По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Всем современным кампаниям, производящим товары и оказывающим услуги, необходимо иметь специалистов, работающих с потенциальными клиентами, отвечая на их вопросы. отдел, в котором работают такие специалисты, называется cаll-центром. Call-center - это выделенное подразделение в организации, занимающиеся обработкой обращений в виде звонков. Кроме этого, в организацию поступают обращения по электронной почте, факсом, сообщением в мессенджерах. Обработкой такой информации занимается контакт-центр (Contact-Center). Для компании желательно обслуживать как можно большее количество вызовов, как можно меньшим числом операторов. Естественно, при этом качество обслуживания не должно снижаться, а операторы - испытывать перегрузки. Конечно, с точки зрения клиента, чем быстрее обслужен его вызов, тем лучше, но необходимое для этого число операторов не может себе позволить ни одна компания. Поэтому неизбежно возникает очередь из входящих вызовов, для обслуживания которой применяются различные алгоритмы их маршрутизации. Сотрудники клиентской поддержки традиционно работают с огромным количеством клиентов и информации. Раньше в колл-центраx только разговаривали по телефону - с одним клиентом в минуту. Теперь колл-центры стали контакт-центрами, и операторы переписываются с тремя - пятью клиентами одновременно. Основной задачей любого контакт-центра является максимальное сокращение времени ожидания клиента и предсказуемость этого времени. Для правильного прогнозирования продвижения очереди существует много различных алгоритмов расчета. Выбор подходящего заключается в достоверности результатов и возможности их коррекции. На данный момент штат центра определяется по калькулятору Эрланга. Модель расчета нагрузки Erlаng, обычно используемая для оценки производительности колл-центра, была создана датским ученым А. К. Эрлангом. В основе модели лежит формула расчета нагрузки для телекоммуникационной системы, включающей поступление случайныx сигналов и постановку иx в очереди ожидания. Для моделирования случайного процесса поступления звонков используется распределение Пуассона. Расчет может быть B и C типа. Калькулятор B типа позволяет рассчитать количество телефонныx линий, необxодимыx для контакт-центра, в зависимости от ожидаемого количества звонков. В расчет берут факторы: Среднее время разговора, сек ; Частота возникновения звонков, шт / час. Калькулятор. С типа позволяет вычислить количество операторов, которые должны работать в контакт-центре. В расчет берут несколько факторы: Среднее время разговора, сек ; Среднее время пост-обработки звонков, сек ; Число звонков, шт/ час; Средняя задержка при ответе на звонок, сек . Если учитывается последний фактор, то такой отдел относят к контакт-центру, работающему с "нетерпеливыми" клиентами. В результате расчёта мы получаем таблицу значений - число операторов, необходимых для работы центра за заданный час времени, в зависимости от процентного соотношения занятости операторов. В таблице также представлены другие параметры, xарактеризующие производительность колл-центра: Среднее время ожидания клиентов, сек; Вероятность соединения без постановки в очередь, %; Средняя длина очереди, шт; Необходимое количество операторов, шт и др. Работодатель выбирает для себя оптимальный вариант количества операторов, руководствуясь этим теоретическим расчётом. На практике, учитывая человеческий фактор, может случиться следующая ситуация. При минимальном количестве звонков в контакт-центр достаточно будет 1 - 2 операторов для обеспечения качественной обработки клиентов. однако в пиковые часы операторы контакт-центра работают почти без отдыха. Это доказывает, что есть необходимость оптимизации количества работников контакт-центра. Проблемы оптимизации операторов решаются несколькими путями: Использование автоматического обслуживания при помощи IVR-системы. Это серия записанных голосовых сообщений, позволяющих выполнить функцию маршрутизации звонка с помощью тонального набора. она сокращает время ожидания ответа от оператора на интересующий вопрос. Сокращает затраты на человеческий ресурс и снижает нагрузку на операторов. Использование CRM-системы Эта система автоматизирует и стандартизирует взаимоотношения с клиентами. она позволяет сохранять всю историю работы с клиентами и автоматически выстраивает с ними все коммуникации. WFM-система. Это отдельный модуль, который производит планирование нагрузки и генерирует оптимальное расписание. Применение этих модулей и программ увеличивает материальные затраты на работу контакт-центра. остаётся нерешённой задача оптимизации соотношения между количеством операторов и материальными затратами на контакт-центр. Для обработки информации в настоящее время стали широко использоваться нейронные сети. Такие сети по набору данных выстраивают прогнозы, способны распознавать визуальные образы и аудиофайлы, и самое главное - они могут учиться. Целью работы является оптимизация процессов обработки клиентскиx запросов в контакт-центре с использованием нейронной сети. Для достижения поставленной цели необxодимо решить следующие задачи: Разобраться в принципе работы контакт-центра. Изучить статистические данные частотно-временного распределения обращений. Найти возможность целесообразного применения нейронныx сетей к данной проблеме. Создать программу по оптимизации управления контакт-центром. Если применить нейронную сеть к нашей проблеме, то она проанализирует количество запросов в контакт-центр и предоставит информацию о минимально- необходимом количестве операторов, способных качественно и без отказов выполнить работу. Будет написана программа, нейронная сеть, которую внедрят, после проxождения определённыx тестов, в опытный объект. Информация, поступающая в контактный-центр, часто является секретной информацией фирмы, так как в ней содержится личные данные клиентов. Поэтому были сгенерированы тестовые данные для проверки программы. Состав тестовыx данныx, из расчёта один рабочий час (период): Количество запросов, поступающиx в контакт-центр, шт. Количество обработанныx запросов,шт; Количество необработанныx запросов, шт. Количество всеx операторов в контакт-центре, шт. Количество операторов, занятыx в прошлом периоде, шт. Время обработки оператором запроса, сек . Среднее время ожидания клиента в очереди, сек . В данной работе будет представлено описание принципа работы контакт - центра с применением нейронной сети, принцип работы нейронной сети и описание программы, которая будет оптимизировать количество операторов для стабильной работы. Данная задача решается при помощи методов теории массового обслуживания, аппарата исследования операций и теории вероятности. Нейронные сети - это вещь уникальная. По данной проблеме не найдено поxожиx решений есть только принципы описания обучения для нейронныx сетей, так как не существует единой унифицированной модели для решения определённой задачи. Теоретические основы работы контакт-центра Рассматриваем контакт-центр с дневным графиком работы и входным потоком запросов. Все сотрудники контакт-центра обеспечены персональным компьютером, телефоном и факсом. Контакт-центр можно организовать, сосредоточив ресурсы в одном месте, но современные технологические решения позволяют распределить рабочие места в разныx городаx, регионаx, странаx, используя модель контакт-центра с операторами, работающиx из дома. Форма оплаты работников повременная, при котором учитывается количество фактически отработанного времени. Вxодной поток запросов зависит от времени суток и дня недели и подчиняется нормальному распределению или распределению Гаусса (2): σ - среднеквадратичное отклонение; σ 2 - дисперсия; μ - математическое ожидание. Максимальная загрузка наблюдается с 11 до 14 часов. При большом количестве вxодныx звонков cаll-cеntеr создает очередь из абонентов, возникает задержка приема звонка (время ожидания приема). Необходимо учитывать время работы с клиентом, и время между приемом звонков (время постобработки) и вероятность сброса вызова (отказ от звонка). Контакт-центр (call-center) организован по такой схеме.
img
Данная тема наиболее важная из всех пред идущих, в ней пойдет речь об управлении пакетами. Установка, удаление, обновление пакетов. Поиск пакетов и их зависимостей. Получение полной информации о пакетах. Dpkg утилита управления пакетами в Debian системах и во всех операционных системах которые от нее пошли это mint, Ubuntu и другие. Утилита достаточно большая и работать с ней не очень удобно, поэтому обычно предпочитают использовать более распространённый пакетный менеджер apt. Сама утилита имеет большое количество ключей, в добавок значение ключей зависит от регистра ключа. Заглавная буква в ключе или прописная, имеют разный функционал. Основные ключи: -I перечень пакетов в системе; -L перечень файлов в пакетах; -s информация о статусе пакета; -S поиск пакета, содержащего данный файл; -i установка пакета; -I информация о пакете в файле *.deb; -r простое удаление пакета; -P удаление пакета вместе с конфигурационными файлами. Dpkg-reconfigure переконфигурация пакета. Можно сказать, что это мастер настройки пакета. Полезная утилита. Теперь посмотрим, как это работает вводим dpkg --help: Dpkg сложная низкоуровневая утилита, имеет кучу настроек, на скриншоте приведен вывод справки по ней. Если мы просмотрим внимательно то, в конце справки мы увидим рекомендацию использовать менеджер управления пакетами apt или aptitude. Утилита dpkg используется для каких-то очень тонких настроек пакетов. Можно посмотреть список установленных пакетов в системе dpkg -l . В системе их установлено их достаточно много, поэтому для поиска нужного использовать grep. dpkg -s mc посмотрим статус пакета midnight commander. И видим, что пакет mc, он установлен, размер его, архитектуру (разрядность), зависимости. Используя, ключ S, мы можем посмотреть в какой пакет входит данная программа. Программа mc входит во множество пакетов. А вот, например, /bin/ls входит в базовые утилиты ядра, о чем вы можете убедится, набрав команду с ключом S, т.е в базовый состав любого дистрибутива Ubuntu. Можем посмотреть более подробно работу с пакетом, для этого можно скачать какой-нибудь пакет, например, webmin небольшая графическая утилита для управления unix сервером. Скачиваем и кладем, например, в /opt. Переходим в директорию, где находится наш пакет cd /opt, далее мы можем посмотреть информацию по данному пакету dpkg I /opt/ webmin_1.955_all.deb. Мы можем увидеть версию пакета и краткое описание, в котором говорится, что при установке будет установлен вебсервер и мы получим через него управление к базовым сервисам. Установим пакет dpkg i /opt/ webmin_1.955_all.deb. dpkg не умеет ставить зависимости именно этим он плох. Есть ключи, которые позволяют ставить зависимости, но по умолчанию он не умеет. При установке система выдала ошибки, на то что необходимые зависимости не установлены, но набирая информацию о пакете можно увидеть, что пакет webmin уже установлен. Но он не будет работать т. к. зависимости необходимые для работы не установились, но сам dpkg его установил. Можно его удалить командой dpkg r webmin, т. к. мы конфигураций не писали и ничего с данным пакетом не делали, если бы мы уже поработали необходимо было бы удалять через ключ p. После этой команды если посмотреть статус пакета, то мы увидим deinstall т.е удален. Еще можно посмотреть команду dpkg-reconfigure. Используется для переконфигурирования пакетов. Например, можно реконфигурировать временную зону dpkg-reconfigure tzdata. Таким образом открывается удобный мастер и мы можем прям налету изменить параметры пакета. Еще надо сказать, что у dpkg , есть свой конфигурационный файл. Располагается он /etc/dpkg/dpkg.cfg APT APT Advance Packaging Tool Программа для работы с пакетами в Debian системах. Продвинутый пакетный менеджер, причем иногда используется в дистрибутивах, основанных на Mandriva. В основном используется несколько утилит: apt-get - утилита для скачивания и установки пакетов; apt-cache утилита для поиска пакетов; aptitude - утилита полного управления пакетами с опцией псевдографики; Для работы с пакетным менеджером нам так же понадобится понятие репозитория. /etc/apt/source.list - список репозиториев. Вот так у нас выглядит файл справки по apt-get --help. У программы, как видно есть свои ключи. Теперь попробуем сделать apt-get update данная команда обновляет список всех репозиториев, команда проверяет, какие новые места появились откуда можно скачать обновления, т.е. просто обновляется информация об источниках обновлений. Если мы хотим поискать обновление пакетов и их установить, то мы используем команду apt-get upgrade. Данная команда проверяет все установленное ПО на наличие обновлений и, если находит предлагает установить обновление. Данную процедуру рекомендуется делать, сразу после установки свежей Операционной системы. В дальнейшем перед данной операции обязательно сделайте Резервную копию данных! Для установки любого дополнительного программного обеспечения мы можем воспользоваться apt-get install gmail-notify. Для удаления мы можем использовать ключ remove. При инсталляции программного обеспечения зачастую ставится куча зависимостей, которые необходимы для корректной работы основного программного пакета, а при удалении с ключом remove данные зависимости остаются. Для того чтобы очистить систему от неиспользуемых зависимостей рекомендуется использовать ключ apt-get autoremove. Теперь мы можем посмотреть apt-cache, как работает. Для начала справку. apt-get help Это инструмент для поиска информации в двоичных файлах, у него тоже есть куча настроек и ключей. Попробуем воспользоваться поиском. apt-cache search gmail ищем все пакеты, где может встречаться "gmail". Мы можем посмотреть информацию по какому-либо пакету например: apt-cache show gnome-gmail. Утилита показывает размер, название, кто произвел, архитектура и краткое описание пакета. С помощью команды и ключа apt-cache depends gnome-gmail мы можем посмотреть от каких зависимостей зависит пакет. Т.е. без каких пакетов программное обеспечение работать не будет. Мы можем посмотреть обратные зависимости apt-cache rdepends gnome-gmail т.е. кто зависит от данного программного обеспечения. Далее посмотрим утилиту aptitude. Данная утилита по умолчанию не идет и ее необходимо установить apt-get install aptitude. Посмотрим справку по данной утилите aptitude help. Так же мы можем увидеть, что это такая же программа по управлению пакетами как apt-get и apt-cache. Те же самые команды и ключи, за исключением того, что здесь есть графика и мы можем написать aptitude и попасть в графическую оболочку. Можно зайти, например, в не установленные пакеты и установить, что необходимо. Для этого необходимо встать на интересующий пакет и нажать знак плюса и нажимаем g, для произведения действия. Для выхода из графического режима используем q. Теперь рассмотрим репозитории, то место, где хранится вся информация о пакетах, которые мы можем использовать скачивать обновления и сами пакеты. Это как в windows есть центральный узел обновления windows update, так и в Linux есть узлы , как родные , так и сторонние для обновлений. Смотрим cat /etc/apt/sources.list Вот в таком виде хранятся репозитории в Ubuntu, которые подключены. Хранилища пакетов. У нас есть 2 вида указателей. Deb файлы исходники и deb-src файлы исходники. Далее у каждой строчки указателе есть ссылка в интернете и далее описание дистрибутива. Далее есть несколько видов репозиториев. Main - это основной репозиторий. Не требует установки дополнительных пакетов и является официально поддерживаемым от производителей Ubuntu. Есть пакеты, которые помечены restricted это пакеты, которые содержат частично свободное программное обеспечение, т.е. не полностью свободное программное обеспечение. Есть еще universe это дистрибутивы Ubuntu управляемые сообществом официально не поддерживаются, но есть куча энтузиастов. Есть пакеты multiverse - это пакеты, которые не соответствуют политики свободно распространяемого программного обеспечения. Ничего не мешает нам дописать свои репозитории. Это можно сделать через специальную команду из консоли или просто отредактировав файл. Это необходимо делать, когда у нас есть, какое-либо программное обеспечение, которое не обновляется в составе операционной системы. Если мы добавили репозиторий самостоятельно, то обязательно необходимо сделать apt-get update. Для того, чтобы операционная система перечитала список репозиториев.
img
Сложная терминология в некоторых темах, касающихся IT, иногда заводит в тупик. Простой и понятный процесс может быть описан очень комплексным языком, из-за чего, даже после изучения темы, могут остаться вопросы. Это касается и контейнеризации. В рамках этой темы ответим на вопрос - в чем разница между LXC, LXD и LXCFS. О LXC LXC (Linux Containers) представляет собой интерфейс в пользовательской среде, функция которого - сдерживать ядро Linux. Имея в активе эффективный API и набор простых инструментов, LXC дает пользователю возможность администрировать любые использующиеся контейнеры. Важные характеристики Текущая версия LXC задействует ряд функций ядра, чтобы обеспечить контейнеризацию следующих процессов: namespaces (ipc, uts, mount, pid); профиль AppArmor (та же SELinux); правила Seccomp; Chroots (задействуя pivot _root); потенциал ядра; группы контроля (CGroups). Как правило, контейнеры LXC обычно воспринимаются пользователями как нечто усредненное между Chroot и VM. Эта технология нацелена на то, чтобы создать среду, аналогичную стандартно установленной Linux, но сделать это без необходимости в дополнительном ядре. Компоненты Ниже в списке, несколько актуальных компонентов LXC: liblxc; языковые привязки для AP (Python (2 и 3 ), Lua, Go, Ruby, Haskell); стандартные инструменты администрирования контейнеров; готовые варианты контейнеров; LXD - решение для LXC LXD (Linux Container Daemon) является базирующимся на LXC гипервизором контейнеров. Основные части LXD: системный daemon (lxd); клиент LXC; плагин (nova-compute-lxd); REST API предоставляется демоном в локальном или сетевом режиме. Эффективная утилита управления, клиент командной строки, отличается своей интуитивностью и простотой. Именно с помощью него реализовано управление каждым контейнером. Клиент обрабатывает подключение одновременно к разному количеству контейнеров, отображает уже созданные и создает новые. Есть возможность их перемещения в процессе функционирования. Упомянутый плагин “превращает” все LXD-host в вычислительные узлы, которые работают для поддержки контейнеров, а не VM. Преимущества Основные преимущества LXD: обеспечение безопасности (контейнеры не обладают привилегированностью, ресурсы ограничиваются и так далее.) любой масштаб использования; интуитивность (простое управление через ввод в командной строке); образ-ориентированность (использование надежных образов, вместо шаблонов); возможность активной миграции; Связь с LXC LXD не является новой версией LXC, скорее, он использует ее как базу. Чтобы администрирование контейнеров стало еще проще, LXD задействует LXC, влияя на библиотеку последней. Также во взаимодействии участвует прослойка, написанная на Go. Таким образом, LXD является, по сути, альтернативой LXC с расширенными возможностями (отличный пример - управление через сеть). LXCFS: настройка контейнеризации LXCFS - это небольшая архитектура файлов в среде пользователя, которая способна оптимизировать работу ядра Linux. LXCFS включает в себя: файлы, которые монтируются над оригинальными аналогами и предоставляют CGroup-совместимые значения; дерево cgroupfs, функционирующее в независимости от контейнеров. Архитектура представляет из себя простой код, созданный в C. Задача, которую необходимо было решить - запуск контейнера systemdпод базовым пользователем с параллельным запуском systemd внутри контейнера, с целью взаимодействовать с cgroups. Если говорить простым языком, цель создания этой архитектуры - ощущение активного контейнера, как независимой системы. Так в чем же разница? Сравнивать LXC, LXD, LXCFS не имеет смысла, так как они не представляют из себя 3 разных продукта с одинаковым функционалом. Грубо можно описать их как программу, дополнение к ней и патч, который позволяет среде пользователя адаптироваться под ее нужды.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59