По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Всем привет! В сегодняшней статье мы расскажем вам про Phone Button Template и Softkey Template в CUCM, при помощи, которых можно настроить функциональные кнопки, расположенные на лицевой части телефонов Cisco. Buttons – это кнопки расположенные справа от экрана, а Softkeys – под экраном. Настройка Button Template Переходим во вкладку Device → Device Settings → Phone Button Template и нажимаем Add New. Выбираем шаблон, на основе которого мы будем создавать новый и нажимаем Copy. Затем в новом окне в строке Button Template Name указываем название шаблона и нажимаем Save. Далее заполняем таблицу, где в столбце Feature из выпадающего меню выбираем необходимую функцию, а в столбце Label указываем ее название. После чего нажимаем Save. Настройка и Softkey Template Для этого переходим меню Device → Device Settings → Softkey Template. Нажимаем Add New, и выбираем шаблон, на основе которого будем создавать новый. Далее в правом верхнем углу в меню Related Tasks выбираем Configure Softkey Layout и нажимаем Go. В новом окне выбираем для какого состояния мы хотим настроить кнопки (трубка положена, трубка поднята, идет вызов и так далее) в выпадающем меню Select a call state to configure Для того чтобы добавить кнопку в шаблон нужно в таблице Unselected Softkeys выбрать необходимую функцию, и нажать на стрелку вправо, и она переместиться в таблицу Selected Softkeys. Для того чтобы выбрать порядок их отображения необходимо использовать стрелки вверх и вниз. После этого нажимаем Save. Настройка телефона Теперь применим наши созданные шаблоны на телефоне. Для этого переходим в меню Device → Phone, выбираем нужный нам телефон, и на странице его настроек в разделе Device Information в полях Phone Button Template и Softkey Template выбираем созданные шаблоны. Чтобы применить настройки нажимаем Save и Apply Config.
img
В 21 веке работа в дистанционном формате достаточно актуальна. Это объясняется в первую очередь удобным форматом работы. Сокращается время прихода сотрудника на работу буквально до нескольких минут. В связи с пандемией COVID-19, данный вид работы приобрёл очень высокую популярность. Научная новизна будет заключаться в рассмотрении информационной безопасности при удалённой работе в условиях пандемии. В данной статье будут рассмотрены такие моменты как: безопасность при дистанционной работе; основные виды кибернетических угроз; базовые элементы защиты от вредоносных файлов; профилактические меры по безопасности в сети. Перейдём непосредственно к рассмотрению вопросов. При работе в сети интернет существуют определённые правила, которые дают возможность уберечь свой персональный компьютер от нежелательных последствий работы вредоносных файлов. Работа данного ПО может иметь разный характер, и соответственно разные цели. Начиная от шпионской деятельности с целью получения компрометирующих данных и заканчивая получение финансовой прибыли. Существует несколько общепринятых правил: для защиты личного персонального компьютера очень важно прибегать к регулярному обновлению программного обеспечения, применять надежные антивирусные программы и иной защитный софт; никогда не предоставлять конфиденциальные данные, к примеру, номер счета или пароль в ответе на сообщение по электронной почте или в социальных сетях; перед вводом конфиденциальных данных в веб-форме или на веб-странице, необходимо заострить внимание на присутствие определённых моментов таких, как адрес веб-страницы, начинающийся с префикса "https" и значка в форме закрытого замка около адресной строки. Данный значок обозначает безопасное соединение; прежде чем просматривать входящие письма на электронной почте, необходимо проверить адрес отправителя. Письма вызывающие подозрения, необходимо помещать в спам, в особенности если в содержании такого письмах присутствуют некие прикрепленные файлы. Рассмотрим классификацию видов угроз по разнообразным критериям: Прямая угроза непосредственно информационной безопасности: доступность; целостность; конфиденциальность. Компоненты, на которые будет нацелена угроза: данные; программы(софт). По способу реализации: случайные или сознательные. По расположению источника угрозы делятся на: внутренние; внешние. Понятие "угроза" в разнообразных ситуациях как правило интерпретируется различно. И неотложные и важные меры безопасности тоже будут отличаться. Например, для какой-либо общественной структуры угрозы нарушения конфиденциальности данных может априори не существовать - вся информация являются открытыми для доступа, но априори в большей части случаев неутвержденный доступ будет явлением которое представляет ощутимую опасность. Если рассматривать виды кибернетических угроз, то их можно классифицировать следующим образом (рис.1): нарушение (случайное или умышленное) от установленных правил эксплуатации; выход системы из штатного режима эксплуатации в силу случайных или преднамеренных действий пользователей (превышение расчетного числа запросов, чрезмерный объем обрабатываемой информации и т.п.); ошибки при (пере)конфигурировании системы; вредоносное программное обеспечение; отказы программного и аппаратного обеспечения; разрушение данных; разрушение или повреждение аппаратуры. Рассматривая безопасность своего персонального ПК необходимо использовать базовые элементы защиты от вредоносных файлов. В первую очередь это антивирусное программное обеспечение. Выделяют 3 ключевых принципа поведения антивирусного программного обеспечения по отношению к вредоносным программам: диагностика; профилактика; лечение. В первом случае софт проверяет все места на HDD, ОЗУ и съемных носителях. Приоритетными являются те участки, которые чаще всего подвержены негативному влиянию вредоносного ПО (загрузочные сектора, исполняемые библиотеки, драйверы и т.д.). Если антивирусная программа обнаруживает какую-либо негативную активность он автоматически оповещает пользователя. Что касается лечения инфицированных файлов, то оно может быть двух типов: попытка вылечить файл; помещение в карантин; удаление. При попытке лечения файла антивирусное программное обеспечение будет совершать попытки восстановить работоспособность одного или нескольких файлов при помощи изменения кода файла. Либо забивает его нулями, ставя на месте всех точек входа команду возврата управления программе, либо находит неиспорченную копию файла и возвращает ее на место (есть вирусы, которые заменяют собой исполняемые файлы, а сами файлы прячут где-то в папках Windows). Если вирус дописывает себя в конец файла - обрезаtт его, а на месте начала вируса - ставят команду RET (возврат управления). Если ничего не получится зараженные объекты удалятся с ПК навсегда. Целостность системы при этом может пострадать и ее придется восстанавливать. На карантин файлы помещаются в том случае, если они ценны для вас, или содержат важные данные. В дальнейшем вы можете попытаться вылечить объект самостоятельно, или с помощью специалиста. На сегодняшний день различают 3 ключевых способа поиска различных червей и всего прочего мракобесия, которое портит ОС: сигнатурный метод; эвристический метод; брандмауэр (фаервол). Первые два метода построены на анализе файлов системы. А фаерволы защищают сеть, то есть локальные и глобальные подключения. Этот модуль как правило автономен и реализуется в виде отдельной программы, либо уже интегрирован в операционную систему (брандмауэр Windows тому пример). Программное обеспечение подвергает контролю входящий и исходящий трафик, устанавливая ограничения возможности соединения с определенными ресурсами (белые и черные списки). Из положительных сторон можно отметить возможность создания "свободного" интернета, работая исключительно со списком проверенных сайтов. Помимо этого, есть возможность установить на один из локальных шлюзов, создавая школьные или институтские сети узкой направленности. Существенным минусом является сложность настраиваемого софта. Если брать во внимание профилактические меры, то они являются по факту достаточно простым и эффективным циклом. Помимо наличия антивирусного программного обеспечения, необходимо использовать его по назначению как минимум один раз в неделю. Это даст возможность выявить потенциальные или фактические угрозы вашему ПК. Необходимо использовать хорошее защитное программное обеспечение, которое не только сканирует на наличие вирусов, но и ищет различные типы вредоносных программ, включая, помимо прочего, вымогателей, и не дает им проникнуть в компьютер. В основном эти вредоносные коды внедряются в персональные компьютеры, посещая или загружая файлы с не известных веб-сайтов, скачки Drive-by, скомпрометированные веб-сайты, которые отображают вредоносную рекламу, также известную как спам. На одном уровне с антивирусом необходимо системное использование хорошего брандмауэр. Хотя встроенный брандмауэр в Windows 10/8/7 хороший, всё же лучше употребление сторонних брандмауэров, которые, мнению широкого круга пользователей, во многих аспектах сильнее, чем традиционный брандмауэр Windows по умолчанию. При использовании корпоративной компьютерной сети, необходимо убедиться, что на пользовательских компьютерах отсутствует поддержка Plug and Play. Иначе говоря, у работников должна отсутствовать возможность подключения сторонних флэш-накопителей или своих личных интернет-ключей к USB. ИТ-отделу фирмы необходимо внимательно отслеживать и анализировать весь сетевой трафик. Применение сильного анализатора сетевого трафика даёт возможность оперативно отслеживать странное поведение, которое может возникнуть на абсолютно любом терминале (личном компьютере сотрудника). Для защиты от DDoS-атак веб-сайт в идеале необходимо базировать на различные серверы, а не просто располагать на каком-то конкретном сервере. Наилучшим способом защиты от такого вида атак это наличие "зеркала", применяя облачный сервис. Такой подход минимизирует шансы на успешную атаку DDoS - по крайней мере, на достаточно продолжительный временной отрезок. Использование хорошего брандмауэра, значительно снизит шансы успешной атаки на ваш персональный компьютер, а предпринимаемые определённые существенные этапы для защиты вашего сайта дадут возможность на оперативное реагирование попыток несанкционированного доступа к вашей корпоративной сети.
img
Цель данной статьи, чтобы разобраться с тем как поправить незначительные ошибки, возникающие в файловых системах. Файловых систем много, поэтому много различных инструментов для работы с ними. Поэтому будет рассказано об основных инструментах к основным стандартным системам Linux. И рассмотрим несколько инструментов к рекомендованным LPIC файловым системам. Рассмотрим, так же журналируемые файловые системы и посмотрим индексные дескрипторы. Проверка целостности файловой системы; Проверка свободного пространства и индексных дескрипторов в файловой системе; Исправление проблем файловой системы. Список утилит: df, du, fsck, debugfs – общие утилиты для всех Linux систем mke2fs, e2fsck, dumpe2fs, tune2fs – утилиты для файловой системы ext xfs_check, xfs_repair, xfs_info, xfs_metadump – утилиты для файловой системы xfs Совершенно понятно, что для других файловых систем есть свои утилиты для работы с данными файловыми сиcтемами. Первая утилита df: man df Данная утилита показывает использование дискового пространства. У данной утилиты достаточно много ключей. Её особенностью является то, что она показывает дисковое пространство в 1 кбайт блоках. Данные цифры не очень понятны и удобны, для того чтобы было удобно можно использовать ключ –h и тогда вид станет удобно читаемым. В выводе команды мы сразу видим размер, сколько использовано, процент использование и точка монтирования. Как мы видим на новом перемонтированном разделе /dev/sdc1 занят 1% дискового пространства. Если посмотреть в папку монтирования раздела, то мы увидим там папку lost+found. Данная папка пуста, но занимает 37 МБ. Есть такое понятие индексные дескрипторы в журналируемых файловых системах inode. Inode – это метка идентификатора файла или по другому индексный дескриптор. В этих индексных дескрипторах хранится информация о владельце, типе файла, уровне доступа к нему. И нужно понимать, что для каждого файла создается свой отдельный inode. Команда df –I может показать нам inode. Число, например, inode напротив /dev/sda2 показывает сколько inode всего может быть на устройстве, далее сколько используется и сколько свободно. Обычно под inode отдается примерно 1% жесткого диска. И получается, что больше чем число inode на устройстве файлов и папок быть не может. Количество inode зависит от типа файловой системы. Далее мы рассмотрим, как пользоваться inode. Следующая команда du man du Данная команда показывает, что и сколько занимает у нас места на жестком диске, а именно размер папок в текущей директории. Если посмотреть вывод данной команды без ключей, то мы увидим список папок в текущей директории и количество блоков, с которым очень неудобно работать. Чтобы перевести данные блоки в человеческий вид, то необходимо дать ключ –h. А для еще большего удобства, можно установить замечательную утилиту ncdu простой командой. sudo apt install ncdu –y После установки нужно запустить ncdu. И мы увидим очень красивую картинку. Но вернемся к стандартной утилите du. С помощью данной утилиты мы можем указать в какой папке необходим просмотр папок и вывод их размера. du –h /home К сожалению данная утилита умеет взвешивать вес только каталогов и не показывает размер файлов. Для того, чтобы посмотреть размер файлов, мы конечно же можем воспользоваться командой ls –l. А также если мы запустим данную команду с ключем –i мы увидим номера inode файлов. Как вы видите у каждой папки и у каждого файла есть свой индексный дескриптор. Далее команды, которые нам позволят проверить целостность файловой системы. Команда fsck man fsck Как написано в описании утилиты она позволяет проверять и чинить Linux файловую систему. Мы можем видеть, например, в oперационной системе Windows, что в случае некорректного завершения работы операционной системы, операционная система запускает утилиту проверки целостности checkdisk. В случае необходимости данная утилита исправляет найденные ошибки в файловой системе. Следовательно, в Linux данные операции выполняет утилита fsck, причем может работать с различными файловыми системами Linux операционных систем. Мы можем попробовать воспользоваться утилитой fsck /dev/sdc1. В ответ от операционной системы мы получим следующее: Как мы видим операционная система вернула в ответ на команду для работы с данным разделом, что данный раздел с монтирован и операция прервана. Аналогичную ситуацию мы будем наблюдать в операционной системе Windows, если мы будем пытаться рабочий раздел проверить на ошибки. Т.е возникнет следующая ситуация. Если мы будем проверять дополнительный логический диск, где не установлена операционная система Windows, то данный раздел на время проведения тестов будет отключен и будут идти проверки. А если мы попытаемся проверить основной раздел, куда установлена операционная система Windows, то операционная система не сможет запустить данную утилиту и попросит перезагрузиться для запуска данной утилиты. В нашем случае придется делать точно так же. Поэтому, чтобы проверить необходимо отключить (от монтировать раздел) и после уже этого запускать утилиту. Из вывода можно заметить утилита пыталась запустить другую утилиту e2fsck, которая в данном случае отвечает за проверку файловых систем extext2ext3ext4. О чем достаточно подробно написано в описании данной утилиты. По сути fsck запускает утилиту ту, которая идет в пакете утилит для конкретной файловой системы. Бывает такое, что fsck не может определить тип файловой системы. Для того, чтобы утилита все-таки проверила файловую систему, необходимо отмонтировать логический раздел. Воспользуемся командой umount /mnt. И запускаем непосредственно саму проверку fsck –t ext4 /dev/sdc1 Проходит проверка моментально. Команда fsck запустилась и запустила необходимую утилиту для файловой системы. По результатам проверки файловая система чистая, найдено 11 файлов и 66753 блока. При обнаружении проблем, утилита предложила нам исправить. Для того, чтобы посмотреть на проверку другой файловой системы, необходимо переформатировать раздел. mkfs –t xfs –f /dev/sdc1 При попытке запуска проверки без указания типа файловой системы fsck /dev/sdc1 Как мы видим, утилита fsck отказалась проверять или вызывать утилиту, а явно указала на ту которую необходимо использовать в данном случае. Для проверки используем xfs_ncheck /dev/sdc1. А для починки файловой системы xfs_repair /dev/sdc1. Перемонтируем обратно наш раздел mount /dev/sdc1 /mnt Теперь можно получить информацию по разделу xfs_info /dev/sdc1 Или сделать дамп файловой системы xfs_metadump /dev/sdc1 dump.db Переформатируем файловую систему ext4 на разделе обратно /dev/sdc1. Перемонтируем в папку mnt. Создадим текстовый файл с текстом на данном разделе nano /mnt/test.txt Далее мы можем посмотреть следующую утилиту man debugfs. Данная утилита умеет очень многое: очень много ключей и различных опций. Чистит, удаляет, чинит, работает с inodes. Зайти в данную утилиту можно debugfs –w /dev/sdc1. Набираем help и видим кучу опций. Можно попросить данную утилиту вывести содержимое нашего тома. ls В результате данной команды мы увидим 2 объекта с номерами их inode. Теперь мы можем сказать rm test.txt и файл будет удален, точнее не сам файл а его индексный дескриптор., если посмотреть опять с помощью команды ls. То будет видно, что количество объектов не изменилось. Следовательно, мы этот файл в журналируемых файловых системах можем восстановить, восстановив его индексный дескриптор. Но только до тех пор, пока на место удаленного файла не был записан другой. Именно поэтому если требуется восстановление информации на диске, рекомендуется немедленно отключить ПК и после этого отдельно подключать носитель информации для процедуры восстановления. Так же на данном принципе основано сокрытие информации в Информационной безопасности, когда на носитель информации в 2 или 3 прохода записываются псевдослучайные данные. Для восстановления данных мы можем использовать команду lsdel. Данная команда показывает удаленные файлы. В принципе на данном debugfs и основаны многие программы для восстановления данных. На скриншоте хорошо видно, что был удален 1 inode с номером 12 дата и время, другие параметры. Для выхода используем q. Для восcтановления используем undel test.txt, команда, номер индексного дескриптора и имя файла с которым оно восстановится. Убедиться, что файл на месте можно с помощью команды ls. Утилита debagfs помогает восстанавливать файлы и вообще работать с файловой системой на низком уровне. Конечно восстанавливать по 1 файлу, это очень трудозатратно. Поэтому вот эти низкоуровневые утилиты используют более современные программы. Еще одна утилита dumpe2fs. Можно вызвать справку по данной утилите man dumpe2fs Данная команда делает дамп информации, которая хранится на данных томах. Выполним данную команду для /dev/sdc1 Мы получим следующий вывод информации. Данный вывод был сделан на стандартный вывод – т.е экран. Сделаем вывод в файл, например: dumpe2fs /dev/sdc1 > /tmp/output.txt Мы можем просмотреть информацию в выведенную в файл поэкранно с помощью less /tmp/output.txt В выводе мы сможем увидеть основные опции данной файловой системы. Переделаем файловую систему, текущую ext4 в ext2. Это можно сделать 3-мя способами с помощью утилит: mkfs, mke2fs, mkfs.ext2. Перед переформатирование необходимо отмонтировать файловую систему. После форматирования и перемонтируем. Опять снимаем дамп и передаем по конвееру на команду grep чтобы посмотреть features. Получаем следующее: dumpe2fs /dev/sdc1 | grep features И видим, что файловые системы отличаются, более новая файловая система имеет фишку журналирования has_jounal. Данная опция так же присутствует в ext3. Т.е в данных файловых системах имеются журналы с помощью которых удобно восстанавливать. Есть интересная утилита tune2fs – настраивать файловую систему. man tune2fs Данная утилита, как следует из описания настраивает настраиваемые параметры файловых систем. Например, у нас есть не журналируемая файловая система ext2. Мы даем команду tune2fs –O has_journal /dev/sdc1. Данная утилита добавляет опцию ведения журнала к файловой системе ext2. Или можем наоборот сказать удалить опцию поставив значок ^.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59