По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Микросервисы – это шаблон сервис-ориентированной архитектуры, в котором приложения создаются в виде наборов небольших и независимых сервисных единиц. Такой подход к проектированию сводится к разделению приложения на однофункциональные модули с четко прописанными интерфейсами. Небольшие команды, управляющие всем жизненным циклом сервиса могут независимо развертывать и обслуживать микросервисы. Термин «микро» относится к размеру микросервиса – он должен быть удобным в управлении одной командой разработчиков (5-10 специалистов). В данной методологии большие приложения делятся на крошечные независимые блоки. Что такое монолитная архитектура? Если говорить простым языком, то монолитная архитектура – это как бы большой контейнер, в котором все компоненты приложения соединяются в единый пакет. В качестве примера монолитной архитектуры давайте рассмотрим сайт для электронной торговли. Например, онлайн-магазин. В любом таком приложении есть ряд типовых опций: поиск, рейтинг и отзывы, а также оплаты. Данные опции доступны клиентам через браузер или приложение. Когда разработчик сайта онлайн-магазина развертывает приложение, это считается одной монолитной (неделимой) единицей. Код различных опций (поиска, отзывов, рейтинга и оплаты) находится на одном и том же сервере. Чтобы масштабировать приложение, вам нужно запустить несколько экземпляров (серверов) этих приложений. Что такое микросервисная архитектура? Микросервисной архитектурой называется методика разработки архитектуры, позволяющая создавать приложения в виде набора небольших автономных сервисов для работы с конкретными предметными областями. Такой вариант структурированной архитектуры позволяет организовать приложения в множество слабосвязанных сервисов. Микросервисная архитектура содержит мелкомодульные сервисы и упрощенные протоколы. Давайте рассмотрим пример приложения для онлайн-торговли с микросервисной архитектурой. В данном примере каждый микросервис отвечает за одну бизнес-возможность. У «Поиска», «Оплаты», «Рейтинга и Отзывов» есть свои экземпляры (сервер), которые взаимодействуют между собой. В монолитной архитектуре все компоненты сливаются в одну модель, тогда как в микросервисной архитектуре они распределяются по отдельным модулям (микросервисам), которые взаимодействуют между собой (см. пример выше). Коммуникация между микросервисами – это взаимодействие без сохранения состояния. Каждая пара запросов и ответов независима, поэтому микросервисы легко взаимодействуют друг с другом. Микросервисная архитектура использует федеративные данные. Каждый микросервис имеет свой отдельный массив данных. Микросервисы и монолитная архитектура: сравнение Микросервисы Монолитная архитектура Каждый блок данных создается для решения определенной задачи; его размер должен быть предельно малым Единая база кода для всех бизнес-целей Запуск сервиса происходит сравнительно быстро На запуск сервиса требуется больше времени Локализовать ошибки довольно просто. Даже если один сервис сломается, другой – продолжит свою работу Локализовать ошибки сложно. Если какая-то определенная функция не перестает работать, то ломается вся система. Чтобы решить проблему, придется заново собирать, тестировать и развертывать приложение. Все микросервисы должны быть слабо связанными, чтобы изменения в одном модуле никак не влияли на другой. Монолитная архитектура тесно связана. Изменения в одному модуле кода влияет на другой Компании могут выделять больше ресурсов на самые рентабельные сервисы Сервисы не изолированы; выделение ресурсов на отдельные сервисы невозможно Можно выделить больше аппаратных ресурсов на самые популярные сервисы. В примере выше посетители чаще обращаются к каталогу товаров и поиску, а не к разделу оплат. Таким образом, будет разумнее выделить дополнительные ресурсы на микросервисы каталога товаров и поиска Масштабирование приложения – задача сложная и экономически не выгодная Микросервисы всегда остаются постоянными и доступными Большая нагрузка на инструменты для разработки, поскольку процесс необходимо запускать с нуля Федеративный доступ к данным, благодаря чему под отдельные микросервисы можно подбирать наиболее подходящую модель данных Данные централизованы Небольшие целевые команды. Параллельная и ускоренная разработка Большая команда; требуется серьезная работа по управлению командой Изменения в модели данных одного микросервиса никак не сказывается на других микросервисах Изменения в модели данных влияют на всю базу данных Четко прописанный интерфейс позволяет микросервисам эффективно взаимодействовать между собой Не предусмотрено Микросервисы делают акцент на продуктах (модулях), а не проектах Сосредоточены на проекте в целом Отсутствие перекрестных зависимостей между базами кода. Для разных микросервисов можно использовать разные технологии Одна функция или программа зависит от другой Сложности в работе с микросервисами Микросервисы полагаются друг на друга, поэтому необходимо выстроить коммуникацию между ними. В микросервисах создается больше модулей, чем в монолитных системах. Эти модули пишутся на разных языках, и их необходимо поддерживать. Микросервисы – это распределенная система, так что, по сути, мы имеем дело со сложной системой. В разных сервисах используются свои механизмы; для неструктурированных данных требуется больший объем памяти. Для предотвращения каскадных сбоев необходимо эффективное управление и слаженная командная работа. Трудно воспроизвести ошибку, если она пропадает в одной версии и вновь появляется в другой. Независимое развертывание и микросервисы – вещи слабо совместимые. Микросервисная архитектура требует большего количества операций. Сложно управлять приложением, когда в систему добавляются новые сервисы. Для поддержки всевозможных распределенных сервисов требуется большая команда опытных специалистов. Микросервисы считаются дорогостоящими решениями, поскольку для разных задач создаются и поддерживаются разные серверные пространства. Сервис-ориентированная архитектура (СОА) или микросервисы СОА-сервисы (SOA - Service-oriented architecture) поддерживаются через реестр, который считается перечнем файлов каталога. Приложения должны найти сервис в реестре и вызвать его. Иначе говоря, СОА похож оркестр: каждый музыкант играет на своем инструменте, а всеми артистами управляет дирижер. Микросервисы – это разновидность СОА-стиля. Приложения создаются в виде набора небольших сервисов, а не цельной программы. Микросервисы похожи на труппу артистов: каждый танцор знает свою программу и не зависит от других. Даже если кто-то забудет какое-то движение, вся труппа не собьется с ритма. Теперь давайте поговорим о различиях между СОА и микросервисах. Параметр СОА Микросервисы Тип проектирования В СОА компоненты приложения открыты для внешнего мира; они доступны в виде сервисов Микросервисы – это часть СОА. Такая архитектура считается реализацией СОА Зависимость Подразделения – зависимы Они не зависят друг от друга Размер приложения Размер приложения больше, чем у обычных программ Размер приложения всегда небольшой Стек технологий Стек технологий ниже, чем у микросервисов Стек технологий очень большой Сущность приложения Монолитная Полностековая Независимость и ориентированность СОА-приложения создаются для выполнения множества бизнес-задач Создаются для выполнения одной бизнес-задачи Развертывание Процесс развертывания растянут по времени Несложное развертывание, на которое тратится меньше времени Рентабельность Более рентабельно Менее рентабельно Масштабируемость Меньше, чем у микросервисов Высокая масштабируемость Бизнес-логика Компоненты бизнес-логики хранятся внутри одного сервисного домена. Простые проводные протоколы (HTTP с XML JSON). API управляется с помощью SDK/клиентов Бизнес-логика распределена между разными корпоративными доменами Микросервисные инструменты Wiremock – тестирование микросервисов WireMock – это гибкая библиотека для создания заглушек и сервисов-имитаций. В ней можно настроить ответ, который HTTP API вернет при получении определенного запроса. Также может использоваться для тестирования микросервисов. Docker Docker – это проект с открытым кодом для создания, развертывания и запуска приложений с помощью контейнеров. Использование такого рода контейнеров позволяет разработчикам запускать приложение в виде одного пакета. Кроме того, в одном пакете могут поставляться библиотеки и другие зависимости. Hystrix Hystrix – это отказоустойчивая Java-библиотека. Данный инструмент предназначен для разделения точек доступа к удаленным сервисам, системам и сторонним библиотекам в распределенной среде (микросервисах). Библиотека улучшает всю систему в целом, изолируя неисправные сервисы и предотвращая каскадный эффект от сбоев. Лучшие примеры использования микросервисной архитектуры Отдельное хранение данных для каждого микросервиса. Поддержание кода на едином уровне зрелости Отдельная сборка для каждого микросервиса. Заключение Микросервисы – это СОА-шаблон, в котором приложения создаются как набор малых и независимых серверных единиц. Микросервисная архитектура относится к стилям разработки архитектуры, позволяющим создавать приложение в виде небольших и автономных сервисов для определенных предметных областей. Монолитная архитектура похожа на большой контейнер, в котором все компоненты приложения собраны в один пакет. Каждый блок приложения в микросервисе имеет предельно малый размер и выполняет определенную функцию. Большая база кода в монолитной архитектуре замедляет процесс разработки. Выход новых версий может растянуться на месяцы. Поддерживать такую базу кода довольно сложно. Существует 2 типа микросервисов: Stateless (без сохранения состояния) и Stateful (с отслеживанием состояния) Микросервисы на Java полагаются друг на друга; они должны взаимодействовать между собой. Микросервисы позволяют в большей степени сконцентрироваться на определенных функциях или потребностях бизнеса. Сервисно-ориентированная архитектура, или СОА, – это усовершенствованные распределенные вычисления, основанные на проектной модели запроса/ответа в синхронных или асинхронных приложениях. Компоненты приложения в СОА открыты для внешнего мира и представлены в виде сервисов; микросервисы считаются частью СОА. Это реализация СОА. К популярным микросервисным инструментам относятся Wiremock, Docker и Hystrix.
img
Одним из полезнейших инструментов в повседневной работе современного бизнеса является интеграция CRM – системы и офисной телефонии. Это позволяет совершать исходящие звонки по нажатию на номер клиента, иметь всю историю звонков заказчика в CRM, прослушивать его аудиозапись разговоров, автоматически направлять вызов на ответственного менеджера и конечно, видеть карточку клиента при входящем звонке. Сегодня мы хотим рассказать об интеграции облачной Битрикс24 и IP – АТС Asterisk. Как это работает? Настройки рассмотрим на базе решения «Простые звонки». После обращения в компанию, на почту придет ссылку на модуль для Asterisk и инструкция по настройке. Архитектура работы решения следующая: на офисной IP – АТС Asterisk развертывается модуль коннектора, с указанием необходимых настроек. В свою очередь, на стороне Битрикс24 устанавливается приложение и расширение для браузера, в котором указываются реквизиты для подключения к коннектору на IP – АТС. Данное решение работает только в браузере GoogleChrome Настройка Asterisk Переходим к установке модуля АТС – коннектора на стороне Asterisk: Содержимое архива prostiezvonki извлекаем в директорию Asterisk /var/www/html/admin/modules/ и переходим дальше по файловой структуре в директорию /var/www/html/admin/modules/prostiezvonki/module Если вы используете 32 битную систему, то скопируйте файлл libProtocolLib.so в директорию /usr/lib и cel_prostiezvonki.so в директорию /usr/lib/asterisk/modules. Если у вас установлена 64 битная система, то загрузите их в /usr/lib64 и /usr/lib64/asterisk/modules соответственно. Файл из архива cel.conf переместите в директорию /etc/asterisk После настроек, переходим в интерфейс FreePBX. Перейдите во вкладку Admin → Module Admin. Находим модуль «Простые звонки» и производим его установку. После этого, приступаем к настройке: переходи во вкладку Admin → Module Admin: Рассмотрим опции настройки модуля: Общая настройка модуля Пароль - пароль, с помощью которого, Битрикс24 будет подключаться к АТС – коннектору. В данном примере пароль простой - P@ssw0rd Лог файл - полный путь к лог - файлу, в котором коннектор будет фиксировать детали своей работы Уровень записи лога - глубина логирования. Это значение имеет смысл менять на debug на этапе отладаки и "траблшутинга" Порт - порт, на котором АТС - коннектор будет "слушать" подключение от Битрикс24 Лицензия - лицензионный ключ, который вам прислала команда технической поддержки Размер очереди событий - параметр регламентирует размер очереди, в которой накапливается история звонков в случае отсутствия соединения между коннектором на АТС и CRM - системой Общая настройка модуля Префикс для входящих - префикс, который система будет подставлять к входящим звонкам, в момент передачи в Битрикс24 Префикс для исходящих - при использовании функции "Click - to - Call", то есть звонок по нажатию, коннектор будет подставлять префикс для исходящих вызовов Тип канала - в нашем примере мы работает по протоколу SIP Длина внутренних номеров - например, если вы используете внутреннюю нумерацию с 100 - 199, то данное значение будет равно 3 Настройка записи телефонных разговоров Внешняя директория - директория, в которой содержатся файлы системы записи. Здесь содержится внешний IP – адрес нашего маршрутизатора и проброшенный порт. Своего рода это префикс для ссылок на аудио - файл, который коннектор будет подставлять при передаче их в Битрикс24. Мы подробно расскажем о настройке этого поля далее. Настройка умной переадресации Таймаут поиска - время, в течение которого, коннектор ожидает получить номер ответственного сотрудника от Битрикс24 Таймаут ответа - время, в течение которого будет звонить телефон ответственного менеджера Для использования функции «Умная переадресация» (перевод звонка на ответственного менеджера), установите соответствующую галочку в настройках входящих маршрутов Ссылки на запись разговора в Битрикс24 Подключитесь к серверу IP – АТС Asterisk по SSH. Создадим директорию audio в корневой директории WEB – сервера /var/www/html/: [root@asterisk ~]# mkdir /var/www/html/audio После этого смонтируем папку, где хранятся файлы системы записи разговоров Asterisk в созданную директорию. Для этого, откройте файл /etc/fstab: [root@asterisk ~]# vim /etc/fstab Добавьте в файл следующую запись: /var/spool/asterisk/monitor/ /var/www/html/audio/ none rbind 0 0 Примените изменения командой mount -a Настройка Битрикс24 для работы с коннектором Приступаем к настройке Битрикс24. Для этого, переходим в раздел Приложения → Все приложения→ IP-телефония → Простые звонки. Произведите установку указанного приложения: Теперь устанавливаем расширение для браузера Google Chrome. Кликните по кнопке ниже и установите указанное расширение: Расширение для Google Chrome Переходим по пути Настройка → «Инструменты → «Расширения. Находим «Простые звонки» и нажимаем Настройки для конфигурации опций подключения к АТС – коннектору: Опции настройки: Внутренний номер телефона - ваш внутренний номер (Extension) Адрес АТС-коннектора - в нашей примере указано адрес 1.2.3.4:56789 - это внешний IP - адрес нашего маршрутизатора и проброшенный порт. То есть, при обращение на этот адрес "извне", происходит проброс на внутренний адрес 192.168.1.2:10150, где 192.168.1.2 - это IP - адрес Asterisk, а 10150 - порт, который мы ранее указывали в настройках АТС - коннектора Пароль - пароль, который мы указали в настройка АТС - коннектора Кол-во секунд для определения клиента по номеру телефона - если у вас на этапе эксплуатации не определяется клиент по известному номеру, увеличьте это значение Автоматическое создание лида - создавать ли лида, если звонок пришел с неизвестного номера Готово. Нажимаем «Сохранить и подключить». Как видно, наш коннектор находится в статусе «Подключен». Сделаем тестовый звонок: Использование нового API Bitrix24 При установленной галочке "Использование нового API Bitrix24 (бета)", как показано на скриншоте ниже, происходят изменения в работе всплывающих окон:
img
Сериализация – это процесс, в котором одна служба берет структуру данных, такую как словарь в Python, упаковывает ее и передает другой службе для чтения. Это максимально простое определение. Представьте, что мне нужно отправить кому-то сообщение. Итак, я записываю текст на уже собранный пазл. Далее я разбираю части пазла, добавляю несколько инструкций о том, как его собрать, и отправляю его. Затем получатель сообщения, получив кусочки головоломки, собирает их вместе. И теперь у него есть мое сообщение. Техническое определение этого понятия немного интереснее. А именно, сериализация – это процесс преобразования объекта данных в поток байтов и сохранения состояния объекта для хранения на диске или передачи по сети. Это сокращает необходимый размер хранилища и упрощает передачу информации по сети. Маршалинг и сериализация – в чем разница? Здесь на ум может прийти понятие маршалинга (Marshalling). Маршалинг – это процесс преобразования представления объекта в памяти в форму, подходящую для передачи. Хотя маршалинг и сериализация в общих чертах похожи, между ними все-таки есть принципиальная разница. Например, при создании программы в Golang для считывания JSON данных в структуру данных Golang вы можете использовать маршалинг для преобразования пары «ключ-значение» JSON в пару «ключ-значение» Golang. Разница в том, что маршалинг используется для преобразования данных. А сериализация, напротив, отправляет или сохраняет данные в потоке байтов и повторно собирает их в исходную форму. Оба процесса вроде бы выполняют процесс сериализации, но с разными намерениями. Вы можете увидеть структуру, которую я создал для взаимодействия с данными Twitter, ниже, как пример процесса маршалинга в действии. В Golang вы можете вставлять подсказки, называемые тегами, легко преобразовывая этот объект в данные JSON с помощью встроенной службы маршалинга Golang. Что такое Endianness? Я также хотел бы немного затронуть тему порядка следования байтов. Endianness – это термин, который используется для описания порядка байтов в памяти. Представьте, что память – это блок, в котором хранятся биты данных. Чтобы сериализация работала, поток байтов должен передавать типы данных независимо от изменения порядка следования байтов из одной системы в другую. Здесь вы можете увидеть большие различия и не очень. Очень важно, чтобы порядок следования байтов из одной системы в другую совпадал или каким-либо образом преобразовывался, поскольку не все системы упорядочивают свои биты одинаково. Little endian (от младшего к старшему) и big endian (от старшего к младшему) Варианты использования сериализации Наш вариант использования в полной мере использует все функции сериализации. Мы планируем получить некоторую информацию от сканируемого оборудования, упаковать эту информацию в поток байтов и отправить ее по сети в другую службу, которая восстановит данные. Процесс обратной сериализации и восстановления данных в исходную форму называется десериализацией. Есть и другие варианты использования сериализации. Например, REST API или протоколы обмена сообщениями, такие как AMQP, могут использовать сериализацию для сжатия и отправки данных. AMQP – это протокол обмена сообщениями, в котором вы отправляете сообщение брокеру AMQP, а служба-получатель «прослушивает» этого брокера в поисках сообщения. Серверные специалисты должны быть хорошо с этим знакомы, так как это часто используется для отправки данных туда и обратно в распределенных системах. Многие языки программирования включают возможность легкого развертывания некоторой сериализации. Так что это языково-независимая тема. Пример сериализации Приведем краткий пример. Код, приведенный ниже, использует библиотеку kombu для отправки сообщений через AMQP. Мы используем ее для отправки сообщений из одного программного пакета в другой по сети. Данный код предназначен для службы, отправляющей сообщение брокеру AMQP: Обратите внимание на метод publish. Мы передаем метод сериализации в качестве аргумента, чтобы библиотека понимала, как сериализовать данные, которые мы передаем. Сообщение с данными преобразуется в поток байтов, который, если на него посмотреть, выглядит просто как длинная строка букв и цифр. И мы отправляем сообщение. Соответствующая служба будет использовать тот же метод сериализации для восстановления данных в их исходное состояние. Это важная функция, поскольку мы создаем набор инструментов, которые должны иметь возможность отправлять сообщения друг другу, чтобы все работало. Форматы данных сериализации В основном я использую JSON для сериализации, когда этого требует задача. Но тем не менее, вы можете использовать и другие варианты. У JSON много издержек, но для меня он идеален, потому что он читабелен. Вы также можете использовать Protobuf, YAML или XML. Это лишь некоторые из возможных. Заключение Сериализация становится необходимостью, когда вы строите свои каналы связи. Полезно знать о таком понятии, чтобы чувствовать себя уверенно при подходе к любому инструменту, который вы используете, с соответствующими базовыми знаниями.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59