По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Давно прошли те времена, когда «база данных» представляла собой единую СУБД на основе реляционной модели данных, которую обычно устанавливали на самом мощном сервере в центре обработки данных. Такая база данных могла обслуживать все виду запросов – OLTP (On-Line Transaction Processing – обработка транзакций в режиме реального времени), OLAP (On-Line Analytical Processing – аналитическая обработка данных в режиме реального времени) – все, что нужно для бизнеса. В настоящее время базы данных работают на самом обычном оборудовании, они также стали более сложными с точки зрения высокой доступности и более специализированными для обработки определенного типа трафика. Специализация позволяет добиться гораздо большей производительности баз данных – все оптимизировано для работы с определенным типом данных: оптимизатор, механизм хранения, даже язык может быть не SQL, как это бывает обычно. Он может быть основан на SQL с некоторыми расширениями, которые позволяют более эффективно манипулировать данными, или может быть чем-то абсолютно новым, созданным с нуля. На сегодня мы имеем аналитические столбчатые базы данных, такие как ClickHouse или MariaDB AX, платформы обработки и анализа больших данных, такие как Hadoop, решения NoSQL, такие как MongoDB или Cassandra, хранилища данных типа «ключ-значение», такие как Redis. Мы также имеем базы данных временных рядов, такие как Prometheus или TimeScaleDB. Это именно то, на чем мы акцентируем внимание в данной статье. Базы данных временных рядов (Time Series Databases) – что это такое и зачем вам нужно еще одно хранилище данных в своей среде. Для чего нужны базы данных временных рядов? Как видно из названия, базы данных временных рядов предназначены для хранения данных, которые изменяются со временем. Это могут быть абсолютно любые данные, собранные с течением времени. Это могут быть метрические показатели, собранные из некоторых систем – все системы трендов являются примерами данных временных рядов. Каждый раз, когда вы смотрите на информационные панели в ClusterControl, на самом деле вы видите визуальное представление временных рядов, хранящихся в Prometheus – базе данных временных рядов. Временные ряды не ограничиваются метрическими показателями базы данных. Метриками может быть что угодно – изменение потока людей, входящих в торговый центр, с течением времени, изменение трафика в городе, использование общественного транспорта в течение дня, течение воды в реке или ручье, количество энергии, вырабатываемое водной установкой – все это и все остальное, что можно измерить во времени, является примером временных рядов. Такие данные можно запросить, построить, проанализировать, чтобы найти корреляционную зависимость между различными метриками. Структура данных в базе данных временных рядов Как вы понимаете, самая важная составляющая данных в базе данных временных рядов – это время. Существует два основных способа хранения данных. Первый способ чем-то похож на хранилище «ключ-значение» и выглядит так: Метка времени Метрика 1 2019-03-28 00:00:01 2356 2019-03-28 00:00:02 6874 2019-03-28 00:00:03 3245 2019-03-28 00:00:04 2340 Проще говоря, для каждой метки времени имеется некоторое значение метрики. Второй способ подразумевает хранения большего числа показателей. Вместо того, чтобы хранить каждую метрику в отдельной таблице или коллекции, их можно хранить вместе. Метка времени Метрика 1 Метрика 2 Метрика 3 Метрика 4 Метрика 5 2019-03-28 00:00:01 765 873 124 98 0 2019-03-28 00:00:02 5876 765 872 7864 634 2019-03-28 00:00:03 234 7679 98 65 34 2019-03-28 00:00:04 345 3 598 0 7345 Такая структура данных, когда все метрики связаны, позволяет более эффективно запрашивать данные. Вместо того, чтобы читать несколько таблиц и объединять их для получения всех метрик, достаточно прочитать лишь одну единственную таблицу, чтобы подготовить данные к обработке и представлению. У вас может возникнуть вопрос – что же здесь нового? Чем эта база данных отличается от обычной таблицы в MySQL или в любой другой реляционной базе данных? Да, действительно, конструкция таблиц очень похожа. Однако есть существенные различия в рабочей нагрузке, которые могут существенно повысить производительность, если хранилище данных предназначено для использования такого рода таблиц, Временные ряды, как правило, только растут. Маловероятно, что вы будете обновлять старые данные. Чаще всего строки в таблице не удаляются, однако вам может понадобиться какая-то агрегация данных с течением времени. Если принять это при проектировании внутреннего устройства базы данных, то этот факт будет иметь существенное расхождение в сравнении со «стандартными» реляционными (и не реляционными) базами данных, предназначенными для обработки транзакций в режиме реального времени. Что здесь является наиболее важным, так это способность последовательно хранить большие объемы данных, поступающих со временем. Можно, конечно, использовать РСУБД для хранения временных рядов, но она не оптимизирована для этого. Данные и индексы, сгенерированные на ее основе, могут стать слишком большими, и запросы будут проходить очень медленно. Механизмы хранения данных, используемые в СУБД, предназначены для хранения различных типов данных. Обычно они оптимизированы для рабочей нагрузки обработки транзакций в режиме реального времени, которая включает в себя частое изменение и удаление данных. В реляционных базах данных также часто отсутствуют специализированные функции и функции, предназначенные для обработки временных рядов. Мы уже упоминали, что вы вероятно столкнетесь с необходимостью агрегировать данные, полученные ранее какой-то временной метки. Вы также можете иметь возможность легко запускать некоторые статистические функции для ваших временных рядов, чтобы сглаживать их, определять и сравнивать тренды, интерполировать данные и многое другое. Здесь, например, вы можете найти некоторые функции, которые Prometheus предоставляет пользователям. Примеры баз данных временных рядов На рынке существует множество баз данных временных рядов, поэтому, естественно, что рассмотреть все мы не сможем. Но мы все же хотели привести несколько примеров баз данных временных рядов, которые, возможно, вам уже знакомы или которые вы уже, возможно, используете (сознательно или нет). InfluxDB InfluxDB была разработана компанией InfluxData. Это база данных временных рядов с открытым исходным кодом, написанная языке программирования Go. Хранилище данных позволяет вводить запросы данных на языке, подобном SQL, что позволяет разработчикам легко интегрировать эту базу данных в свои приложения. InfluxDB также может работать как часть коммерческого решения, которое охватывает весь стек, предназначенный для обеспечения процесса обработки данных временных рядов, полнофункциональной высоко доступной средой. Prometheus Prometheus – это еще один проект с отрытым исходным кодом, который также написан на языке программирования Go. Он обычно используется в качестве серверной части для различных инструментов и проектов с открытым исходным кодом, например, Percona Monitoring and Management. Prometheus также является наилучшим вариантом для ClusterControl. Prometheus можно развернуть из ClusterControl с целью хранения данных временных рядов, собранных на серверах баз данных, контролируемых и управляемых ClusterControl: Prometheus широко используется в мире Open Source, поэтому его довольно легко интегрировать в уже существующую среду с помощью нескольких экспортеров. RRDtool Это один из примеров базы данных временных рядов, которую многие используют, даже не подозревая об этом. RRDtool – это достаточно популярный проект с открытым исходным кодом для хранения и визуализации временных рядов. Если вы хоть раз использовали Cacti, то и RRDtool вы тоже использовали. Если вы разработали свое собственное решение, вполне вероятно, что и здесь вы тоже использовали RRDtool в качестве серверной части для хранения данных. Сейчас RRDtool, возможно, не так популярен, как это было в 2000-2010 годах. В те годы это был самый распространенный способ хранения временных рядов. Забавный факт – ранние версии ClusterControl использовали именно RRDtool. TimeScale TineScale – это база данных временных рядов, разработанная на основе PostgreSQL. Это расширение для PostgreSQL, которое использует основное хранилище данных для предоставления доступа к ним, что означает, что оно поддерживает все разновидности SQL, доступные для использования. Поскольку это расширение, то оно использует все функции и расширения PostgreSQL. Вы можете совмещать временные ряды с другими типами данных, например, объединять временные ряды с метаданными, пополняя информацией выходные данные. Вы также можете выполнить более сложную фильтрацию, используя JOIN и таблицы без временных рядов. Геоинформационное обеспечение в PostgreSQL TimeScale можно использовать для отслеживания географических местоположений с течением времени, а также использовать все возможности масштабирования, предлагаемые PostgreSQL, включая репликацию. Timestream Amazon Web Services также предлагает базы данных временных рядов. О Timestream было объявлено совсем недавно, в ноябре 2018 года. Она добавляет еще одно хранилище данных в портфель AWS, помогая пользователям обрабатывать временные ряды, поступающие из таких источников, как устройства Интернет вещей или отслеживаемые сервисы. Его также можно использовать для хранения метрических данных, полученных из журналов, созданных несколькими службами. Это позволяет пользователям выполнять аналитические запросы к ним, помогая понять закономерности и условия, в которых работают службы. Tiemstream, как и большинство сервисов AWS, обеспечивает простой способ масштабирования в случае, если с течением времени возрастает потребность в хранении и анализе данных. Как видите, вариантов баз данных временных рядов на рынке множество, и это не удивительно. В последнее время, все более популярным становится анализ временных рядов, поскольку он становится все более важных для различных бизнес-операций. К счастью, есть большое количество проектов как с открытым кодом, так и коммерческих. И с большой долей вероятности вы сможете найти инструмент, который полностью удовлетворит ваши потребности.
img
Пришло время заняться некоторыми более продвинутыми и интересными функциями протокола маршрутизации Open Shortest Path First. Мы начинаем с изучения конфигурации и проверки различных областей OSPF. Это упражнение является не только забавным, но и действительно может закрепить знания о том, как эти области функционируют и почему они существуют. Видео: протокол OSPF (Open Shortest Path First) за 8 минут OSPF LSA Types Области (Areas) - это фундаментальная концепция OSPF. Это то, что делает протокол маршрутизации иерархическим, как мы любим говорить. Существует основная магистральная область (область 0), которая соединяется с нормальными, не магистральными областями. Магистраль может также соединяться с особыми типами областей, которые мы подробно рассмотрим в этой группе статей. Такая иерархическая природа конструкции помогает гарантировать, что протокол является очень масштабируемым. Мы можем легко уменьшить или исключить ненужные потоки трафика маршрутизации и связи между областями, если это необходимо. Магистральная и не магистральная область (Backbone и Non-Backbone Areas) Вернемся немного назад к нашим предыдущим сообщениям в статьях об OSPF. На рисунке 1 показана простая многозонная сеть. Сейчас я настрою эту сеть, используя мой любимый подход к конфигурации, команду конфигурации уровня интерфейса ip ospf. Пример 1 показывает конфигурацию всех трех устройств. Рисунок 1: Магистральная и не магистральная область (Backbone и Non-Backbone Areas) Пример 1: Настройка магистральных и не магистральных областей ATL Router: ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#interface fa0/0 ATL(config-if)#ip ospf 1 area 0 ATL(config-if)#interface lo0 ATL(config-if)#ip ospf 1 area 0 ATL(config-if)#end ATL# ATL2 Router: ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#interface fa0/0 ATL2 (config-if)#ip ospf 1 area 0 ATL2 (config-if)#interface *Mar 27 22 :03 :27.815 : %0SPF-5-ADJCHG : Process 1, Nbr 1 .1.1 .1 on FastEthernet0/0 from LOADING to FULL, Loading Done ATL2 (config-if)#interface fa1/0 ATL2 (config-if)#ip ospf 1 area 1 ATL2 (config-if)#end ATL2# ORL Router: ORL# conf t Enter configuration commands, one per line. End with CNTL/Z. ORL( config )#interface fa1/0 ORL(config-if)#ip ospf 1 area 1 ORL(config-if)#end ORL# *Mar 27 22 :04:21.515: %0SPF-5-ADJCHG: Process 1, Nbr 10.23.23.2 on FastEthernet1/0 from LOADING to FULL , Loading Done Обратите внимание на простоту этой конфигурации, даже если мы настраиваем довольно сложный протокол маршрутизации. Area Border Router (ABR) находится в ATL2 с одним интерфейсом в магистральной и одним в не магистральной области. Обратите также внимание, как мы получаем некоторые «бонусные» проверки. Когда мы настраиваем интерфейсы, мы можем видеть, что OSPF-соседства формируются между устройствами. Это избавляет нас от необходимости проверять их «вручную» с помощью следующей команды: ATL2# show ip ospf neighbor Интересной проверкой для нас здесь является проверка префикса 1.1.1.0/24 с устройства ATL (а также удаленной связи между ATL и ATL2). Мы проверяем это на ORL, чтобы проверить многозональную конфигурацию OSPF. Поскольку это «нормальная» область, все LSA должны быть разрешены в этой области, и мы должны видеть, что префикс появляется как межзонный маршрут OSPF. show ip route ospf Хотя это не часто требуется при устранении неполадок, но мы можем изучить базу данных OSPF, чтобы увидеть различные типы LSA. show ip ospf database Записи состояния соединения маршрутизатора являются Type 1 LSA. Это конечные точки в нашей локальной области 1. Записи состояния net link-это Type 2 LSA. Здесь мы видим идентификатор маршрутизатора назначенного маршрутизатора (DR). Наконец, суммарные состояния сетевых ссылок — это Type 3 LSA. Это префиксы, которые ABR посылает в нашу область. Конечно же, это loopback (1.1.1.0) и удаленная сеть (10.12.12.0). Примечание: интерфейс обратной связи (loopback interface) объявлен как хост-маршрут 32-разрядной версии. Чтобы изменить это, вы можете просто использовать команду ip ospf network point-to-point на интерфейсе loopback. Это изменяет тип сети от типа loopback для OSPF и вызывает объявление маски в том виде, в каком она настроена. Теперь пришло время добавить к этой истории еще и другое. Давайте настроим некоторые внешние префиксы и введем их в домен OSPF. Это просто благодаря loopback interfaces. Мы создадим некоторые из них на маршрутизаторе ATL, запустим EIGRP на них, а затем перераспределим их в OSPF. ATL#conf t Enter configuration commands, one per line. End with CNTL/Z . ATL (config)#interface lo10 ATL (config-if)#ip address 192.168.10.1 255.255.255.0 ATL (config-if)#interface loopback 20 ATL (config-if)#ip address 192.168.20.1 255.255.255.0 ATL (config if)#router eigrp 100 ATL (config-router)#network 192 .168.10.1 0.0.0.0 ATL (config-router)#network 192.168.20.1 0.0.0.0 ATL (config-router)#router ospf 1 ATL (config-router)#redistribute eigrp 100 subnets metric 1000 ATL (config-router)#end ATL# Теперь у нас есть еще более интересные проверки на устройстве ORL. Во-первых, таблица маршрутизации: show ip route ospf Обратите внимание, что удаленные префиксы перечислены как маршруты E2. Это значение по умолчанию для внешних маршрутов OSPF типа 2. Это означает, что метрика остается неизменной, поскольку префикс течет от ASBR (автономного системного пограничного маршрутизатора) к внутреннему спикеру OSPF. Вы можете изменить тип на Type 1, если хотите, когда вы выполняете перераспределение. Возможно, больший интерес представляет база данных OSPF: show ip ospf database Обратите внимание, как мы подбираем Type 4 LSA (summary ASB link state), который является идентификатором маршрутизатора (1.1.1.1) ASBR (ATL). Мы также получаем Type 5 LSA, которые являются внешними префиксами. На этом мы завершим ПЕРВУЮ часть нашей продвинутой серии блогов OSPF. В следующий раз мы рассмотрим создание stubby areas, totally stubby areas, not so stubby areas (NSSA), и totally NSSA.
img
В этом подробном руководстве показано, как установить ffmpeg в Ubuntu и других дистрибутивах Linux. Он также демонстрирует некоторые полезные команды ffmpeg для практического использования. ffmpeg - это утилита командной строки (CLI) для обработки мультимедийных файлов. Это фреймворк с множеством функций и, благодаря лицензии с открытым исходным кодом, является основой для многих распространенных приложений, таких как VLC, YouTube, iTunes и многих других. Ряд видеоредакторов для Linux используют ffmpeg под GUI. В этом руководстве мы расскажем, как установить ffmpeg, и как использовать его базовые и продвинутые функции. Установка ffmpeg в Linux Установка ffmpeg - это простой процесс. Это популярное приложение, которое доступно в большинстве дистрибутивов Linux через менеджер пакетов. Установка ffmpeg в Ubuntu В Ubuntu ffmpeg доступен в репозитории Universe , поэтому убедитесь, что он включен. а затем обновите список пакетов и установите ffmpeg. Вы можете сделать все это, используя следующие команды в терминале: sudo add-apt-repository universe sudo apt update sudo apt install ffmpeg Готово! Чтобы проверить установку выполните: ffmpeg Вы должны увидеть вывод, описывающий вашу конфигурацию ffmpeg, включая версию. Как вы можете видеть на скриншоте выше, установлена версия 3.4.4. Однако последняя версия ffmpeg на момент написания этой статьи - 4.2. Чтобы установить любую версию 4.x, вы должны установить ffmpeg через PPA (персональный архив пакетов). Существует неофициальный PPA, который вы можете использовать для установки последней версии ffmpeg. Просто используйте эти команды: sudo add-apt-repository ppa:jonathonf/ffmpeg-4 sudo apt update sudo apt install ffmpeg -y Установка ffmpeg в дистрибутивах на основе Arch Чтобы установить ffmpeg в дистрибутивах на основе Arch, используйте следующую команду: sudo pacman -S ffmpeg Установка ffmpeg в дистрибутивах на основе Fedora Чтобы установить ffmpeg в дистрибутивы Linux на основе Fedora, вы можете использовать эту команду: sudo dnf install ffmpeg Установка ffmpeg в CentOS/RHEL FFmpeg недоступен в репозиториях CentOS 8 по умолчанию. Вы можете собрать инструменты ffmpeg из исходного кода или установить его с помощью утилиты dnf из репозитория Negativo17. Репозиторий Negativo17 зависит от репозиториев EPEL (Extra Packages for Enterprise Linux) и PowerTools. Для их включения используйте: sudo dnf install epel-release sudo yum config-manager --set-enabled PowerTools sudo yum-config-manager --add-repo=https://negativo17.org/repos/epel-multimedia.repo После включения этих репозиториев уже можно установить сам ffmpeg: sudo dnf install ffmpeg Установка ffmpeg в Debian Официальные репозитории Debian содержат пакеты FFmpeg, которые можно установить с помощью менеджера пакетов apt. sudo apt install ffmpeg Как использовать ffmpeg: Основы С установленным ffmpeg перейдем к основным командам, чтобы вы начали использовать этот мощный инструмент. Основные строительные блоки ffmpeg: ffmpeg - инструмент командной строки для конвертации мультимедийных файлов между форматами ffplay - простой медиаплеер на основе SDL и библиотек FFmpeg ffprobe - простой мультимедийный анализатор потоков ffmpeg также содержит библиотеки для разработчиков - libavutil, libavcodec, libavformat, libavdevice, libavfilter, libswscale и libswresample. Процесс транскодирования в ffmpeg для может быть описан следующей схемой: 0. Команды ffmpeg Основная форма команды ffmpeg: ffmpeg [global_options] {[input_file_options] -i input_url} ... {[output_file_options] output_url} ... Вы должны иметь в виду, что все параметры файла применяются только к файлу, который следует за ними (и вы должны будете записать их снова для следующего файла). Любой файл, которому не предшествует -i, считается выходным файлом. ffmpeg использует столько входов и выходов, сколько вы предоставляете. Вы также можете использовать одно и то же имя как для входного, так и для выходного файла, но вам придется добавить тег -y перед именем выходного файла. Вы не должны смешивать входы и выходы: сначала укажите входные файлы, затем укажите выходные файлы. 1. Получить информацию медиа файла Первое использование ffmpeg - отображение информации о медиафайле. Это можно сделать, не вводя никаких выходных файлов. Просто введите: ffmpeg -i file_name Это работает для аудио и видео файлов: ffmpeg -i video_file.mp4 ffmpeg -i audio_file.mp3 Хотя эта команда полезна, она отображает слишком много информации, которая не относится к вашему файлу (информация о ffmpeg). Чтобы пропустить это, добавьте флаг -hide_banner: ffmpeg -i video_file.mp4 -hide_banner ffmpeg -i audio_file.mp3 -hide_banner Как вы можете видеть, команда теперь выводит только информацию, касающуюся указанного вами медиа-файла (кодировщик, потоки и так далее). 2. Конвертировать медиа файлы Еще один очень полезный способ использования ffmpeg - это беспроблемное преобразование между различными форматами мультимедиа. Вам нужно только указать входные и выходные файлы, так как ffmpeg получит требуемый формат из расширений файлов. Это работает для преобразования видео в видео и аудио в аудио. Вот некоторые примеры: ffmpeg -i video_input.mp4 video_output.avi ffmpeg -i video_input.webm video_output.flv ffmpeg -i audio_input.mp3 audio_output.ogg ffmpeg -i audio_input.wav audio_output.flac Вы даже можете указать больше выходных файлов: ffmpeg -i audio_input.wav audio_output_1.mp3 audio_output_2.ogg Это преобразует входные файлы во все указанные форматы. Чтобы увидеть список всех поддерживаемых форматов, используйте: ffmpeg -formats Опять же, вы можете добавить -hide_banner, чтобы опустить информацию о приложении. Вы можете указать параметр -qscale 0 перед выходным файлом, чтобы сохранить качество видеофайла: ffmpeg -i video_input.wav -qscale 0 video_output.mp4 Кроме того, вы можете указать кодеки, которые вы хотите использовать, добавив -c:a (для аудио) и -c:v (для видео) с последующим названием кодеков, или скопировать, если хотите использовать те же кодеки, что и оригинальный файл: ffmpeg -i video_input.mp4 -c:v copy -c:a libvorbis video_output.avi 3. Извлечение аудио из видео Чтобы извлечь аудио из видеофайла, вы делаете простое преобразование и добавляете флаг -vn: ffmpeg -i video.mp4 -vn audio.mp3 Обратите внимание, что эта команда будет использовать битрейт (скорость передачи) исходного файла. Вы можете установить его вручную, и для этого использовать -ab (audio bit rate): ffmpeg -i video.mp4 -vn -ab 128k audio.mp3 Некоторые распространенные битрейты: 96 КБ, 128 КБ, 192 КБ, 256 КБ, 320 КБ (максимальный битрейт, поддерживаемый mp3). Другими общими параметрами являются -ar (частота звука: 22050, 441000, 48000), -ac (количество аудиоканалов), -f (формат аудио, хотя обычно определяется автоматически). -ab также можно заменить на -b:a. Например: ffmpeg -i video.mov -vn -ar 44100 -ac 2 -b:a 128k -f mp3 audio.mp3 4. Отключение звука в видео Как и в последнем примере, для этого мы добавим простой тег: -an (вместо -vn). ffmpeg -i video_input.mp4 -an -video_output.mp4 Примечание: Тег -an сделает все параметры звука для этого выходного файла бесполезными, поскольку в результате операции не будет звука. 5. Извлечение изображений из видео Допустим, у вас есть серия изображений (например, слайд-шоу), и вы хотите получить все изображения из этого. Просто введите: ffmpeg -i video.mp4 -r 1 -f image2 image-%3d.png -r указывает частоту кадров (сколько кадров извлекается в изображения за одну секунду, по умолчанию: 25), -f указывает формат вывода. Последний параметр (выходной файл) имеет несколько интересное название: в конце он использует %3d. Это просто нумерует ваши изображения с 3 цифрами (000, 001 и так далее). Вы также можете использовать %2d (двухзначный формат) или даже %4d (четырехзначный формат), если хотите. 6. Изменение разрешения видео или соотношения сторон Еще одно простое задание для ffmpeg. Все, что вам нужно сделать, чтобы изменить размер видео, это указать новое разрешение после флага -s: ffmpeg -i video_input.mov -s 1024x576 video_output.mp4 Кроме того, вы можете указать -c:a, чтобы убедиться в правильности аудиокодеков выходного файла: ffmpeg -i video_input.h264 -s 640x480 -c:a video_output.mov Вы также можете изменить соотношение сторон, используя -aspect: ffmpeg -i video_input.mp4 -aspect 4:3 video_output.mp4 7. Добавить изображение обложки в аудио Это отличный способ превратить аудио в видео, используя одну фотографию (например, обложку альбома) для аудио. Это очень полезная функция, когда вы хотите загружать аудиофайлы на сайты, на которых не разрешено ничего, кроме видео и изображений (YouTube и Facebook являются примерами таких сайтов). Вот пример: ffmpeg -loop 1 -i image.jpg -i audio.wav -c:v libx264 -c:a aac -strict experimental -b:a 192k -shortest output.mp4 Просто измените кодеки (-c:v указывает видеокодеки, -c:a указывает аудиокодеки) и имена ваших файлов. Также вам не нужно использовать -strict experimental, если вы используете более новую версию (4.x). 8. Добавить субтитры к видео С ffmpeg просто добавить субтитры к видео. Введите следующее: ffmpeg -i video.mp4 -i subtitles.srt -c:v copy -c:a copy -preset veryfast -c:s mov_text -map 0 -map 1 output.mp4 Конечно, вы можете указать любые кодеки, которые вы хотите (и любые другие дополнительные параметры, связанные с аудио и видео). 9. Сжатие медиа-файлов Сжатие файлов значительно уменьшает размер файла, экономя вам много места. Это может быть важно для передачи файлов. С ffmpeg есть несколько способов уменьшить размер файла. Примечание: Слишком большое сжатие файлов заметно ухудшит качество получаемого файла. Прежде всего, для аудиофайлов просто уменьшите битрейт (используя -b:a или -ab): ffmpeg -i audio_input.mp3 -ab 128k audio_output.mp3 ffmpeg -i audio_input.mp3 -b:a 192k audio_output.mp3 Опять же, некоторые значения битрейта: 96k, 112k, 128k, 160k, 192k, 256k, 320k. Чем выше битрейт, тем выше размер файла и качество. Для видео файлов у вас есть больше вариантов. Один из способов - уменьшить битрейт видео (используя -b:v): ffmpeg -i video_input.mp4 -b:v 1000k -bufsize 1000k video_output.mp4 Вы можете установить флаг -crf (Constant Rate Factor - коэффициент постоянной скорости). Чем ниже CRF, тем выше скорость передачи данных. Также помогает использование libx264 в качестве видеокодека. Вот очень эффективное уменьшение размера с очень небольшим снижением качества: ffmpeg -i video_input.mp4 -c:v libx264 -crf 28 video_output.mp4 CRF от 20 до 30 распространен, но можно выставлять и другие значения. Снижение частоты кадров (фреймрейта) может работать в некоторых случаях (хотя это может очень легко сделать видео медленным): ffmpeg -i video_input.mp4 -r 24 video_output.mp4 -r указывает частоту кадров (в данном случае 24). Вы также можете попробовать уменьшить разрешение видео (смотри выше как это сделать). Дополнительным советом является сжатие звука, делая его стереофоническим и снижая скорость передачи данных. Например: ffmpeg -i video_input.mp4 -c:v libx264 -ac 2 -c:a aac -strict -2 -b:a 128k -crf 28 video_output.mp4 Примечание: -strict -2 и -ac 2 позаботятся о стерео части 10. Обрезать медиа файлы Чтобы обрезать файлы с самого начала, вы должны указать продолжительность, используя -t: ffmpeg -i input_video.mp4 -t 5 output_video.mp4 ffmpeg -i input_audio.wav -t 00:00:05 output_audio.wav Как видите, это работает как для видео, так и для аудио файлов. Обе команды выше делают одно и то же: сохраняют первые 5 секунд входного файла в выходной файл. Можно использовать различные способы ввода длительности, как видно в примере - одно число (количество секунд) и ЧЧ:ММ:СС (часы, минуты, секунды). Вы можете пойти еще дальше, указав время начала с -ss и даже время окончания с -to: ffmpeg -i input_audio.mp3 -ss 00:01:14 output_audio.mp3 ffmpeg -i input_audio.wav -ss 00:00:30 -t 10 output_audio.wav ffmpeg -i input_video.h264 -ss 00:01:30 -to 00:01:40 output_video.h264 ffmpeg -i input_audio.ogg -ss 5 output_audio.ogg Вы можете тут видеть время начала -ss (ЧЧ:ММ:СС), длительность -t в секундах, время окончания -to (ЧЧ:ММ:СС) и время начала -s (начать после указанного времени в секундах). Как использовать ffmpeg: Расширенное использование Теперь мы расскажем о чуть более продвинутых функциях, таких как запись экрана, использование устройств и другие. 1. Обрезка медиа-файлов Чтобы разделить файл на несколько частей, нужно указать несколько разделений (указать время начала, время окончания или продолжительность перед каждым выходным файлом). Посмотрите на этот пример: ffmpeg -i video.mp4 -t 00:00:30 video_1.mp4 -ss 00:00:30 video_2.mp4 Синтаксис довольно прост. Мы указали -t 00:00:30 как продолжительность для первой части (первая часть будет состоять из первых 30 секунд исходного видео). Далее мы указали, что мы хотели бы, чтобы остальные были частью второго видео (начиная с конца последней части, 00:00:30). Это можно сделать для любого количества частей. Имейте в виду, что это работает со звуком тоже. 2. Склейка медиа-файлов ffmpeg также может выполнить противоположный процесс: собрать несколько частей вместе. Для этого вам нужно будет создать новый текстовый файл и начать редактировать его, используя предпочитаемый вами редактор. В примере мы будем использовать touch и >vim. Неважно, как вы называете этот файл. Например, назовем его join.txt и создадим, используя touch: touch videos_to_join.txt Теперь отредактируем его в vim vim videos_to_join.txt Здесь введите полные пути ко всем файлам, которые вы хотите присоединить (они будут объединены в том порядке, в котором вы их здесь пишете), по одному на строку. Убедитесь, что они имеют одинаковое расширение (например, mp4). Вот пример: /home/ubuntu/Desktop/video_1.mp4 /home/ubuntu/Desktop/video_2.mp4 /home/ubuntu/Desktop/video_3.mp4 Сохраните файл, который вы только что отредактировали. Этот метод работает для любых аудио или видео файлов. Теперь введите следующее: ffmpeg -f concat -i join.txt output.mp4 Примечание: наш выходной файл - output.mp4, потому что все наши входные файлы имеют расширение mp4. Это должно объединить все файлы, которые мы записали в join.txt, в один выходной файл. 3. Соедините изображения в видео Таким образом вы можете создать слайдшоу или что-то подобное. Первое, что мы рекомендуем сделать, это убедиться, что фотографии, которые вы хотите собрать, находятся в одном каталоге. Мы поместим наши в папку my_photos. Для картинок рекомендуются расширения .png и .jpg. Какой бы вариант вы ни выбрали, убедитесь, что все изображения имеют одинаковое расширение. Формат -f нашего преобразования должен быть image2pipe. Для ввода необходимо указать дефис -. image2pipe позволяет вам пайпировать (pipe), используя |, результаты команды, такой как cat, в ffmpeg вместо того, чтобы вводить все имена одно за другим. Чтобы это работало, мы также должны упомянуть, что мы хотим, чтобы видеокодеки были скопированы -c:v copy (чтобы правильно использовать изображения): cat my_photos/* | ffmpeg -f image2pipe -i - -c:v copy video.mkv Если вы воспроизводите этот файл, вы можете подумать, что в слайд-шоу были добавлены только некоторые изображения. На самом деле все ваши фотографии были добавлены, но ffmpeg проходит по ним их как можно быстрее. Это означает 1 кадр на фотографию, ffmpeg по умолчанию работает со скоростью около 23 кадров в секунду. Чтобы изменить это, вам нужно указать желаемую частоту кадров -framerate: cat my_photos/* | ffmpeg -framerate 1 -f image2pipe -i - -c:v copy video.mkv В нашем примере мы устанавливаем частоту кадров равную 1, что означает, что каждый кадр (что также означает каждое изображение) появляется в течение 1 секунды. Чтобы добавить аудио, например, фоновую песню, нам нужно указать аудиофайл в качестве входного файла -i audo_file и скопировать аудиокодеки -c: copy. Для кодеков вы можете копировать аудио и видео кодеки одновременно с -c copy. Убедитесь, что вы установили кодеки прямо перед указанием выходного файла. Вы также можете установить частоту кадров, чтобы все ваши изображения синхронизировались с продолжительностью звука, который вы хотите использовать. Чтобы сделать это, разделите количество изображений на продолжительность аудио (в секундах). Для нашего примера у нас есть аудиофайл длиной 22 секунды и 9 изображений. 9 разделить на 22 составляет приблизительно 0,40, поэтому мы будем использовать это для нашей частоты кадров: cat my_photos/* | ffmpeg -framerate 0.40 -f image2pipe -i - -i audio.wav -c copy video.mkv 4. Запись экрана Тут нужно использовать формат -f x11grab. Это запишет ваш XSERVER. В качестве входных данных вы должны будете указать номер вашего экрана (основной экран обычно должен быть 0:0). Но это будет захватывать только верхнюю левую часть экрана. Вы должны добавить размер экрана (или экранов). Наш размер - 1920?1080. Размер экрана должен быть указан перед вводом: ffmpeg -f x11grab -s 1920x1080 -i :0.0 output.mp4 Нажмите q или CTRL + C в любое время, чтобы остановить запись. Вы можете сделать размер выходного файла полноэкранным, введя следующее для размера (вместо 1920?1080 или любого другого установленного разрешения): -s $(xdpyinfo | grep dimensions | awk '{print $2;}') Полная команда: ffmpeg -f x11grab -s $(xdpyinfo | grep dimensions | awk '{print $2;}') -i :0.0 output.mp4 5. Запишите свою веб-камеру Запись ввода с вашей веб-камеры (или другого устройства, такого как USB-камера) еще проще. В Linux устройства хранятся в /dev как /dev/video0, /dev/video1 и так далее: ffmpeg -i /dev/video0 output.mkv И также нажмите q или CTRL + C, чтобы остановить запись. 6. Запишите ваше аудио Linux обрабатывает аудио в основном через ALSA и pulseaudio. ffmpeg может записывать оба, но мы рассмотрим pulseaudio, так как дистрибутивы на основе Debian включают его по умолчанию. Синтаксис немного отличается для двух методов. Для pulseaudio, вы должны использовать force -f alsa и указать устройство ввода по умолчанию как input -i default: ffmpeg -f alsa -i default output.mp3 В настройках звука у дистрибутива убедитесь, что записывающим устройством по умолчанию является то устройство, которое вы хотите записать. Конечно, для любого типа записи вы также можете указать кодеки. Вы можете выбрать конкретную частоту кадров -r. Вы также можете совмещать запись звука с записью с веб-камеры/экрана. ffmpeg -i /dev/video0 -f alsa -i default -c:v libx264 -c:a flac -r 30 output.mkv Вместо записи звука вы можете так же легко добавить аудиофайл в качестве звука поверх для записи экрана или веб-камеры: ffmpeg -f x11grab -s $(xdpyinfo | grep dimensions | awk '{print $2;}') -i :0.0 -i audio.wav -c:a copy output.mp4 Записи в ffmpeg мелкими, поэтому очень маленькая запись может не сохраниться. Мы рекомендуем сделать запись немного дольше и затем обрезать ее (если вам нужно всего несколько секунд), просто чтобы убедиться, что файл действительно будет записан на ваш диск. Основное использование фильтров в ffmpeg Фильтры являются невероятно мощной функцией ffmpeg. Вам доступно огромное количество фильтров, что делает ffmpeg полностью способным обрабатывать любые потребности редактирования. Основная структура для использования фильтра: ffmpeg -i input.mp4 -vf "filter=setting_1=value_1:setting_2=value_2" output.mp4 ffmpeg -i input.wav -af "filter=setting_1=value_1:setting_2=value_2" output.wav Как вы можете видеть, мы указываем видео фильтры -vf, (сокращенно от -filter:v) и аудио фильтры -af, (сокращенно от -filter:a). Фактические фильтры пишутся в двойных кавычках " и могут быть объединены в цепочку через запятую ,. Вы можете указать столько фильтров, сколько хотите. Общая форма фильтра: filter=setting_2=value_2:setting_2=value_2 Различные настройки фильтра и их значения разделены двоеточиями. Вы также можете выполнять математические операции в качестве значений для различных настроек. Более подробное описание различных констант, используемых в выражениях, и различных настроек можно найти в официальной документации фильтра ffmpeg. 1. Масштабирование видео Это очень простой фильтр. Единственными настройками являются ширина w и высота h: ffmpeg -i input.mp4 -vf "scale=w=800:h=600" output.mp4 Как мы уже упоминали, вы можете использовать математические операции для значений: ffmpeg -i input.mkv -vf "scale=w=1/2*in_w:h=1/2*in_h" output.mkv Эта команда устанавливает размер вывода равным половине (1/2) от размера ввода in_w, in_h. 2. Обрезка видео Что касается фильтра масштабирования, настройки - это ширина и высота результирующего файла. При желании вы можете указать координаты для верхнего левого угла разреза (по умолчанию: центр входного видео): ffmpeg -i input.mp4 -vf "crop=w=1280:h=720:x=0:y=0" output.mp4 ffmpeg -i input.mkv -vf "crop=w=400:h=400" output.mkv Как уже отмечалось, вторая обрезка будет вырезать в центре входного файла (так как мы не указали координаты x и y для верхнего левого угла). Первая команда будет вырезать из левого верхнего угла x=0:y=0. Вот пример, который использует математические выражения в качестве значений: ffmpeg -i input.mkv -vf "crop=w=3/4*in_w:h=3/4*in_h" output.mkv Эта команда устанавливает размер вывода на 3/4 от размера ввода (in_w, in_h). 3. Поворот видео Вы также можете повернуть видео по часовой стрелке на определенную величину в радианах. Чтобы упростить задачу, вы можете указать значение в градусах и преобразовать его в радианы, умножив это значение на PI/180: ffmpeg -i input.avi -vf "rotate=90*PI/180" ffmpeg -i input.mp4 -vf "rotate=PI" Первая команда повернет видео по часовой стрелке на 90 градусов. Вторая команда перевернет видео вверх ногами (PI рад = 180 градусов). 4. Преобразование аудиоканала Это может быть полезно, если вы каким-то образом получаете звук только в правом ухе или что-то подобное. Вы можете сделать звук слышимым из обоих ушей (в данном конкретном случае) следующим образом: ffmpeg -i input.mp3 -af "channelmap=1-0|1-1" output.mp3 Это мапит правый 1 аудиоканал на левый 0 и правый 1 аудиоканалы (левое число представляет собой вход, правое число представляет собой выход). 5. Увеличение громкости звука Вы можете умножить громкость звука на любое действительное число. Вам нужно только указать множитель: ffmpeg -i input.wav -af "volume=1.5" output.wav ffmpeg -i input.ogg -af "volume=0.75" output.ogg Первая команда увеличивает громкость в 1,5 раза. Вторая команда делает звук в 1/4 (0,25) раза тише. 6. Настройка скорости воспроизведения Фильтр для видео - setpts (PTS = presentation time stamp). Поскольку мы на самом деле модифицируем PTS, больший коэффициент означает более медленный результат, и наоборот: ffmpeg -i input.mkv -vf "setpts=0.5*PTS" output.mkv ffmpeg -i input.mp4 -vf "setpts=2*PTS" output,mp4 Первая команда удваивает скорость воспроизведения, а вторая команда замедляет видео до 1/2 скорости. Фильтр для аудио - atempo. Есть одно маленькое предостережение: оно может принимать значения только от 0,5 (половина скорости) до 2 (удвоение скорости). Чтобы обойти это, вы можете использовать их один за другим: ffmpeg -i input.wav -af "atempo=0.75" output.wav ffmpeg -i input.mp3 -af "atempo=2.0,atempo=2.0" ouutput.mp3 Первая команда замедляет звук на 1/4 от первоначальной скорости. Вторая команда ускоряет звук в 4 раза (2*2) Чтобы изменить скорость воспроизведения видео и аудио с помощью одной и той же команды, вам нужно использовать filtergraphs 7. Добавить водяной знак Для размещения водяного знака используем фильтр overlay, вместе с координатами его расположения на видео. Например, вотермарк размером 100*100 мы хотим расположить в центре видео с размерами 1280?720. Получим по горизонтали x = (1280 - 100) / 2 = 590 и по вертикали y = (720 - 100) / 2 = 310. Поэтому значение будет overlay=590:310. Но удобнее использовать формулу overlay=(main_w-overlay_w)/2:(main_h-overlay_h)/2, где main_w и main_h - высота и ширина видео, а overlay_w и overlay_h - водяного знака. Получим команду: ffmpeg -i source_video.mp4 -i watermark.png -filter_complex "overlay=(main_w-overlay_w)/2:(main_h-overlay_h)/2" -codec:a copy video_protected.mp4 Завершение В этом руководстве мы рассмотрели установку, базовое использование, расширенное использование и основы фильтров ffmpeg. Мы надеемся, что это может быть полезно для всех, кто хочет попробовать ffmpeg, для кого-то, кто хочет использовать ffmpeg для нескольких задач, или даже просто для того, кто хочет больше узнать о широких возможностях этой удивительной утилиты.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59