По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Вопросы безопасности преследовали Интернет вещей (Internet of Things) с самого момента изобретения. Все, от поставщиков до корпоративных пользователей и потребителей, обеспокоены тем, что их модные новые устройства и системы IoT могут быть скомпрометированы. Проблема на самом деле еще хуже, поскольку уязвимые устройства IoT могут быть взломаны и использованы в гигантских ботнетах, которые угрожают даже правильно защищенным сетям. Но каких именно проблем и уязвимостей следует избегать при создании, развертывании или управлении системами IoT? И, что более важно, что мы можем сделать, чтобы смягчить эти проблемы? Именно здесь вступает в действие OWASP (Open Web Application Security Project) - проект обеспечения безопасности открытых веб-приложений. По его собственным словам, «Проект Интернета вещей OWASP призван помочь производителям, разработчикам и потребителям лучше понять проблемы безопасности, связанные с Интернетом вещей, и позволяют пользователям в любом контексте принимать более обоснованные решения в области безопасности при создании, развертывании или оценке технологий IoT». Давайте рассмотрим топ 10 уязвимостей интернета вещей. 1.Слабые, угадываемые или жестко заданные пароли Использование легко взламываемых, общедоступных или неизменяемых учетных данных, включая бэкдоры во встроенном программном обеспечении или клиентском программном обеспечении, которое предоставляет несанкционированный доступ к развернутым системам. Эта проблема настолько очевидна, что трудно поверить, что это все еще то, о чем мы должны думать. 2. Небезопасные сетевые сервисы Ненужные или небезопасные сетевые службы, работающие на самом устройстве, особенно те, которые подключены к Интернету, которые ставят под угрозу конфиденциальность, целостность или подлинность или доступность информации или допускают несанкционированное удаленное управление. 3. Небезопасные экосистемные интерфейсы Небезопасный веб-интерфейс, API бэкэнда, облачные или мобильные интерфейсы в экосистеме вне устройства, что позволяет компрометировать устройство или связанные с ним компоненты. Общие проблемы включают в себя отсутствие аутентификации или авторизации, отсутствие или слабое шифрование, а также отсутствие фильтрации ввода и вывода. 4. Отсутствие безопасных механизмов обновления Отсутствие возможности безопасного обновления устройства. Это включает в себя отсутствие проверки прошивки на устройстве, отсутствие безопасной доставки (без шифрования при передаче), отсутствие механизмов предотвращения отката и отсутствие уведомлений об изменениях безопасности из-за обновлений. Это постоянная проблема для приложений IoT, так как многие производители и предприятия не заботятся о будущем своих устройств и реализаций. Кроме того, это не всегда технологическая проблема. В некоторых случаях физическое расположение устройств IoT делает обновление - и ремонт или замену - серьезной проблемой. 5. Использование небезопасных или устаревших компонентов Использование устаревших или небезопасных программных компонентов или библиотек, которые могут позволить скомпрометировать устройство. Это включает небезопасную настройку платформ операционной системы и использование сторонних программных или аппаратных компонентов из скомпрометированной цепочки поставок. 6. Недостаточная защита конфиденциальности Личная информация пользователя, хранящаяся на устройстве или в экосистеме, которая используется небезопасно, ненадлежащим образом или без разрешения. Очевидно, что с личной информацией нужно обращаться соответствующим образом. Но ключом здесь является «разрешение». Вы почти ничего не делаете с личной информацией, если у вас нет на это разрешения. 7. Небезопасная передача и хранение данных Отсутствие шифрования или контроля доступа к конфиденциальным данным в любой точке экосистемы, в том числе в состоянии покоя, передачи или во время обработки. В то время как многие поставщики IoT обращают внимание на безопасное хранение, обеспечение безопасности данных во время передачи слишком часто игнорируется. 8. Ограниченное управление устройством Отсутствие поддержки безопасности на устройствах, развернутых в производстве, включая управление активами, управление обновлениями, безопасный вывод из эксплуатации, мониторинг систем и возможности реагирования. Устройства IoT могут быть небольшими, недорогими и развернутыми в большом количестве, но это не означает, что вам не нужно ими управлять. Фактически, это делает управление ими более важным, чем когда-либо. Даже если это не всегда легко, дешево или удобно. 9. Небезопасные настройки по умолчанию Устройства или системы поставляются с небезопасными настройками по умолчанию или не имеют возможности сделать систему более безопасной, ограничивая операторов от изменения конфигурации. 10. Отсутствие физического доступа Отсутствие мер по физической защите, позволяющих потенциальным злоумышленникам получать конфиденциальную информацию, которая может помочь в будущей удаленной атаке или получить локальный контроль над устройством. Что из этого следует? Интернет вещей уже давно стал частью реальности, и с ним нельзя забывать о безопасности. И вопросы безопасности должны ложиться не только на плечи производителей, но и на плечи администраторов и обычных пользователей.
img
В предыдущем материале мы рассмотрели, как работает Интернет на базовом уровне, включая взаимодействие между клиентом (вашим компьютером) и сервером (другим компьютером, который отвечает на запросы клиента о веб-сайтах). В этой же части рассмотрим, как устроены клиент, сервер и веб-приложение, что мы можем удобно серфить в Интернете. Модель клиент-сервер Эта идея взаимодействия клиента и сервера по сети называется моделью «клиент-сервер». Это делает возможным просмотр веб-сайтов (например, сайт wiki.merionet.ru) и взаимодействие с веб-приложением (как Gmail). На самом деле, модель клиент-сервер - это ни что иное, как способ описать отношения между клиентом и сервером в веб-приложении. Это детали того, как информация переходит от одного конца к другому, где картина усложняется. Базовая конфигурация веб-приложения Существует сотни способов настройки веб-приложения. При этом большинство из них следуют одной и той же базовой структуре: клиент, сервер, база данных. Клиент Клиент - это то, с чем взаимодействует пользователь. Так что «клиентский» код отвечает за большую часть того, что на самом деле видит пользователь. Это включает в себя: Определение структуры веб-страницы Настройка внешнего вида веб-страницы Реализация механизма пользовательского взаимодействия (нажатие кнопок, ввод текста и т.д.) Структура: Макет и содержимое веб-страницы определяются с помощью HTML (обычно HTML 5, если речь идет о современных веб-приложениях, но это другая история.) HTML означает язык гипертекстовой разметки (Hypertext Markup Language). Он позволяет описать основную физическую структуру документа с помощью HTML-тэгов. Каждый HTML-тэг описывает определенный элемент документа. Например: Содержимое тега «<h1>» описывает заголовок. Содержимое тега «<p>» описывает абзац. Содержимое тега «<button>» описывает кнопку. И так далее... Веб-браузер использует эти HTML-тэги для определения способа отображения документа. Look and Feel: Чтобы определить внешний вид веб-страницы, веб-разработчики используют CSS, который расшифровывается как каскадные таблицы стилей (Cascading Style Sheets). CSS - это язык, который позволяет описать стиль элементов, определенных в HTML, позволяя изменять шрифт, цвет, макет, простые анимации и другие поверхностные элементы. Стили для указанной выше HTML-страницы можно задать следующим образом: Взаимодействие с пользователем: Наконец, для реализации механизма взаимодействия с пользователем, на сцену выходит JavaScript. Например, если вы хотите что-то сделать, когда пользователь нажимает кнопку, вы можете сделать что-то подобное: Иногда взаимодействие с пользователем, может быть реализовано без необходимости обращения к вашему серверу - отсюда и термин "JavaScript на стороне клиента". Другие типы взаимодействия требуют отправки запросов на сервер для обработки. Например, если пользователь публикует комментарий в потоке, может потребоваться сохранить этот комментарий в базе данных, чтобы весь материал был структурирован и собран в одном месте. Таким образом, вы отправляете запрос на сервер с новым комментарием и идентификатором пользователя, а сервер прослушивает эти запросы и обрабатывает их соответствующим образом. Сервер Сервер в веб-приложении прослушивает запросы, поступающие от клиента. При настройке HTTP-сервера он должен прослушивать конкретный номер порта. Номер порта всегда связан с IP-адресом компьютера. Вы можете рассматривать порты как отдельные каналы на каждом компьютере, которые можно использовать для выполнения различных задач: один порт может быть использован для серфинга на wiki.merionet.ru, в то время как через другой получаете электронную почту. Это возможно, поскольку каждое из приложений (веб-браузер и клиент электронной почты) использует разные номера портов. После настройки HTTP-сервера для прослушивания определенного порта сервер ожидает клиентские запросов, поступающие на этот порт, выполняет все действия, указанные в запросе, и отправляет все запрошенные данные через HTTP-ответ. База данных Базы данных – это подвалы веб-архитектуры - большинство из нас боятся туда спускаться, но они критически важны для прочного фундамента. База данных - это место для хранения информации, чтобы к ней можно было легко обращаться, управлять и обновлять. Например, при создании сайта в социальных сетях можно использовать базу данных для хранения сведений о пользователях, публикациях и комментариях. Когда посетитель запрашивает страницу, данные, вставленные на страницу, поступают из базы данных сайта, что позволяет нам воспринимать взаимодействие пользователей в реальном времени как должное на таких сайтах, как Facebook или в таких приложениях, как Gmail. Как масштабировать простое веб-приложение Вышеописанная конфигурация отлично подходит для простых приложений. Но по мере роста приложения один сервер не сможет обрабатывать тысячи - если не миллионы - одновременных запросов от посетителей. Чтобы выполнить масштабирование в соответствии с этими большими объемами, можно распределить входящий трафик между группой внутренних серверов. Здесь все становится интересно. Имеется несколько серверов, каждый из которых имеет собственный IP-адрес. Итак, как сервер доменных имен (DNS) определяет, на какой экземпляр вашего приложения отправить трафик? Ответ очевиден - никак. Управление всеми этими отдельными экземплярами приложения происходит через средство балансировки нагрузки. Подсистема балансировки нагрузки действует как гаишник, который маршрутизирует клиентские запросы по серверам как можно быстрее и эффективнее, насколько это возможно. Поскольку вы не можете транслировать IP-адреса всех экземпляров сервера, вы создаете виртуальный IP-адрес, который транслируется клиентам. Этот виртуальный IP-адрес указывает на подсистему балансировки нагрузки. Таким образом, когда DNS ищет ваш сайт, он указывает на балансировщик нагрузки. Затем подсистема балансировки нагрузки перескакивает для распределения трафика на различные внутренние серверы в реальном времени. Возможно, вам интересно, как подсистема балансировки нагрузки узнаёт, на какой сервер следует отправлять трафик. Ответ: алгоритмы. Один популярный алгоритм, Round Robin, включает равномерное распределение входящих запросов по ферме серверов (все доступные серверы). Вы обычно выбираете такой подход, если все ваши серверы имеют одинаковую скорость обработки и память. С помощью другого алгоритма, Least Connections, следующий запрос отправляется на сервер с наименьшим количеством активных соединений. Существует гораздо больше алгоритмов, которые вы можете реализовать, в зависимости от ваших потребностей. Теперь поток трафика выглядит следующим образом: Службы Итак, мы решили проблему трафика, создав пулы серверов и балансировщик нагрузки для управления ими. Но одной репликация серверов может быть недостаточно для обслуживания приложения по мере его роста. По мере добавления дополнительных функциональных возможностей в приложение необходимо поддерживать тот же монолитный сервер, пока он продолжает расти. Для решения этой проблемы нам нужен способ разобщить функциональные возможности сервера. Здесь и появляется идея служб. Служба является просто другим сервером, за исключением того, что она взаимодействует только с другими серверами, в отличие от традиционного веб-сервера, который взаимодействует с клиентами. Каждая служба имеет автономную единицу функциональности, такую как авторизация пользователей или предоставление функции поиска. Службы позволяют разбить один веб-сервер на несколько служб, каждая из которых выполняет отдельные функции. Основное преимущество разделения одного сервера на множество сервисов заключается в том, что он позволяет масштабировать сервисы полностью независимо. Другое преимущество здесь заключается в том, что он позволяет командам внутри компании работать независимо над конкретной услугой, а не иметь 10, 100 или даже 1000 инженеров, работающих на одном монолитном сервере, который быстро становится кошмаром для менеджера проекта. Краткое примечание: эта концепция балансировщиков нагрузки и пулов внутренних серверов и служб становится очень сложной, поскольку вы масштабируете все больше и больше серверов в вашем приложении. Это особенно сложно с такими вещами, как, например, сохранение сеанса, обработка отправки нескольких запросов от клиента на один и тот же сервер в течение сеанса, развертывания решения для балансировки нагрузки. Такие продвинутые темы не будет затрагивать в данном материале. Сети доставки контента (Conten Delivery Network – CDN) Все вышеперечисленное отлично подходит для масштабирования трафика, но приложение все еще централизовано в одном месте. Когда ваши пользователи начинают посещать ваш сайт из других концов страны или с другого конца мира, они могут столкнуться с длительной задержкой из-за увеличенного расстояния между клиентом и сервером. Ведь речь идет о "всемирной паутине" - не о "местной соседней паутине". Популярная тактика решения этой проблемы - использование сети доставки контента (CDN). CDN - это большая распределенная система «прокси» серверов, развернутая во многих центрах обработки данных. Прокси-сервер - это просто сервер, который действует как посредник между клиентом и сервером. Компании с большим объемом распределенного трафика могут платить CDN-компаниям за доставку контента конечным пользователям с помощью серверов CDN. CDN имеет тысячи серверов, расположенных в стратегических географических точках по всему миру. Давайте сравним, как веб-сайт работает с CDN и без него. Как мы уже говорили в разделе 1, для типичного веб-сайта доменное имя URL преобразуется в IP-адрес сервера хоста. Однако если клиент использует CDN, доменное имя URL преобразуется в IP-адрес пограничного сервера, принадлежащего CDN. Затем CDN доставляет веб-контент пользователям клиента, не затрагивая серверы клиента. CDN может сделать это, сохраняя копии часто используемых элементов, таких как HTML, CSS, загрузки программного обеспечения и медиаобъектов с серверов клиентов. Главная цель - расположить контент сайта как можно ближе к конечному пользователю. В итоге пользователь получает более быструю загрузку сайта.
img
С чего начинается Linux? LPI (Linux Professional Institute) считает, что изучение необходимо начинать с темы “Обнаружение и настройка комплектующих”. Это работа с “железом”, работа с комплектующими, вся аппаратная часть, то что мы видим и настраиваем. На сайте LPI (www.lpi.org) мы можем найти, что должен знать обучающийся Linux. Включение и отключение встроенного “железа” Настройка системы с помощью или без помощи внешних устройств. Разница между устройствами хранения информации Разница между устройствами, поддерживающими “Горячую замену” Выделение аппаратных ресурсов для устройств Инструменты и утилиты для просмотра списка оборудования Инструменты и утилиты для работы с USB Разбор понятий sysfs, udev, dbus. Далее возьмем для простоты Ubuntu 20.04. Директория /sys – тут содержится вся информация о подключенных устройствах. В данную директорию монтируется файловая система sysfs. Sysfs — виртуальная файловая система в операционной системе Linux. Экспортирует в пространство пользователя информацию ядра Linux о присутствующих в системе устройствах и драйверах. В данной директории есть определенных набор основных папок: devices/ - все устройства ядра bus/ - перечень шин зарегистрированных в ядре. Шина - это общий путь, по которому информация передается от одного компонента к другому drivers/ - каталог драйверов block/ - каталог блочных устройств. В данном случае под устройством понимается совокупность физического устройства и драйвера. То есть, если при подключении USB-драйва некоторое новое устройство в /sys/devices/ появится всегда (можно говорить о наличии физического устройства), то появление каталога /sys/block/sda зависит ещё и от наличия в памяти необходимых драйверов (usb-storage, sd_mod и т.д. - включая все драйвера, необходимые для поддержки usb) class/ - группировка устройств по классам Навигацию по папкам осуществляем с помощью команды cd. Учитывая вложенность папок переход на уровень вверх, т.е в родительскую папку используем cd .., где двоеточие обозначает родительский каталог. А также переход в любую папку, например, cd /sys/bus. Чтобы посмотреть все что находится в каталоге используем команду ls Следующий момент, если мы зайдем в папку с устройствами, то мы можем увидеть, как ОС наша видит устройства. Не очень удобно. Чтобы удобнее было работать с устройствами, используется udev. Это менеджер устройств, который позволяет ОС предоставлять устройства в удобно используемом виде, чтобы было понятно нам. Далее папка /proc - она находится в корне нашей ОС и содержит информацию о всех запущенных процессах. Она создается в оперативной памяти при загрузке ПК. Количество файлов зависит от конфигурации данной системы. Для работы с файлами необходимы права суперпользователя. Внесенные изменения сохраняются только до конца сеанса. Cеанс - это каждая терминальная оболочка, запущенная процессами пользователя В данную папку монтируется виртуальная система procfs. В ней находится информация о состоянии ядра и вообще операционной системе в целом. Термин виртуальная система - это некая абстракция, которая позволяет философии Linux говорить, что “все является файлом”, а вообще если рассматривать понятие файловая система - это иерархическое хранилище данных, которые собраны в соответствии с определенной структурой. Вот так выглядит данная папка. Мы можем посмотреть всю информацию, которая нам известна о процессоре. Данная информация содержится в файле cpuinfo. Для вывода информации содержащейся в файле используем команду cat [имя_файла]. Результат работы команды cat cpuinfo ниже. Есть еще интересный файл mounts. Он показывает все смонтированные файловые системы. Результат вывода будет примерно такой. Можно увидеть, когда мы просматриваем содержимое каталога командой ls, то файлы подсвечиваются белым цветом, а каталоги синим. Переходим немного глубже по дереву каталогов файловой системы cd /prox/sys в данной папке все о настройках и процессах, происходящих с нашей текущей файловой системой. В данной директории есть несколько подпапок. И зайдем в подпапку, относящуюся к файловой системе fs. Посмотрим например file-max в данном файле информация о том сколько файлов одновременно может открыть пользователь. В последней версии число таких фалов увеличилось. До версии 20.04, число файлов было по умолчанию 204394. Можно изменить число или данные, например, с помощью команды echo 10000000000 > file-max Все изменения, которые мы делаем в данной директории они сохраняются только до перезагрузки. Это надо учитывать. Еще одна основная папка в корневой директории папка /dev – она в себе содержит интерфейсы работы с драйверами ядра. /dev/sd [буква] - жесткий диск (в системах на ядре Linux) /dev/sd [буква][номер] – раздел диска /dev/sr [номер] (/dev/scd [номер]) – CD-ROM /dev/eth [номер] – cетевой интерфейс Ethernet /dev/wlan [номер] – cетевой интерфейс Wireless /dev/lp [номер] – принтер /dev/video [номер] - устройство изображений, камеры, фотоаппараты /dev/bus/usb/001/[номер] – устройство номер на шине USB /dev/dsp – звуковой вывод Набор оборудования, команды вывода перечня устройств. Lsmod – информация о модуле ядра Lspci - информация об устройствах PCI Lspcmcia - информация об устройствах PCMCIA Lsusb - информация о шине USB Lshw – детальная информация о комплектующих. Команда Lsmod – утилита которая показывает нам модули ядра. Модуль ядра — это объект, который содержит код позволяющий расширить функционал ядра. Вот так выглядит ее вывод. По сути, если проводить аналогию с ОС Windows это драйвера. Вывод команды lshw Данная команда сканирует все устройства и выводит подробную информацию по ним и достаточно детально. Утилиты для работы с модулем ядра или утилиты управления модулями ядра. Lsmod – информация о модулях ядра Modinfo - информация о конкретном модуле Rmmod - удаление модуля ядра Insmod – установка модуля ядра Modprobe – деликатное удаление или добавление модуля ядра Фактически эти команды используются для добавления и удаления “драйверов” устройств в Linux системе. В большинстве случаев ОС самостоятельно подключит устройство, но бывает такое, что устройство не стандартное и требуется добавить модель, для того чтобы ядро ОС, корректно работало с данным устройством. Rmmod и insmod - команды грубые и не умеют работать с зависимостями, поэтому необходимо использовать Modprobe с различными ключами. Взаимодействие с CPU, основные понятия: IRQ - механизм прерываний IO адреса – обмен информацией между устройствами и CPU DMA – обращение к ОЗУ минуя CPU Выделение ресурсов. IRQ - механизм прерываний это система которая сообщает центральному процессору о наступлении какого либо события, на которое процессор должен отреагировать. Есть определенные адреса прерываний, их можно увидеть в биосе ПК. Есть стандартные номера прерываний. Ранее была необходимость при конфликте устройств назначать в ручном режиме данные прерывания, в настоящее время с появлением технологии Plug and Play, данная потребность исчезла. IO адреса – это область памяти в которой процессор считывает информацию об устройствах и туда же ее записывает. Это выделенный диапазон. Вообще она бывает в памяти и адресация по портам. DMA - технология появилась относительно недавно и позволяет устройствам обращаться к памяти минуя процессор. Существенно повышает быстродействие. Все технологии настраиваются автоматически. Устройства хранения: PATA – параллельный интерфейс SATA - последовательный интерфейс SCSI - стандарт передачи данных SAS – замена SCSI Современные SATA, SAS нужно понимать есть устройства поддерживающие горячую замену и устройства не поддерживающие горячую замену. Устройства, которые можно выдернуть из ПК, безболезненно, и это не обрушит систему, причем ОС не подвиснет, не перезагрузится, это устройства поддерживающие горячую замену, например, USB. Устройство, которое не поддерживает горячую замену, например, оперативная память. Если мы ее выдернем из материнской платы, ОС однозначно обрушится. Команда blkid показывает какие устройства у нас смонтированы. Нужно отметить, что у каждого устройства есть уникальный UUID (универсальный уникальный идентификатор), что udev умеет читать UUID, и он монтирует в понятном виде нам.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59