По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы продолжаем знакомить вас настойкой телефонов, и сегодня с IP-АТС Asterisk мы свяжем телефон Yealink SIP-T46S. $dbName_ecom = "to-www_ecom"; $GoodID = "6355410825"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); Настройка Первым делом после подключения телефона к сети нам нужно зайти на его веб-интерфейс, для начала настройки. Там нас встретит входное меню авторизации. Для телефона Yealink SIP-T46S стандартный логин – admin, пароль – admin. После ввода логина и пароля мы попадаем в меню Статус. Чтобы начать настройку нам нужно перейти в меню Аккаунт Тут нужно выбрать какой из 16-ти SIP-аккаунтов мы будем использовать и заполнить следующие поля: Аккаунт – Выбираем какой аккаунт нам нужно настроить Аккаунт – Включено Лейбл – Отображаемое название трубки Отображаемое имя – Имя которое будет отображаться при вызове Имя регистрации – Указываем наш внутренний номер Имя пользователя – Указываем наш внутренний номер Пароль – Пароль для выбранного номера Адрес SIP-сервера – IP-адрес нашей IP-АТС Порт – Указываем номер порта После этого сохраняем и на этой же странице в строке Статус должна появиться надпись Зарегистрировано. Готово! Теперь телефон может звонить. Для изменения основных сетевых настроек мы можем посетить меню Сеть. А Если нужно назначить дополнительные программируемые DSS кнопки (например, BLF), то это можно сделать в меню DSS-кнопки.
img
Вопросы безопасности преследовали Интернет вещей (Internet of Things) с самого момента изобретения. Все, от поставщиков до корпоративных пользователей и потребителей, обеспокоены тем, что их модные новые устройства и системы IoT могут быть скомпрометированы. Проблема на самом деле еще хуже, поскольку уязвимые устройства IoT могут быть взломаны и использованы в гигантских ботнетах, которые угрожают даже правильно защищенным сетям. Но каких именно проблем и уязвимостей следует избегать при создании, развертывании или управлении системами IoT? И, что более важно, что мы можем сделать, чтобы смягчить эти проблемы? Именно здесь вступает в действие OWASP (Open Web Application Security Project) - проект обеспечения безопасности открытых веб-приложений. По его собственным словам, «Проект Интернета вещей OWASP призван помочь производителям, разработчикам и потребителям лучше понять проблемы безопасности, связанные с Интернетом вещей, и позволяют пользователям в любом контексте принимать более обоснованные решения в области безопасности при создании, развертывании или оценке технологий IoT». Давайте рассмотрим топ 10 уязвимостей интернета вещей. 1.Слабые, угадываемые или жестко заданные пароли Использование легко взламываемых, общедоступных или неизменяемых учетных данных, включая бэкдоры во встроенном программном обеспечении или клиентском программном обеспечении, которое предоставляет несанкционированный доступ к развернутым системам. Эта проблема настолько очевидна, что трудно поверить, что это все еще то, о чем мы должны думать. 2. Небезопасные сетевые сервисы Ненужные или небезопасные сетевые службы, работающие на самом устройстве, особенно те, которые подключены к Интернету, которые ставят под угрозу конфиденциальность, целостность или подлинность или доступность информации или допускают несанкционированное удаленное управление. 3. Небезопасные экосистемные интерфейсы Небезопасный веб-интерфейс, API бэкэнда, облачные или мобильные интерфейсы в экосистеме вне устройства, что позволяет компрометировать устройство или связанные с ним компоненты. Общие проблемы включают в себя отсутствие аутентификации или авторизации, отсутствие или слабое шифрование, а также отсутствие фильтрации ввода и вывода. 4. Отсутствие безопасных механизмов обновления Отсутствие возможности безопасного обновления устройства. Это включает в себя отсутствие проверки прошивки на устройстве, отсутствие безопасной доставки (без шифрования при передаче), отсутствие механизмов предотвращения отката и отсутствие уведомлений об изменениях безопасности из-за обновлений. Это постоянная проблема для приложений IoT, так как многие производители и предприятия не заботятся о будущем своих устройств и реализаций. Кроме того, это не всегда технологическая проблема. В некоторых случаях физическое расположение устройств IoT делает обновление - и ремонт или замену - серьезной проблемой. 5. Использование небезопасных или устаревших компонентов Использование устаревших или небезопасных программных компонентов или библиотек, которые могут позволить скомпрометировать устройство. Это включает небезопасную настройку платформ операционной системы и использование сторонних программных или аппаратных компонентов из скомпрометированной цепочки поставок. 6. Недостаточная защита конфиденциальности Личная информация пользователя, хранящаяся на устройстве или в экосистеме, которая используется небезопасно, ненадлежащим образом или без разрешения. Очевидно, что с личной информацией нужно обращаться соответствующим образом. Но ключом здесь является «разрешение». Вы почти ничего не делаете с личной информацией, если у вас нет на это разрешения. 7. Небезопасная передача и хранение данных Отсутствие шифрования или контроля доступа к конфиденциальным данным в любой точке экосистемы, в том числе в состоянии покоя, передачи или во время обработки. В то время как многие поставщики IoT обращают внимание на безопасное хранение, обеспечение безопасности данных во время передачи слишком часто игнорируется. 8. Ограниченное управление устройством Отсутствие поддержки безопасности на устройствах, развернутых в производстве, включая управление активами, управление обновлениями, безопасный вывод из эксплуатации, мониторинг систем и возможности реагирования. Устройства IoT могут быть небольшими, недорогими и развернутыми в большом количестве, но это не означает, что вам не нужно ими управлять. Фактически, это делает управление ими более важным, чем когда-либо. Даже если это не всегда легко, дешево или удобно. 9. Небезопасные настройки по умолчанию Устройства или системы поставляются с небезопасными настройками по умолчанию или не имеют возможности сделать систему более безопасной, ограничивая операторов от изменения конфигурации. 10. Отсутствие физического доступа Отсутствие мер по физической защите, позволяющих потенциальным злоумышленникам получать конфиденциальную информацию, которая может помочь в будущей удаленной атаке или получить локальный контроль над устройством. Что из этого следует? Интернет вещей уже давно стал частью реальности, и с ним нельзя забывать о безопасности. И вопросы безопасности должны ложиться не только на плечи производителей, но и на плечи администраторов и обычных пользователей.
img
Сегодня в статье рассказываем про плагин kubectl, который использует tmux, чтобы быстрее устранить неполадки Kubernetes. Kubernetes - это процветающая платформа для взаимодействия контейнеров с открытым исходным кодом, которая обеспечивает масштабируемость, высокую доступность, надежность и отказоустойчивость приложений. Одной из его многочисленных функций является поддержка запуска пользовательских сценариев или двоичных файлов через основной двоичный файл клиента, kubectl. Kubectl очень мощный, и позволяет пользователям делать с ним все, что они могли бы сделать непосредственно в кластере Kubernetes. Устранение неполадок с псевдонимами Kubernetes Каждый, кто использует Kubernetes для управления контейнерами, знает о его особенностях - а также о сложности, причиной которого является его дизайн. Например, существует острая необходимость упростить поиск и устранение неисправностей в Kubernetes с помощью чего-то более быстрого и практически не требующего ручного вмешательства (за исключением критических ситуаций). Существует много сценариев, которые следует учитывать при устранении неполадок. В одном сценарии вы знаете, что нужно запускать, но синтаксис команды - даже если она может выполняться как одна команда - чрезмерно сложен, или для работы может потребоваться один-два входа. Например, если часто требуется перейти в запущенный контейнер в пространстве имен System, вы можете неоднократно писать: kubectl --namespace=kube-system exec -i -t <your-pod-name> Для упрощения поиска и устранения неисправностей можно использовать псевдонимы этих команд в командной строке. Например, можно добавить следующие файлы dotfiles (.bashrc или .zshrc): alias ksysex='kubectl --namespace=kube-system exec -i -t' Это один из многих примеров из хранилища общих псевдонимов Kubernetes, который показывает один из способов упрощения функций в kubectl. Для чего-то простого, подобного этому сценарию, достаточно псевдонима. Переключение на подключаемый модуль kubectl Более сложный сценарий устранения неполадок включает в себя выполнение множества команд, одной за другой, для исследования среды и выведения заключения. Одних псевдонимов недостаточно для этого варианта использования; необходима воспроизведение логического узла и корреляция между многими частями развертывания Kubernetes. На самом деле вам нужна автоматизация для получения нужного результата за меньшее время. Рассмотрим пространства имен от 10 до 20 или даже от 50 до 100, содержащие различные микросервисы в вашем кластере. Что поможет вам начать устранение неполадок в этом сценарии? Вам потребуется что-то, что может быстро определить, какой модуль в каком пространстве имен вызывает ошибки. Вам понадобится что-то, что сможет просматривать журналы всех модулей в пространстве имен. Также может потребоваться просмотр журналов определенных модулей в определенном пространстве имен, в котором были обнаружены ошибки. Любое решение, охватывающее эти вопросы, было бы очень полезно при изучении производственных проблем, а также в ходе циклов разработки и тестирования. Чтобы создать нечто более мощное, чем простой псевдоним, можно использовать плагины kubectl. Плагины подобны автономным сценариям, написанным на любом языке сценариев, но предназначены для расширения функциональных возможностей главной команды при работе в качестве администратора Kubernetes. Чтобы создать плагин, необходимо использовать правильный синтаксис kubectl- < имя-плагина > для того, чтобы скопировать сценарий в один из экспортированных путей в $PATH и предоставить ему исполняемые разрешения chmod+x. После создания плагина и перемещения его в свой путь, вы можете немедленно запустить его. Например, у меня на пути есть kubectl-krwl и kubectl-kmux: $ kubectl plugin list The following compatible plugins are available: /usr/local/bin/kubectl-krawl /usr/local/bin/kubectl-kmux $ kubectl kmux Теперь давайте изучим, как выглядит обеспечение работы Kubernetes с tmux. Использование силы tmux Tmux - очень мощный инструмент, на который полагаются многие команды для устранения проблем, связанных с упрощением работы - от разделения окон на панели для выполнения параллельной отладки на нескольких машинах до мониторинга журналов. Одним из основных его преимуществ является то, что его можно использовать в командной строке или в сценариях автоматизации. Я создал плагин kubectl, который использует tmux, чтобы сделать поиск и устранение неисправностей гораздо проще. Я буду использовать аннотации, чтобы пройти через логику за плагином (и оставить его для вас, чтобы пройти через полный код плагина): #NAMESPACE is namespace to monitor. #POD is pod name #Containers is container names # initialize a counter n to count the number of loop counts, later be used by tmux to split panes. n=0; # start a loop on a list of pod and containers while IFS=' ' read -r POD CONTAINERS do # tmux create the new window for each pod tmux neww $COMMAND -n $POD 2>/dev/null # start a loop for all containers inside a running pod for CONTAINER in ${CONTAINERS//,/ } do if [ x$POD = x -o x$CONTAINER = x ]; then # if any of the values is null, exit. warn "Looks like there is a problem getting pods data." break fi # set the command to execute COMMAND=”kubectl logs -f $POD -c $CONTAINER -n $NAMESPACE” # check tmux session if tmux has-session -t <session name> 2>/dev/null; then <set session exists> else <create session> fi # split planes in the current window for each containers tmux selectp -t $n ; splitw $COMMAND ; select-layout tiled ; # end loop for containers done # rename the window to identify by pod name tmux renamew $POD 2>/dev/null # increment the counter ((n+=1)) # end loop for pods done< <(<fetch list of pod and containers from kubernetes cluster>) # finally select the window and attach session tmux selectw -t <session name>:1 ; attach-session -t <session name>; После запуска скрипта плагина он будет выдавать выходные данные, аналогичные изображению ниже. Каждый модуль имеет собственное окно, и каждый контейнер (если их несколько) разделяется панелями в окне модуля в потоковые журналы по мере их поступления. Преимущество tmux можно увидеть ниже; При правильной конфигурации можно даже увидеть, какое окно активно (см. белые вкладки). Заключение Псевдонимы всегда полезны для простого устранения неполадок в средах Kubernetes. Когда среда становится более сложной, плагин kubectl является мощным вариантом для использования более продвинутых сценариев. Ограничения в выборе языка программирования, который можно использовать для записи плагинов kubectl, нет. Единственное требование состоит в том, чтобы соглашение об именовании в пути являлось исполняемым и не имело того же имени, что и существующая команда kubectl. Прочитать полный код или попробовать плагины можно тут
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59