По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
При развертывании IP-АТС одним из важнейших факторов является выбор телефонных аппаратов, поэтому в сегодняшней статье мы расскажем про 5 самых известных и надёжных брендах и моделях SIP- телефонов, которые не раз устанавливали в своих инсталляциях. Немного теории SIP-телефон – это телефон, который устанавливается в локальную сеть через порт RJ-45, вместо стандартного RJ-11. В отличие от аналоговых телефонов, которые используют выделенную телефонную сеть, SIP-телефоны используют компьютерную сеть для передачи голосовых данных. Если вы хотите использовать IP-телефоны, то для управления, координирования и взаимодействия с различными компонентами телефонии, в сети должна присутствовать IP-АТС. Большинство телефонов указанных ниже поддерживают SIP, но перед тем как заказывать один из них, рекомендуем ещё раз ознакомиться с их спецификацией. Кроме того, не все ниже упомянутые телефоны поставляются с блоком питания. Если вы собираетесь использовать POE выключатели/POE адаптеры, блок питания может не потребоваться. Если блок питания не входит в стандартную поставку, обычно его можно докупить отдельно Телефоны Cisco 1. Cisco SPA 504G 4-Line IP Phone Количество линий Дисплей Интерфейсы Кнопки Фичи 4 линии, 4 SIP аккаунта, поддержка SIP и SCCP Монохромный 128 × 64 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор, Поддержка POE 4 программируемые кнопки Встроенная громкая связь, порт для гарнитуры 2. Cisco SPA 303 3-Line IP Phone Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP и SCCP Монохромный 128 × 64 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор Стандартный 12 - кнопочный диалпад, кнопки для голосовой почты и удержания Встроенная громкая связь, порт для гарнитуры 3. Cisco SPA525G2 5-Line IP Phone Количество линий Дисплей Интерфейсы Кнопки Фичи 5 линий, поддержка SIP и SCCP Графический 3,2-дюймовый цветной 320 х 240 дисплей Встроенный 2-портовый коммутатор c поддержкой POE, поддержка соединения по WiFi 5 программируемых линейных кнопок Интеграция с Bluetooth, Встроенная громкая связь, порт для гарнитуры, USB порт Телефоны Polycom 1. Soundpoint IP 335 Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP Монохромный 102 × 33 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор, Поддержка POE 3 программируемые кнопки (контекстно-зависимые) Порт для гарнитуры 2. Soundpoint IP 550 Количество линий Дисплей Интерфейсы Кнопки Фичи 4 линии, поддержка SIP Монохромный 320 × 160 ЖК-дисплей с подсветкой Встроенный 2-портовый коммутатор, Поддержка POE 4 программируемые кнопки (контекстно-зависимые) Поддержка XHTML 3. Soundpoint IP 650 Количество линий Дисплей Интерфейсы Кнопки Фичи 6 линии, поддержка SIP Монохромный 320 × 160 ЖК-дисплей с подсветкой Поддержка POE, USB порт 4 программируемые кнопки (контекстно-зависимые) Возможность расширения до 12 линий с модулем расширения Polycom, Поддержка XHTML Grandstream 1. GXP1405 Количество линий Дисплей Интерфейсы Кнопки Фичи 2 линии, 2 SIP аккаунта Монохромный 128 × 40 ЖК-дисплей Встроенный 2-портовый коммутатор, Поддержка POE 3 XML - программируемые контекстно-зависимые программируемые клавиши Загружаемая телефонная книга XML, LDAP, XML настройка экрана 2. GXP 280 Количество линий Дисплей Интерфейсы Кнопки Фичи 1 линия, 1 SIP аккаунт Монохромный 128 × 32 ЖК-дисплей Встроенный 2-портовый коммутатор 3 программируемые XML клавиши Поддержка XHTML, Встроенная громкая связь, порт для гарнитуры 3. GXP 2124 Количество линий Дисплей Интерфейсы Кнопки Фичи 4 линии, поддержка 4 SIP аккаунтов Монохромный 240 × 120 графический 2-портовый гигабитный коммутатор с поддержкой POE 24 + 4 Контекстно программируемые клавиши быстрого набора BLF Встроенный сервис приложений Yealink 1. SIP-T22P Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP Графический 132 × 64 ЖК-дисплей Встроенный 2-портовый коммутатор, Поддержка POE 3 программируемых функциональных клавиш, 4 программируемые клавиши, Возможность крепления к стене Отправка SIP SMS, голосовая почта 2. SIP-T28P Количество линий Дисплей Интерфейсы Кнопки Фичи 3 линии, поддержка SIP Графический 320 × 160 ЖК-дисплей Встроенный 2-портовый коммутатор с поддержкой POE 16 программируемых клавиш Встроенная громкая связь, порт для гарнитуры 3. SIP-T38G Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка SIP, 6 VoIP аккаунтов Графический 4,3 цветной ,ЖК-дисплей 480 х 272 пикселей Встроенный 2-портовый гигабит коммутатор с поддержкой POEE 16 BLF программируемых кнопок, Поддержка до 6 модулей расширения с программируемыми кнопками Встроенная громкая связь, порт для гарнитуры Snom 1. Snom 300 IP Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка 4 SIP аккаунтов ЖК-дисплей линейный (2 х 16 символов) 2-портовый коммутатор 6 программируемых функциональных клавиш Громкая связь 2. Snom 320 IP Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка 4 SIP аккаунтов ЖК-дисплей линейный (2 х 16 символов 2-портовый коммутатор с поддержкой POE 12 программируемых функциональных клавиш Встроенная громкая связь, порт для гарнитуры $dbName_ecom = "to-www_ecom"; $GoodID = "7111349514"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); 3. Snom 370 IP Количество линий Дисплей Интерфейсы Кнопки Фичи Поддержка 12 SIP линий Наклонный 240 х 158 Графический дисплей SIP, 2-портовый коммутатор с поддержкой POE 12+42 программируемых функциональных клавиш Встроенная громкая связь
img
Есть два типа алгоритмов шифрования, которые используются для шифрования данных. Это симметричные и асимметричные алгоритмы. В этой статье мы подробно изучим функции и операции алгоритмов симметричного шифрования. Чтобы зашифровать текстовое сообщение, требуются как шифр, так и ключ. При симметричном шифровании ключ используется для шифрования сообщения открытого текста в зашифрованный текст, и тот же ключ используется для дешифрования зашифрованного текста обратно в открытый текст. Хотя алгоритмы симметричного шифрования обычно используются во многих системах, основным недостатком является то, что в случае потери или кражи секретного ключа зашифрованный текст может быть взломан. Если злоумышленник сможет получить ключ, он сможет расшифровать сообщение и просмотреть его содержимое. Поэтому чрезвычайно важно, чтобы ключ всегда был в безопасности. Симметричные алгоритмы используют длину ключа в диапазоне от 40 до 256 бит. Эти длины ключей намного короче, чем те, которые используются в асимметричных алгоритмах. Однако симметричные алгоритмы способны обеспечить лучшую производительность, например, при более быстром шифровании данных, по сравнению с асимметричными алгоритмами. Чтобы лучше понять, как работают симметричные алгоритмы, давайте представим, что есть два пользователя, Алиса и Сергей Алексеевич, которые хотят обеспечить конфиденциальность сообщений, которыми они обмениваются. Оба пользователя знают о Pre-Shared Key (PSK) или секретном ключе до обмена сообщениями. На следующем рисунке демонстрируется, что Алиса использует секретный ключ для шифрования текстового сообщения перед его отправкой Сергею Алексеевичу: После того, как сообщение будет зашифровано, Алиса отправит его Сергею Алексеевичу, который будет использовать тот же PSK или секретный ключ, чтобы расшифровать сообщение и получить исходное текстовое сообщение, как показано ниже: Тот же процесс повторяется всякий раз, когда Сергей Алексеевич хочет отправить сообщение Алисе. Тот же ключ, который используется для шифрования данных, используется для дешифрования сообщения. Симметричные алгоритмы Симметричные алгоритмы могут шифровать данные, используя либо блочный шифр, либо потоковый шифр. Блочный шифр берет блок фиксированной длины открытого текстового сообщения и выполняет процесс шифрования. Эти блоки обычно являются 64-битными или 128-битными блоками. На следующем рисунке представлен блочный шифр: В свою очередь, потоковый шифр будет шифровать либо один бит, либо один байт за раз. Вместо того, чтобы шифровать весь блок открытого текста, представьте, что с помощью потокового шифра размер блока уменьшается до одного бита или одного байта. На следующем рисунке представлен потоковый шифр: Считается, что потоковые шифры выполняют шифрование данных быстрее, чем блочные шифры, поскольку они непрерывно шифруют данные по одному биту или одному байту за раз. Ниже приводится список симметричных алгоритмов и их характеристики: Data Encryption Standard (DES): это очень старый алгоритм симметричного шифрования, который шифрует данные с использованием блоков размером 64 бита и размером ключа 54 бита. Triple Data Encryption Standard (3DES): это более новая версия DES. 3DES выполняет процесс шифрования трижды. Это означает, что первый раунд берет данные открытого текста и выполняет шифрование для создания зашифрованного текста. Он будет использовать зашифрованный текст в качестве входных данных и снова выполнит его шифрование, что является вторым этапом. Он возьмет новый зашифрованный текст из второго раунда и выполнит его шифрование, чтобы создать окончательный результат, который завершает третий раунд шифрования, отсюда и название тройной DES. 3DES использует ключи размером 112 бит и 168 бит. Advanced Encryption Standard (AES): широко используется во многих современных системах передачи данных и протоколах. AES использует ключи размером 128, 192 и 256 бит. Он выполняет шифрование данных в блоках фиксированного размера: 128, 192 и 256 бит. AES считается намного более безопасным, чем алгоритмы шифрования DES и 3DES. Безопасный сетевой протокол Secure Shell (SSH) версии 2 использует алгоритм AES с режимом счетчика (AES-CRT) в качестве предпочтительного алгоритма шифрования данных. Software-Optimized Encryption Algorithm (SEAL): это еще один симметричный алгоритм. SEAL - это алгоритм потокового шифрования, который использует размер ключа 160 бит. Rivest Cipher (RC): это серия наборов шифров, созданных Роном Ривестом, таких как RC2, RC3, RC4, RC5 и RC6. Наиболее распространенным является RC4, потоковый шифр, использующий размер ключа до 256 бит. Асимметричные алгоритмы шифрования Асимметричные алгоритмы выполняют шифрование данных с использованием двух разных ключей в виде пары ключей. Это означает, что один ключ используется для шифрования данных, а другой-для расшифровки сообщения. Если какой-либо ключ потерян или украден, сообщение не будет взломано или прочитано. На следующем рисунке показан пользователь Алиса, использующий ключ для шифрования текстового сообщения: Когда целевой хост, Сергея Алексеевича, получает сообщение от отправителя, он будет использовать другой ключ для расшифровки сообщения, как показано на следующем рисунке: Асимметричные алгоритмы используют пару ключей, известную как открытый (public) и закрытый (private) ключи. Открытый ключ предоставляется любому, кто хочет связаться с вами, отсюда и название открытый ключ. Закрытый ключ хранится у вас. Только пользователи пары ключей могут шифровать и расшифровывать данные. Никакие другие ключи не могут быть использованы для расшифровки сообщения, зашифрованного вашим закрытым ключом. Важное примечание! Асимметричное шифрование использует размер ключа от 512 до 4096 бит. Однако рекомендуется размер ключа в 1024 бита или больше. Чтобы лучше понять принцип работы этих открытых и закрытых ключей, давайте представим, что есть два пользователя, Сергей Алексеевич и Алиса, которые хотят зашифровать данные между собой, используя асимметричное шифрование. Для начала предположим, что Алиса хочет отправить сообщение Сергею Алексеевичу. Для этого Сергей Алексеевич должен создать пару, открытого и закрытого ключей и поделиться открытым ключом с Алисой следующим образом: Закрытый ключ хранится у Сергея Алексеевича, а Алиса получает только открытый ключ Сергея Алексеевича. Алиса будет использовать открытый ключ Сергея Алексеевича для шифрования любого сообщения, которое она хочет отправить Сергею Алексеевичу. Когда Сергей Алексеевич получит сообщение, то он будет использовать свой закрытый ключ, чтобы расшифровать сообщение и прочитать его содержимое. На следующем рисунке показано, как Алиса отправляет Сергею Алексеевичу зашифрованное сообщение: Как показано на предыдущем рисунке, Алиса использовала открытый ключ Сергея Алексеевича для шифрования сообщения. Если злоумышленник перехватит зашифрованный текст во время передачи, сообщение будет в безопасности, поскольку злоумышленник не имеет закрытого ключа Сергея Алексеевича. Ниже приведены некоторые сетевые протоколы, использующие асимметричные алгоритмы: SSH Secure Sockets Layer (SSL) Internet Key Exchange (IKE) Pretty Good Privacy (PGP) Ниже приведен список асимметричных алгоритмов и их функции: Diffie-Hellman (DH): DH не является алгоритмом шифрования данных, а скорее используется для безопасной доставки пар ключей по незащищенной сети, такой как Интернет. Проще говоря, он позволяет Сергею Алексеевичу и Алисе согласовывать ключ, который может использоваться для шифрования сообщений, отправляемых между ними. DH использует ключи размером 512 бит, 1024 бит, 2048 бит, 3072 бит и 4096 бит. Ниже приведен список различных групп DH и их соответствующих размеров ключей: группа DH 1: 768 бит, группа 2 DH: 1024 бит, группа 5 DH: 1536 бит, группа 14 DH: 2048 бит, группа 15 DH: 3072 бит, и группа 16 DH: 4096 бит. Digital Signature Standard (DSS): DSS - это асимметричный алгоритм, который используется для цифровых подписей. Алгоритм цифровой подписи (DSA) - это алгоритм с открытым ключом, который использует схему подписи ElGamal. Размеры ключей варьируются от 512 до 1024 бит. Rivest-Shamir-Adleman (RSA): этот алгоритм шифрования был создан Ron Rivest, Adi Shamir, и Leonard Adleman. Он был разработан как алгоритм асимметричного шифрования, который использует пары открытого и закрытого ключей между устройствами. RSA использует ключи размером от 512 до 2048 бит. EIGamal: EIGamal - еще один алгоритм асимметричного шифрования, который использует пару открытого и закрытого ключей для шифрования данных. Этот алгоритм основан на процессе согласования ключей DH. Примечательной особенностью использования этого алгоритма является то, что он принимает открытый текст (input) и преобразует его в зашифрованный текст (output), который вдвое превышает размер входного сообщения. Elliptical Curve (EC): EC используется с асимметричным шифрованием. EC использует кривые вместо чисел. Поскольку мобильные устройства, такие как смартфоны, не имеют высокопроизводительного процессора и объема памяти, как компьютер, EC использует ключи меньшего размера.
img
До сих пор в этой серии статей примеры перераспределения маршрутов, над которыми мы работали, использовали один роутер, выполняющий перераспределение между нашими автономными системами. Однако с точки зрения проекта, глядя на этот роутер понимаем, что это единственная уязвимая точка, то есть точка отказа. Для избыточности давайте подумаем о добавлении второго роутера для перераспределения между несколькими автономными системами. То, что мы, вероятно, не хотим, чтобы маршрут объявлялся, скажем, из AS1 в AS2, а затем AS2 объявлял тот же самый маршрут обратно в AS1, как показано на рисунке. Хорошая новость заключается в том, что с настройками по умолчанию, скорее всего не будет проблем. Например, на приведенном выше рисунке роутер CTR2 узнал бы два способа добраться до Сети A. Один из способов — это через OSPF, к которому он подключен. Другой путь был бы через EIGRP AS, через роутер CTR1 и обратно в OSPF AS. Обычно, когда роутер знает, как добраться до сети через два протокола маршрутизации, он сравнивает значения административного расстояния (AD) протоколов маршрутизации и доверяет протоколу маршрутизации с более низким AD. В этом примере, хотя EIGRP AD обычно составляет 90, что более правдоподобно, чем OSPF AD 110, AD EIGRP External route (т. е. маршрута, который возник в другом AS) составляет 170. В результате OSPF-изученный маршрут CTR2 к сети A имеет более низкую AD (т. е. 110), чем AD (т. е. 170) EIGRP-изученного маршрута к сети A. Что в итоге? CTR2 отправляет трафик в Сеть A, отправляя этот трафик в OSPF AS, без необходимости передавать EIGRP AS. Время от времени, однако, нам потребуется произвести настройки некоторых не дефолтных параметров AD, или же нам понадобятся creative metrics, применяемые к перераспределенным маршрутам. В таких случаях мы подвергаемся риску развития событий, описанных на предыдущем рисунке. Давайте обсудим, как бороться с такой проблемой. Рассмотрим следующую топологию. В этой топологии у нас есть две автономные системы, одна из которых работает под управлением OSPF, а другая- под управлением EIGRP. Роутеры CTR1 и CTR2 в настоящее время настроены для выполнения взаимного перераспределения маршрутов между OSPF и EIGRP. Давайте взглянем на таблицы IP-маршрутизации этих магистральных роутеров. Обратите внимание, в приведенном выше примере, что с точки зрения роутера CTR2, лучший способ добраться до Сети 192.0.2.0 / 30 — это next-hop на следующий IP-адрес 192.0.2.5 (который является роутером OFF1). Это означает, что если бы роутер CTR2 хотел отправить трафик в сеть 192.0.2.0 /30, то этот трафик остался бы в пределах OSPF AS. Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в Интересно, что процесс маршрутизации EIGRP, запущенный на роутере CTR2, также знает, как добраться до Сети 192.0.2.0 / 30 из-за того, что роутер CTR1 перераспределяет этот маршрут в EIGRP AS, но этот маршрут считается EIGRP External route. Поскольку EIGRP External route AD 170 больше, чем OSPF AD 110, в OSPF маршрут прописывается в таблице IP-маршрутизации роутера CTR2. Именно так обычно работает Route redistribution, когда у нас есть несколько роутеров, выполняющих перераспределение маршрутов между двумя автономными системами. Однако, что мы можем сделать, если что-то идет не так, как ожидалось (или как мы хотели)? Как мы можем предотвратить перераспределение маршрута, перераспределенного в AS, из этого AS и обратно в исходное AS, например, в примере, показанном на следующем рисунке. В приведенном выше примере роутер OFF1 объявляет сеть 192.168.1.0 / 24 роутеру CTR1, который перераспределяет этот маршрут из AS1 в AS2. Роутер OFF2 получает объявление маршрута от роутера CTR1 и отправляет объявление для этого маршрута вниз к роутеру CTR2. Роутер CTR2 затем берет этот недавно изученный маршрут и перераспределяет его от AS2 к AS1, откуда он пришел. Мы, скорее всего, не хотим, чтобы это произошло, потому что это создает неоптимальный маршрут. Общий подход к решению такой проблемы заключается в использовании route map в сочетании с tag (тегом). В частности, когда маршрут перераспределяется из одного AS в другой, мы можем установить тег на этом маршруте. Затем мы можем настроить все роутеры, выполняющие перераспределение, чтобы блокировать маршрут с этим тегом от перераспределения обратно в его исходный AS, как показано на следующем рисунке. Обратите внимание, что в приведенной выше топологии, когда маршрут перераспределяется от AS1 к AS2, он получает тег 10. Кроме того, роутер CTR2 имеет инструкцию (настроенную в карте маршрутов), чтобы не перераспределять любые маршруты из AS2 в AS1, которые имеют тег 10. В результате маршрут, первоначально объявленный роутером OFF1 в AS1, никогда не перераспределяется обратно в AS1, тем самым потенциально избегая неоптимального маршрута. Далее давайте еще раз рассмотрим, как мы можем настроить этот подход к тегированию, используя следующую топологию. В частности, на роутерах CTR1 и CTR2 давайте установим тег 10 на любом маршруте, перераспределяемом из OSPF в EIGRP. Затем, на тех же самых роутерах, мы предотвратим любой маршрут с тегом 10 от перераспределения из EIGRP обратно в OSPF. Для начала на роутере CTR1 мы создаем карту маршрутов, целью которой является присвоение тегу значения 10. CTR1 # conf term CTR1 (config) # route-map TAG10 CTR1 (config-route-map) # set tag 10 CTR1 (config-route-map) #exit CTR1 (config) # Обратите внимание, что мы не указали permit как часть инструкции route-map, и мы не указали порядковый номер. Причина в том, что permit — это действие по умолчанию, и карта маршрута TAG10 имела только одну запись. Далее мы перейдем к роутеру CTR2 и создадим карту маршрутов, которая предотвратит перераспределение любых маршрутов с тегом 10 в OSPF. Кроме того, мы хотим, чтобы роутер CTR2 маркировал маршруты, которые он перераспределяет из OSPF в EIGRP со значением тега 10. Это означает, что мы хотим, чтобы роутер CTR1 предотвратил перераспределение этих маршрутов (со значением тега 10) обратно в OSPF. Итак, пока мы находимся здесь на роутере CTR1, давайте настроим route-map, которая предотвратит Route redistribution со значением тега 10 в OSPF. CTR1 (config) # route-map DENYTAG10 deny 10 CTR1 (config-route-map) # match tag 10 CTR1 (config-route-map) # exit CTR1 (config) # route-map DENYTAG10 permit 20 CTR1 (config-route-map) # end CTR1 # Эта недавно созданная route-map (DENYTAG10) использует ключевые слова permit и deny, и у нее есть порядковые номера. Порядковый номер 10 используется для запрещения маршрутов с тегом 10. Затем имеем следующий порядковый номер (который мы пронумеровали 20), чтобы разрешить перераспределение всех других маршрутов. Теперь, когда мы создали наши две карты маршрутов, давайте применим TAG10 route map к команде EIGRP redistribute (к тегу routes, перераспределяемому в EIGRP со значением 10). Кроме того, мы хотим применить DENYTAG10 route map к команде OSPF redistribute (чтобы предотвратить перераспределение маршрутов, помеченных значением 10, обратно в OSPF AS). CTR1 # conf term CTR1 (config) # router eigrp 100 CTR1 (config-router) # redistribute ospf 1 route-map TAG10 CTR1 (config-router) # router ospf 1 CTR1 (config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR1 (config-router) # end CTR1 # Теперь нам нужно ввести зеркальную конфигурацию на роутере CTR2. CTR2#conf term CTR2(config)#route-map TAG10 CTR2(config-route-map) # set tag 10 CTR2(config-route-map) # exit CTR2(config)#route-map DENYTAG10 deny 10 CTR2(config-route-map) # match tag 10 CTR2(config-route-map) # exit CTR2(config) # route-map DENYTAG10 permit 20 CTR2(config-route-map) # exit CTR2(config) # router eigrp 100 CTR2(config-router) # redistribute ospf 1 route-map TAG10 CTR2(config-router) # router ospf 1 CTR2(config-router) # redistribute eigrp 100 subnets route-map DENYTAG10 CTR2(config-router) # end CTR2# Просто чтобы убедиться, что наши маршруты помечены, давайте проверим таблицу топологии EIGRP роутера OFF2. Обратите внимание, что все маршруты, перераспределенные в EIGRP из OSPF, теперь имеют тег 10, и мы сказали роутерам CTR1 и CTR2 не перераспределять эти маршруты обратно в OSPF. Именно так мы можем решить некоторые потенциальные проблемы, возникающие при перераспределении маршрутов. Дело за малым - прочитайте нашу статью про route redistribution с помощью IPv6.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59