПО) можно скачать здесь (https://teamwork.gigaset.com/gigawiki/pages/viewpage.action?pageId=702251506) Введите в браузере IP-адрес базы. В роли Интегратора с динамическим IP-адресом, DECT-база получает IP-адрес от DHCP-сервера. Найдите IP-адрес базы на своем DHCP сервере по MAC-адресу базы (указан на обратной стороне устройства). При необходимости обратитесь к вашему системному администраторе. Для подключения рекомендуется использовать веб-браузер Google Chrome или Mozilla Firefox. Введите логин admin и пароль admin. При первом подключении необходимо установить новый пароль и выбрать DECT-диапазон. Введите новый пароль, выберите диапазон 1880 1900 МГц для Европы. Затем нажмите на кнопку Set. Перейдите в Settings , затем перейдите в System -> Firmware. Нажмите на Browse и выберите файл прошивки, который вы хотите установить. Нажмите на кнопку Upload и дождитесь завершения загрузки файла на базу. Нажмите на кнопку Set для начала обновления и загрузки ПО. Шаг 3. Настройка базы в 3CX. Запишите MAC адрес базы (указан на обратной стороне устройства). В 3CX перейдите в Дополнительно -> Устройства FXS/DECT. Нажмите на Добавить FXS/DECT Выберите производителя Gigaset. Выберите модель Gigaset N870. Укажите MAC-адрес устройства. Нажмите ОК. Скопируйте ссылку автонастройки. Перейдите на вкладку Добавочные номера и выберите номер, который будет назначен на данную базу. Нажмите ОК. Шаг 4. Настройка базы через Веб-интерфейс. Введите IP-адрес базы в адресную строку веб-браузера. Перейдите в Settings. Перейдите в System -> Provisioning and configuration. Вставьте скопированную в шаге 3 ссылке в поле Provisioning server. Нажмите Set, а затем нажмите Start auto configuration. Шаг 5. Регистрация DECT-трубок. Введите IP-адрес базы в адресную строку веб-браузера. Перейдите в Mobile Devices -> Administration. Нажмите на значок карандаша для редактирования учетной записи. Измените значение RegStatus на To register Нажмите кнопку Register now. Перейдите в Mobile Devices -> Registration Centre Нажмите на кнопку Start Now Нажмите на кнопку Регистрация на трубке и введите PIN код (по умолчанию 0000) для подтверждения регистрации. К сожалению, DECT системы поддерживают не весь функционал 3CX и имеют следующие ограничения: Нет поддержки STUN (возможно использовать только SBC) Нет полной поддержки CTI (только звонки) Нет LCD Language Provisioning Нет возможности установить различные мелодии вызова для внешних вызовов, очередей или IVR Нет поддержки 3CX Firmware Management Нет поддержки Paging групп (включая Multicast)
img
Bellman-Ford - один из наиболее простых для понимания протоколов, поскольку он обычно реализуется путем сравнения недавно полученной информации о пункте назначения с существующей информацией о том же пункте назначения. Если вновь обнаруженный маршрут лучше, чем известный в настоящее время, маршрут с более высокой стоимостью просто заменяется в списке путей - в соответствии с правилом кратчайшего пути для поиска путей без петель в сети. Таким образом, перебирая всю топологию, можно найти набор кратчайших путей к каждому месту назначения. Рисунок 7 используется для иллюстрации этого процесса. Примечание. Хотя Bellman-Ford в основном известен своим распределенным вариантом, реализованным в широко распространенных протоколах, таких как Routing Information Protocol (RIP), он изначально был разработан как алгоритм поиска, выполняемый в единой структуре, описывающей топологию узлов и ребер. Беллман-Форд рассматривается здесь как алгоритм. Алгоритм Bellman-Ford Bellman-Ford рассчитывает Shortest Path Tree к каждому достижимому пункту назначения в наихудшем случае O (V * E), где V - количество узлов (вершин) в сети, а E - количество каналов (ребер). По сути, это означает, что время, необходимое Bellman-Ford для работы с топологией и вычисления Shortest Path Tree, линейно зависит от количества устройств и каналов. Удвоение количества любого из них удвоит время, необходимое для выполнения. Удвоение обеих одновременно увеличит время работы в 4 раза. Таким образом, алгоритм Bellman-Ford является умеренно медленным при использовании против более крупных топологий, когда узлы в таблице топологии начинаются в порядке от самого дальнего от корня до ближайшего к корню. Если таблица топологии отсортирована от ближайшего к корню до самого дальнего, Bellman-Ford может завершить работу за O(E), что намного быстрее. В реальном мире трудно обеспечить любой порядок, поэтому фактическое время, необходимое для построения Shortest Path Tree, обычно находится где-то между O(V * E) и O(E). Bellman-Ford - это greedy алгоритм, предполагающий, что каждый узел в сети, кроме локального, доступен только по бесконечным стоимостям, и заменяющий эти бесконечные стоимости фактическими стоимостями по мере прохождения топологии. Предположение, что все узлы бесконечно удалены, называется ослаблением вычислений, так как он использует приблизительное расстояние для всех неизвестных пунктов назначения в сети, заменяя их реальной стоимостью после ее расчета. Фактическое время выполнения любого алгоритма, используемого для расчета Shortest Path Tree, обычно ограничивается количеством времени, требуемым для передачи информации об изменениях топологии по сети. Реализации всех этих протоколов, особенно в их распределенной форме, будут содержать ряд оптимизаций, чтобы сократить время их выполнения до уровня, намного меньшего, чем наихудший случай, поэтому, хотя наихудший случай дается в качестве контрольной точки, он часто имеет мало влияющие на производительность каждого алгоритма в реальных развернутых сетях. Чтобы запустить алгоритм Bellman-Ford в этой топологии, ее необходимо сначала преобразовать в набор векторов и расстояний и сохранить в структуре данных, такой как показано в Таблице 1. В этой таблице девять записей, потому что в сети девять звеньев (граней). Алгоритмы кратчайшего пути вычисляют однонаправленное дерево (в одном направлении вдоль графа). В сети на рисунке 7 показано, что SPT берет начало в узле 1, а расчет показан удаленным от узла 1, который будет точкой, из которой будут выполняться вычисления. Алгоритм в псевдокоде следующий: // создаем набор для хранения ответа, по одной записи для каждого узла // первый слот в результирующей структуре будет представлять узел 1, // второй узел 2 и т. д. define route[nodes] { predecessor // как узел cost // как целое число } // установите для источника (меня) значение 0 // позиция 1 в массиве - это запись исходной точки. route[1].predecessor = NULL route[1].cost = 0 // таблица 1, приведенная выше, содержится в массиве под именем topo // Обходим таблицу вершин (граней) один раз для каждой записи в маршруте // (результаты) таблица, замены более длинных записей на более короткие i = nodes while i > 0 { j = 1 while j <= nodes { // перебирает каждую строку в топологии table source_router = topo[j].s destination_router = topo[j].d link_cost = topo[j].cost if route[source_router].cost == NULL { source_router_cost = INFINITY } else { source_router_cost = route[source_router].cost } if route[destination_router].cost == NULL { destination_router_cost = INFINITY } else { destination_router_cost = route[destination_router].cost } if source_router_cost + link_cost <= destination_router_cost { route[destination_router].cost = source_router_cost + link_ cost route[destination_router].predecessor = source_router } j = j + 1 //or j++ depending on what pseudocode this is representing } i = i - 1 } Этот код обманчиво выглядит сложнее, чем есть на самом деле. Ключевой строкой является сравнение if route [topo [j] .s] .cost + topo [j] .cost route [topo [j] .d] .cost. Полезно сосредоточиться на этой строке в примере. При первом прохождении внешнего цикла (который выполняется один раз для каждой записи в таблице результатов, здесь называется маршрутом): Для первой строки topo-таблицы: j равно 1, поэтому topo[j] .s - это узел 6 (F), источник вектора в таблице граней j равно 1, поэтому topo[j] .d - это узел 7 (G), адресат вектора в таблице граней. route[6].cost = infinity, topo[1].cost = 1, and route[7].cost = infinity (где infinity - бесконечность) infinity + 1 == infinity, поэтому условие не выполняется и больше ничего не происходит Любая запись в topo-таблице с исходной стоимостью infinity даст тот же результат, что и infinity + все, что всегда будет равно infinity. Остальные строки, содержащие источник со стоимостью infinity, будут пропущены. Для восьмой строки topo-таблицы (восьмая грань): j равно 8, поэтому topo[j].s - это узел 1 (A), источник вектора в таблице граней j равно 8, поэтому topo[j].d - это узел 2 (B), место назначения вектора в таблице граней. route [1].cost = 0, topo[8].cost=2 и route[2].cost = infinity. 0 + 2 = infinity, поэтому условие выполняется route[2].predecessor установлен на 1, а route [2].cost установлен на 2 Для девятой строки topo -таблицы (девятая грань): j равно 9, поэтому topo[j].s - это узел 1 (A), источник вектора в таблице граней j равно 9, поэтому topo[j].d - это узел 3 (C), место назначения вектора в таблице граней. route[1].cost=0, topo[9].cost=1 и route[3].cost = infinity. 0 + 1 = infinity, поэтому условие выполняется route[3].predecessor установлен на 1, а route[3].cost установлен на 1 Во втором прогоне внешнего цикла: Для пятой строки topo-таблицы (пятая грань): j равно 5, поэтому topo[j].s - это узел 2 (B), источник вектора в таблице граней j равно 5, поэтому topo[j].d - это узел 6 (F), место назначения вектора в таблице граней. route[2].cost=2,topo[5].cost=1 и route[6].cost = infinity. 2 + 1 = infinity, поэтому условие выполняется route[6].predecessor установлен на 2, а route[6].cost установлен на 3 Для шестой строки topo -таблицы (шестая грань): j равно 6, поэтому topo[j].s равно 2 (B), источник вектора в таблице граней j равно 6, поэтому topo[j].d равно 5 (E), место назначения вектора в таблице граней route[2].cost=2, topo[6].cost=2 и route[5].cost = infinity. 2 + 2 = infinity, поэтому условие выполняется route[5].predecessor установлен на 2, а route[5].cost установлен на 4 Окончание этого прогона показан в Таблице 2. В третьем прогоне внешнего цикла узел 8 представляет особый интерес, поскольку есть два пути к этому месту назначения. Для второй строки topo -таблицы (вторая грань): j равно 2, поэтому topo[j].s - это узел 5 (E), источник вектора в таблице граней j равно 2, поэтому topo[j].d - это узел 8 (H), место назначения вектора в таблице граней route[5].cost=4, topo[2].cost=1 и route[8].cost = infinity. 4 + 1 = infinity, поэтому условие выполняется route[8].predecessor установлен на 5, а route[8].cost установлен на 5 Для третьей строки topo -таблицы (третья грань): j равно 3, поэтому topo[j].s - это узел 4 (D), источник вектора в в таблице граней j равно 3, поэтому topo[j].d - это узел 8 (H), источник вектора в таблице граней route[4].cost=2,topo[3].cost=2 и route[8].cost = 5. 2 + 2 = 4, поэтому условие выполняется route[8].predecessor установлен на 4, а route[8].cost установлен на 4 Интересным моментом в третьем цикле в topo-таблице является то, что запись для грани [5,8] обрабатывается первой, которая устанавливает передатчик 8 (H) на 5 и стоимость на 5. Однако когда обрабатывается следующая строка в таблице topo [4,8], алгоритм обнаруживает более короткий путь к узлу 8 и заменяет существующий. Таблица 2 показывает состояние таблицы маршрутов при каждом проходе через таблицу topo. В таблице 2 верхняя строка представляет запись в таблице маршрутизации и узел, доступный в сети. Например, A (1) представляет лучший путь к A, B (2) представляет лучший путь к B и т. д. Столбец P представляет предшественника или узел, через который A должен пройти, чтобы достичь указанного пункта назначения. C представляет собой стоимость достижения этого пункта назначения. Рассмотренный пример сети может быть завершен за три цикла, если алгоритм настроен так, чтобы обнаруживать завершение дерева. Псевдокод, как показано, не имеет никакого теста для этого завершения и в любом случае будет выполнять полные 8 циклов (по одному для каждого узла). Теперь почитайте про алгоритм диффузного обновления DUAL.
img
Привет! Сегодня в статье мы поговорим о настройке Music on Hold Server в Cisco Unified Communications Manager (CUCM) . Music on Hold – это музыка, которая проигрывается абоненту, когда он поставлен на удержание. Сервер может быть Multicast, когда используется один аудиопоток, посылаемый на групповой адрес, и Unicast, когда для каждого поставленного на удержания вызова используется отдельный аудиопоток. Файлы, которые будут использоваться для Music on Hold должны отвечать следующим требованиям: Формат .WAV (16 Bit PCM); Mono или Stereo; Частота дискретизации – 8, 16, 32 или 48 кГц; Настройка Music on Hold в CUCM Для начала загрузим аудиофайл на наш CUCM. Для этого переходим в раздел Media Resources – MOH Audio File Management. В новом окне нажимаем Upload File и указываем его месторасположение. Файл будет переконвертирован в формат нужного кодека. После этого он появится в таблице. Затем переходим во вкладку Media Resources – Music on Hold Audio Source и нажимаем Add New для создания нового потока Music on Hold. Тут в поле MOH Audio Stream Number указываем номер нашего потока (начиная с 2, т.к. первый номер занят за стандартным потоком). В строке MOH Audio Source File в выпадающем меню выбираем загруженный нами аудиофайл, а в строке MOH Audio Source Name указываем его имя. Также здесь можно включить Multicasting и повтор проигрывания. Далее переходим во вкладку Media Resources – Music on Hold Server. Если там ничего нет, то нужно перейти во вкладку Cisco Unified Serviceability – Tools – Service Activation и поставить галочку напротив пункта IP Voice Media Streaming Application для активации сервиса и после этого сервер будет автоматически создан. Теперь можно выбрать сервер и перейти на страницу его настроек. Для того чтобы выбрать поток Music on Hold на телефоне нужно перейти во вкладку Device – Phone, найти желаемый телефон и в строках User Hold MOH Audio Source и Network Hold MOH Audio Source выбрать созданный поток.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59