По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Создание единого устройства обработки пакетов - маршрутизатор (или коммутатор уровня 3, который теперь обычно называют просто коммутатором), являющийся наиболее распространенным примером, был до этого момента в центре внимания. Пришло время соединить маршрутизаторы вместе. Рассмотрим сеть на рисунке 1. Приложение, работающее на хосте A, должно получить некоторую информацию от процесса, запущенного на F. Устройства B, C, D и E, конечно же, являются обработчиками пакетов (маршрутизаторами). Для пересылки пакетов между хостами A и F маршрутизатор B будет вызван для пересылки пакетов на F, даже если он не подключен к F. аналогично маршрутизаторам C и D потребуется пересылать пакеты как A, так и F, даже если они не подключены ни к одному из этих хостов. В том разделе рассматривается следующий вопрос: Как сетевые устройства создают таблицы, необходимые для пересылки пакетов по свободным от петель путям в сети? Ответ гораздо сложнее, чем может показаться на первый взгляд, поскольку на самом деле в нем содержится несколько проблем: Как устройства узнают о топологии сети, какие каналы связи подключены к каким устройствам и назначениям. Как плоскости управления принимают эту информацию и создают в сети пути без петель? Как плоскости управления обнаруживают изменения в сети и реагируют на них? Каким образом уровни управления масштабируются для удовлетворения потребностей крупномасштабных сетей? Какие политики реализованы на уровне управления и как? Все эти проблемы будут рассмотрены далее. Обнаружение топологии Сетевые диаграммы обычно показывают всего несколько типов устройств, включая маршрутизаторы, коммутаторы, системы, подключенные к сети (различные типы хостов) и различные типы устройств (например, межсетевые экраны). Они часто связаны между собой каналами, представленными в виде линий. Пример представлен на рисунке 2. Сетевые диаграммы, как и многие другие формы абстракции, скрывают много информации, чтобы сделать встроенную информацию более доступной. Во-первых, сетевые диаграммы обычно находятся где-то между логическим и физическим представлением сети. Такие диаграммы обычно не показывают каждое физическое соединение в сети. Например, сетевая диаграмма может показывать связку каналов как одну линию связи или один физический провод, который был мультиплексирован как несколько логических каналов (например, Ethernet или какой-либо другой канал широковещательной передачи, который представляет собой один физический канал, используемый несколькими устройства для связи). Примечание В сетевой инженерии часто возникает некоторая путаница с термином мультиплексирование. Многие инженеры склонны рассматривать совместное использование двух виртуальных каналов как единственную форму сетевого мультиплексирования. Однако всякий раз, когда есть несколько устройств, совместно использующих одну линию связи, ситуация, в конечном счете требующая некоторой формы адресации, временного разделения трафика или частотного разделения трафика, используется мультиплексирование. Виртуализацию можно рассматривать как второй уровень мультиплексирования или мультиплексирование поверх мультиплексирования. Во-вторых, сетевые схемы часто не учитывают логическую сложность сервисов. Однако плоскость управления не маскирует такого рода сложности. Вместо этого плоскость управления должна собирать информацию о сети локально и с других плоскостей управления, объявлять ее другим устройствам, на которых работает плоскость управления, и создавать набор таблиц, которые плоскость данных может использовать для пересылки трафика через каждое устройство в сети от источника к месту назначения. В этой статье мы рассмотрим проблему: Как плоскость управления узнает о сети? Этот вопрос можно разбить на несколько частей: О чем пытается узнать плоскость управления? Или, возможно, каковы компоненты топологии сети? Как плоскость управления узнает об устройствах, подключенных к сети? Какие основные классификации используются при описании объявления информации о сети? Узлы сети, границы и достижимый пункт назначения. Первая проблема, которую необходимо решить, на самом деле является мета-вопросом: какие виды информации должна изучать и распространять плоскость управления, чтобы строить пути без петель в сети? Однако небольшое предупреждение по поводу следующего материала статьи: сетевые термины трудно однозначно определить, поскольку отдельные термины часто используются для описания множества "вещей" в сети, в зависимости от контекста, в котором они используются. Узел Узел либо обрабатывает пакеты (включая пересылку пакетов), либо отправляет пакеты, либо принимает пакеты в сети. Термин взят из теории графов, где их также можно назвать вершинами, хотя этот термин более широко применяется в сетевой инженерии. В сети есть несколько типов узлов, в том числе: Транзитный узел: любое устройство, предназначенное для приема пакетов на одном интерфейсе, их обработки и отправки на другом интерфейсе. Примерами транзитных узлов являются маршрутизаторы и коммутаторы. Их часто просто называют узлами, так они будут именоваться здесь в статье, а не транзитными узлами. Конечный узел: также называется конечной системой или хостом: любое устройство, предназначенное для запуска приложений, которые генерируют и/или принимают пакеты от одного или нескольких интерфейсов. Это сетевые источники и приемники, чаще всего эти узлы на самом деле называются хостами, а не конечными узлами, чтобы отличать их от shorthand узлов, что обычно означает транзитный узел. В этих двух определениях есть много очевидных дыр. Как должно называться устройство, которое принимает пакет на одном интерфейсе, завершает соединение в локальном процессе или приложении, генерирует новый пакет, а затем передает этот новый пакет из другого интерфейса? Проблема усложняется, если информация, содержащаяся в двух пакетах, примерно одинакова, как в случае с прокси-сервером или каким-либо другим подобным устройством. В этих случаях полезно классифицировать устройство как конечное или узел в определенном контексте, в зависимости от роли, которую оно играет по отношению к другим устройствам в контексте. Например, с точки зрения хоста прокси-сервер действует как устройство сетевой переадресации, поскольку работа прокси-сервера (в некоторой степени) прозрачна для хоста. Однако с точки зрения соседнего узла прокси-серверы являются хостами, поскольку они завершают потоки трафика и (как правило) участвуют в плоскости управления так же, как и хост. Граница (край) Граница - это любое соединение между двумя сетевыми устройствами, через которое пересылаются пакеты. Номинальный случай - соединение точка-точка (point-to-point), соединяющее два маршрутизатора, но это не единственный случай. В теории графов ребро соединяет ровно два узла. В сетевой инженерии существуют понятия мультиплексированных, многоточечных и других типов мультиплексированных каналов. Чаще всего они моделируются как набор соединений point-to-point, особенно при построении набора маршрутов без петель в сети. Однако на сетевых диаграммах мультиплексированные каналы часто изображаются как одна линия с несколькими присоединенными узлами. Достижимый пункт назначения Достижимый пункт назначения может описывать один узел или службу, или набор узлов или служб, доступных через сеть. Номинальным примером достижимого пункта назначения является либо хост, либо набор хостов в подсети, но важно помнить, что этот термин может также описывать службу в некоторых контекстах, таких как конкретный процесс, запущенный на одном устройстве, или множество вариантов службы, доступных на нескольких устройствах. Рисунок 3 иллюстрирует это. В сети, показанной на рисунке 3, достижимые пункты назначения могут включать: Любой из отдельных хостов, например A, D, F, G и H Любой из отдельных узлов, например B, C или E Служба или процесс, работающий на одном хосте, например S2. Служба или процесс, работающий на нескольких хостах, например S1. Набор устройств, подключенных к одному физическому каналу или границе, например F, G и H Этот последний достижимый пункт назначения также представлен как интерфейс на конкретном канале или на границе сети. Следовательно, маршрутизатор E может иметь несколько достижимых пунктов назначения, включая: Интерфейс на линии, соединяющей маршрутизатор E с C Интерфейс на линии, соединяющей маршрутизатор E с B Интерфейс на линии, соединяющей маршрутизатор E с хостами F, G и H Сеть, представляющая достижимость для хостов F, G и H Любое количество внутренних служб, которые могут быть объявлены как отдельные адреса, порты или номера протоколов Любое количество внутренних адресов, присоединенных к виртуальным каналам связи, которые не существуют в физической сети, но могут использоваться для представления внутреннего состояния устройства (не показано на рисунке3) Таким образом, концепция достижимого пункта назначения может означать множество разных вещей в зависимости от контекста. В большинстве сетей достижимый пункт назначения - это либо одиночный хост, одиночный канал (и хосты, подключенные к нему), либо набор каналов (и хосты, прикрепленные к этим каналам), объединенные в один достижимый пункт назначения. Теперь, почитайте материал про топологию сетей.
img
В этой статье мы расскажем как исправить ошибку «System logs are stored on non-persistent storage» (Ваши события не будут сохранены при отключении сервера) в VMware ESXi Решение Проверка местоположения системных событий в vSphere Client (HTML5) В навигаторе vSphere Client выберите Hosts and Clusters view. Выберите хост-объект в навигаторе vSphere Client. Нажмите на вкладку Configure, затем System expander. В разделе System выберите Advanced System Settings. Убедитесь в том, что параметр Syslog.global.logDir в качестве местонахождения указывает постоянное хранилище. Если поле Syslog.global.logDir пустое или указывает на scratch partition, убедитесь, что поле ScratchConfig.CurrentScratchLocation в качестве местонахождения указывает постоянное хранилище. Если папка используется в качестве хранилища scratch, которое является общим для большого количества ESXi хостов, вам также необходимо установить поле Syslog.global.logDirUnique,чтобы избежать конкуренции лог-файлов. Примечание: Чтобы войти в datastore, запись Syslog.global.logDir должна быть в формате [Datastorename]/foldername. Чтобы войти в scratch partition в ScratchConfig.CurrentScratchLocation введите пустой формат или []/foldername. Версии ESXi 6.5, 6.7 и выше реагируют на изменения незамедлительно. Более старым версиям для этого может потребоваться перезагрузка. Проверка местоположения системных событий в vSphere Web Client Перейдите к хосту в навигаторе vSphere Web Client. Нажмите вкладку Manage, затем Settings. В разделе System выберите Advanced System Settings. Убедитесь в том, что параметр Syslog.global.logDir в качестве местонахождения указывает постоянное хранилище. Если поле Syslog.global.logDir пустое или указывает на scratch partition, убедитесь, что поле ScratchConfig.CurrentScratchLocation в качестве местонахождения указывает постоянное хранилище. Если папка используется в качестве хранилища scratch, которое является общим для большого количества ESXi хостов, вам также необходимо установить поле Syslog.global.logDirUnique,чтобы избежать конкуренции лог-файлов. Проверка местоположения системных событий в vSphere Client (vSphere 6.0 и более ранние версии) В программе vSphere Client выберите хост на инвентарной панели. Нажмите на вкладку Configuration, затем – на Advanced Settings в разделе Software. Убедитесь в том, что параметр Syslog.global.logDir в качестве местонахождения указывает постоянное хранилище. У каталога должны быть название и путь к хранилищу данных [datastorename] path_to_file. Например, [datastore1] /systemlogs. Если поле Syslog.global.logDir пустое или указывает scratch partition в качестве хранилища, убедитесь, что поле ScratchConfig.CurrentScratchLocation указывает в качестве местонахождения постоянное хранилище. Дополнительная информация Если вы видите, что работающий хост сохраняет информацию в хранилище scratch в формате >UUID (/vmfs/volumes/xxxxxxxx-xxxxxxxx-xxxx-xxxxxxxxxxxx/foldername) и хотите, чтобы имя «friendly» отобразилось в вашем vCenter или host client view, вы можете: Подключиться к рабочему хосту через сеанс SSH и войти в систему с учетными данными root Использовать команду: # esxcli storage filesystem list. Выход будет приблизительно таким: /vmfs/volumes/ad495351-37d00fe1-c498-a82a72e0c050 abc-lun3 ad495351-37d00fe1-c498-a82a72e0c050 true VMFS-5 805037932544 400613703680 В этом примере abc-lun3 – это имя «friendly» хранилища данных, которое вы найдете в вашем vCenter или host client, и запись Syslog.global.logDir должна быть в формате [abc-lun3]/foldername.
img
Все мы слышали об SSL. SSL – это то, благодаря чему процветают такие вещи, как E-commerce. SSL позволяет нам безопасно взаимодействовать с сайтами… но что нам делать, если нужно конфиденциально подключиться к другой сети, а не сайту? Здесь и пригодится IPSec. Многие ИТ-специалисты и системные администраторы не до конца понимают IPSec. Конечно же, все мы знаем, что IPSec – это тип защищенной передачи данных, но какие приложения им пользуются? И как работает IPSec? Давайте в этом разберемся. В данной статье мы обсудим, что такое IPSec, для чего используется, как работает и чем отличается от таких протоколов, как SSL и TLS. Что такое IPSec? IPSec – это метод безопасного и зашифрованного обмена данными между клиентом и сетью. Такое «сообщение» передается через общедоступные сети (Интернет). Чаще всего IPSec используется для VPN, а также подключения двух частных сетей. Сам по себе IPsec не является протоколом. Это, скорее, набор протоколов, которые используются вместе. К таким протоколам относятся: Authentication Header (Аутентификационный заголовок) Encapsulating Security Protocol (Инкапсулирующий протокол безопасности) Security Association (Ассоциация безопасности) Internet Protocol (Интернет-протокол) Как работает IPsec? IPSec позволяет клиенту безопасно обмениваться данными с другой сетью. Необходимо отметить, что данный метод обычно не используется для взаимодействия между устройствами, а применяется для подключения ноутбука к частной сети через общедоступную сеть (по типу Интернета). Кроме того, IPsec может соединять две частные сети. Обратите внимание, что мы не используем HTTP или TCP для передачи данных. Это потому, что в рамках модели OSI (модель открытого системного взаимодействия) IPSec проходит по уровню Layer 3 сети. То есть, в принципе, IPSec может оказаться безопаснее других методов защищенной передачи данных. IPSec-соединения по-прежнему устанавливаются между клиентом и хостом через другие сети. И эти другие сети обычно являются общедоступными – как, например, Интернет. Поэтому все взаимодействия между клиентом и хостом зашифрованы. В любом случае, ключи шифрования не согласовываются с каждым новым подключением. До установки соединения и клиент, и хост должны знать закрытые ключи шифрования. Это последнее предложение очень важное. Дело в том, что в ходе взаимодействия зашифровывается весь пакет данных, включая его заголовок. Быть может, вы подумаете: чтобы правильно попасть в пункт назначения, пакеты должны иметь читабельные заголовки. И вы правы. Кстати, именно поэтому и используется Encapsulating Security Protocol (ESP). Для транспортировки ESP добавляет в пакет новую информацию о заголовке и конечном управляющем поле (или трейлере; он похож на заголовок, но располагается в конце пакета), тогда как настоящий заголовок остается зашифрованным. Точно также происходит и аутентификация каждого пакета. Хост IPSec подтверждает, что каждый пакет полученных данных отправлялся тем объектом, который, как считает хост, и был отправителем. В противном случае этот пакет данных отклоняется. Для чего используется IPSec? IPSec используется для создания безопасного метода взаимодействия между клиентом и хостом. Клиентом может быть, например, ноутбук. Или же частная сеть. Хостом, как правило, тоже служит частная сеть. Теперь мы знаем, как работает IPsec, и пора разобраться, для чего он используется? Что же означает предыдущий абзац? Чаще всего IPSec используется для VPN. VPN – это виртуальная частная сеть. VPN позволяет клиенту подключаться к частной коммерческой сети через общедоступную сеть интернет (например, ноутбук сотрудника). Как только ноутбук подключился к частной коммерческой сети через VPN, то он как бы сам попадает в эту частную сеть – для всех целей и задач. Иначе говоря, подключившись к коммерческой сети ноутбук получает доступ ко внутренним ИТ-ресурсам. Весь трафик этого ноутбука (входящий и исходящий) циркулирует через частную коммерческую сеть в интернет. Соединения двух удаленных частных сетей можно настраивать через IPsec-подключения и VPN. Например, вы ведете свою деятельность в двух разных локациях (в Пенсильвании и Калифорнии). Как настроить подключение? Провести кабель не получится – офисы находятся слишком далеко друг от друга. Раньше таким компаниям приходилось оплачивать дорогую выделенную линию (по типу Т1 подключения). Но сейчас они могут обмениваться данными через открытый интернет с помощью IPsec-подключения. Отличия между IPsec и TLS (или SSL) IPsec-подключения и TLS (SSL)-подключения во многом похожи. Оба способа служат для безопасного и зашифрованного обмена данными. Оба протокола могут использовать общедоступные сети для взаимодействия и т.д. и т.п. Но в то же время, IPsec и TLS/SSL во многом отличаются. Например, IPsec-подключения являются частью уровня Layer 3 в модели OSI, тогда как TLS и SSL-подключения относятся к уровню Layer 7. Получается, что IPsec-подключения выполняются на базовом уровне соединений в модели OSI, тогда как TLS и SSL начинаются выше в стеке. Кроме того, работа TLS и SSL-соединений зависит от прикладного уровня (HTTP) и уровня 4 (TCP). То есть на этих уровнях они также подвержены эксплойтам, чего не скажешь о IPsec. Еще одно важное отличие между IPsec и SSL или TSL заключается в том, как согласуются подключения. Поскольку TLS и SSL-подключения используют TCP, их типы безопасного подключения необходимо вначале согласовать. После этого клиент и хост дополнительно согласовывают ключ шифрования. С IPSec все иначе. Передача данных зашифровывается сразу. Кроме того, секретный ключ для шифрования передается клиенту и хосту по отдельности – еще до попытки взаимодействия. Также его можно передавать через DNS (хорошо бы при помощи DNSsec). Метод, который используется для обмена ключами в IPsec, называется IKEv1 или IKEv2. Чаще всего сейчас пользуется IKEv2. Это подводит нас к еще одной интересной детали. Поскольку IPsec-соединения зашифровываются сразу, тоже самое можно сделать и со всем заголовком IP-пакета. Но IP-пакетам по-прежнему нужен читабельный заголовок, чтобы попасть в правильное место. Для этих целей в зашифрованные пакеты IPsec добавляются дополнительные заголовки и трейлеры. То есть размеры MSS (Maximum segment size) и MTU (Maximum transmission unit) для каждого пакета изменяются. Сетевым администраторам необходимо предусмотреть эту разницу в своих сетях. Заключение В этой статье мы рассмотрели множество вопросов. Давайте быстро подведем итог. IPSec – это метод безопасного и зашифрованного обмена данными между клиентом и хостом. Клиентом может быть устройство (например ноутбук) или частная сеть. Хостом чаще всего бывает частная сеть. Сам IPsec не является протоколом; это набор протоколов, которые используются вместе. Протоколы, которыми пользуется IPsec, начинаются на уровне Layer 3 модели OSI, что, возможно, делает IPsec безопаснее, чем TLS или SSL. IPsec обычно используется для VPN, то также подходит для подключения двух частных сетей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59