По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Универсальная платформа маршрутизации (Versatile Routing Platform VRP) - это сетевая операционная система, применяемая в сетевых устройствах Huawei, таких как маршрутизаторы и коммутаторы. Он предоставляет пользователям этих сетевых устройств согласованную и мощную платформу конфигурации за счет стандартизации сетевых, пользовательских и управляющих интерфейсов. Основанная на модели TCP/IP, архитектура иерархической системы VRP объединяет возможности управления устройствами и сетями, технологии сетевых приложений и технологии передачи данных, такие как маршрутизация, многопротокольная коммутация по меткам (MPLS), виртуальная частная сеть (VPN) и технологии безопасности, с операционной системой в реальном времени. Чтобы гарантировать, что платформа конфигурации остается актуальной и актуальной для современных технологий, VRP эволюционировала от VRP1.0, впервые выпущенного в 1998 году, до VRP8.X, его последняя версия. Многие из сетевых устройств низкого и среднего уровня, которые в настоящее время используются в корпоративных сетях, используют VRP5.X. Далее мы будем рассматривать версию VRP5.12. VRP- Командная строка Командная строка VRP предназначена для настройки и управления сетевыми устройствами Huawei. Командная строка Командные строки VRP - это символьные строки, используемые для настройки функций и развертывания служб на сетевых устройствах Huawei. Командная строка состоит из ключевых слов и параметров. Ключевые слова - это одно или несколько слов, которые однозначно идентифицируют, соответствуют и обычно описывают инструкцию, выполняемую командной строкой, а параметры определяют данные, используемые в качестве входных данных для ключевых слов. Например, в командной строке ping ip-адрес (который проверяет подключение устройства), ping является ключевым словом, а ip-адрес представляет собой заданный пользователем параметр, такой как 192.168.1.1. Сетевые устройства Huawei обычно поставляются неконфигурированными по умолчанию, поэтому пользователь должен ввести командные строки в интерфейс командной строки устройства (CLI), чтобы настроить функциональность устройства. CLI CLI предоставляет средства взаимодействия с устройством. Через CLI вы можете вводить командные строки для настройки устройств. Командные строки VRP (их насчитывается тысячи), классифицируются по функциям и регистрируются в различных представлениях команд. Команда View CLI предоставляет несколько команд view, из которых наиболее часто используются команды view из режима пользователя, системы и интерфейса. Чтобы ввести и использовать командные строки в CLI, необходимо сначала получить доступ к пользовательскому режиму (как показано на рис. 1). Этот режим позволяет запрашивать основную информацию и состояние устройства и получать доступ к другим режимам, но не позволяет настраивать сервисные функции. Вы можете настроить сервисные функции и выполнить основные команды конфигурации в системном режиме (как показано на рис. 2), доступ к которому можно получить из пользовательского режима, выполнив команду system-view. Системный режим также позволяет получить доступ к другим режимам, таким как режим интерфейса (как показано на рисунке 3). В режиме интерфейса вы можете настроить параметры и службы для указанного интерфейса. Командная строка в каждом режиме содержит имя хоста устройства ("Huawei" на предыдущих рисунках), которое в режиме пользователя заключено в угловые скобки (. , .) и во всех других видах заключены в квадратные скобки ([]). В некоторых режимах командная строка может содержать дополнительную информацию (например, идентификатор интерфейса GigabitEthernet4/0/1 в предыдущем примере режиме интерфейса). Командный и пользовательский уровни Команды VRP классифицируются в зависимости от выполняемой ими функции: команды уровня 0 (уровень посещения) проверяют сетевое подключение, команды уровня 1 (уровень мониторинга) отображают состояние сети и базовую информацию об устройстве, команды уровня 2 (уровень конфигурации) настраивают службы для устройства, и команды уровня 3 (уровень управления) управляют определенными функциями устройства, такими как загрузка или выгрузка файлов конфигурации. Чтобы ограничить, какие команды может запускать пользователь, пользователям назначаются разные уровни пользователя. Всего доступно 16 пользовательских уровней, от уровня 0 до уровня 15. Уровень 0 является наиболее ограничительным, причем разрешающая способность увеличивается для каждого последующего уровня. По умолчанию уровни с 4 по 15 совпадают с уровнями 3, поэтому пользователи, которым назначены эти уровни, имеют одинаковые разрешения и могут выполнять все команды VRP. Однако пользовательские уровни могут быть настроены, если требуется более тонкая детализация управления. Например, вы можете повысить до уровня 15 уровень пользователя определенных команд, чтобы эти команды могли выполнять только пользователи, назначенные этому уровню. Однако изменение назначений по умолчанию может усложнить задачи по эксплуатации и обслуживанию и ослабить безопасность устройства. В таблице 1 приведено сопоставление по умолчанию между уровнями пользователя и команды. Таблица 1. Сопоставление уровней Пользовательский уровень Командный уровень Описание 0 0 Команды для диагностики сети (такие как ping и tracert) и удаленный вход (например, telnet) 1 0,1 Команды для обслуживания системы, такие как display. Конкретные команды display, такие display current-configuration и display saved-configuration, являются командами уровня управления (требуются пользователи уровня 3). 2 0,1,2 Команды для настройки сервиса, такие как команды маршрутизации 3-15 0,1,2,3 Команды для управления основными операциями системы, такими как файловые системы, загрузка по FTP, управление пользователями, настройка уровня команд и диагностика неисправностей Использование командных строк В этой части рассмотрим, как использовать командные строки VRP. Доступ к командному режиму Как уже упоминалось в первой части, пользовательский вид - это первый вид, отображаемый после загрузки VRP. Если отображается Huawei (а курсор справа от мигает), вы находитесь в режиме пользователя. В этом режиме вы можете запускать команды для запроса базовой информации и статуса устройства. Например, для настройки интерфейса необходимо получить доступ к системному режиму, а затем получить доступ к режиму интерфейса. Команды для этого - system-view и interface interface-type interface- number. Ниже показано, как получить доступ к режиму интерфейса GigabitEthernet 1/0/0 system-view [Huawei] [Huawei] interface gigabitethernet 1/0/0 [Huawei-GigabitEthernet1/0/0] Выход из командной строки Команда quit позволяет вам выйти из текущего режима и вернуться к режиму верхнего уровня. В предыдущем примере текущим режимом является режим интерфейса, а системным режимом является режимом верхнего уровня режим интерфейса. Выполнение команды quit в режиме интерфейса покажет следующее. [Huawei-GigabitEthernet1/0/0] quit [Huawei] Чтобы вернуться к режиму пользователя, снова введите команду quit. [Huawei] quit <Huawei> Иногда необходимо вернуться в пользовательский режим, не выполняя команду quit несколько раз. Команда return позволяет вам напрямую вернуться к режиму пользователя. [Huawei-GigabitEthernet1/0/0] return <Huawei> Вы также можете использовать сочетания клавиш Ctrl + Z в любом режиме, чтобы вернуться к режиму пользователя. Редактирование командной строки Вы можете ввести до 510 символов в командной строке. Однако, если вы заметите ошибку в длинной командной строке, перепечатывание 510 символов станет трудоемким. В таблице 2 перечислены общие функциональные клавиши, которые не чувствительны к регистру, для редактирования командных строк VRP. Обратите внимание, что курсор не может переместиться в подсказку (например, [Huawei-GigabitEthernet1 /0/0]), и подсказка также не может быть отредактирована. Таблица 2. Функциональные клавиши Клавиша Назначение Backspace Удаляет символ слева от курсора ← или Ctrl+B Перемещает курсор на один символ влево → или Ctrl+F Перемещает курсор на один символ вправо (только вправо до конца команды) Delete Удаляет символ, выделенный курсором (все символы, следующие за удаленным символом, сдвигаются на один пробел влево) ↑ или Ctrl+P Отображает последнюю введенную команду, которая была выполнена. Система хранит историю выполненных команд, позволяя отображать их по одной (нажимайте повторно для просмотра предыдущих команд) ↓ или Ctrl+N Отображает следующую самую последнюю команду в сохраненном списке истории Ввод сокращенных ключевых слов Окончание командной строки автоматически заполняет частично введенные ключевые слова, если система может найти уникальное совпадение. Например, вы можете ввести такие комбинации, как d cu, di cu или dis cu, и нажать Tab, и система автоматически отобразит команду display current-configuration. однако d c и dis c не возвращают совпадения, поскольку другие команды, такие как display cpu-defend, display clock и display current-configuration, также соответствуют этим частичным ключевым словам. Получение помощи Запоминание тысяч командных строк VRP может показаться сложной задачей. Знак вопроса (?) облегчает задачу. Вы можете ввести? в любой момент, чтобы получить онлайн помощь. Помощь классифицируется как полная или частичная. Полная справка, например, отображает список команд, доступных в текущем режиме. Ввод знака ? в пользовательском режиме отобразит следующее. Из списка вы можете выбрать, какая команда вам нужна. Например, ключевое слово display описывается как Display information. Это ключевое слово содержится в более чем одной команде, поэтому введите любую букву, чтобы выйти из справки, введите display и пробел, а затем введите знак?. В результате отобразится следующая информация. Из этого списка вы можете определить, какое ключевое слово связать с display. Например, при запуске команды display current-configuration отображаются текущие конфигурации устройства. Частичная помощь идеально подходит для тех случаев, когда вы уже знаете часть командной строки. Например, если вы знаете dis для display и для с current- configuration, но не можете запомнить полную командную строку, используйте частичную справку. Ввод dis и ? показывает следующее. Единственное ключевое слово, которое соответствует dis - это display. Чтобы определить вторую часть командной строки, введите dis, пробел, c и ?. Несколько ключевых слов начинаются с c; однако легко определить, что необходимая командная строка display current-configuration. Использование сочетаний клавиш Сочетания клавиш облегчают ввод команд. Предварительно определенные сочетания клавиш называются системными сочетаниями клавиш. Некоторые из часто используемых системных сочетаний клавиш перечислены в таблице 3. Таблица 3. Обычно используемые системные сочетания клавиш Клавиши Назначение Ctrl+A Перемещает курсор в начало текущей строки Ctrl+E Перемещает курсор в конец текущей строки Esc+N Перемещает курсор вниз на одну строку Esc+P Перемещает курсор вверх на одну строку Ctrl+C Останавливает работающую функцию Ctrl+Z Возвращает к виду пользователя Tab Обеспечивает завершение командной строки. Нажатие Tab после ввода частичного ключевого слова автоматически завершает ключевое слово, если система находит уникальное соответствие Системные сочетания клавиш нельзя изменить; тем не менее, вы можете определить свои собственные (известные как пользовательские сочетания клавиш). Определенные пользователем сочетания клавиш могут обеспечить дополнительное удобство, но могут конфликтовать с некоторыми командами - поэтому определение таких клавиш не рекомендуется.
img
Привет, сегодня расскажем что такое база данных и SQL. У современных баз данных куча нюансов - погнали разбираться. Представь - собираешь ты деньги на подарок корешу, и записываешь на бумажке, кто сколько скинул. Табличка с денежками организована, разделена по именам и сумме долга, и имеет удобную структуру - ну вот оно, это и есть база данных! Ага, теперь, перемещаемся в цифровое пространство и заводим целый эксель файл для этого дела. Стало удобнее, можно редактировать, сортировать и даже данные удалять! Круто! Но достаточно ли этого для роста этой базы данных? Нет. Со временем данных становится так много, что админам приходится связывать их друг с другом, а тут одним эксель файлом уже не обойтись. Представим, решили вы сделать свой аналог ютуба, как будете хранить инфу о пользователях? Список юзеров, там, каналы, кто на что подписан, лайки и вот это все. Сложить это все в одну таблицу? Будет неудобно и медленно работать. Очевидно, надо разделить сущности на несколько таблиц - юзеры, каналы и видосы: Теперь свяжем данные между собой и добавим информацию о том, кто создал канал, и на каком канале залили видео. Ага, получились связанные таблицы. Связанные, от слова связь. А связь, это по-английски relation. А в айти тусовке они так и называются - реляционные базы данных, и это один самых распространенных типов баз данных. Еще есть нереляционные базы данных, о них подробнее можно прочитать в этой статье про NoSQL. Уф, ну теперь с данными стало гораздо удобнее работать, и мы избежали большой таблицы с повторяющимися строчками, разбив все на несколько табличек. Такой процесс еще называется нормализацией, когда мы избавляемся от избыточных данных. Ну и как раз для этого мы ввели в каждой таблице специальное поле - ID, которое идентифицирует каждую запись. Этот айди называется Primary Key, он же “первичный ключ”. А в таблице которая будет на него ссылаться, он будет называться Foreign Key, или по-русски “внешний ключ”. Нырнем в детали и поговорим про типы связей между таблицами. Первый тип называется “Один-ко-многим” или “многие-к-одному” (One-to-Many или Many-to-One). В нашем примере, у каждого видео может быть только один канал, где оно выложено, но на одном канале может быть много видео, поэтому в двух последних строках ID канала у нас повторяется, верно? Отношения «один-ко-многим» также можно рассматривать как отношения «многие-к-одному», в зависимости от того, с какой стороны вы на это смотрите. Второй тип связей называется “один-к-одному” (One-to-One) - классические табличные отношения. Вообще, это редко используемый тип связи, обычно его делают для безопасности. Это как если на нашем аналоге ютуба, мы разрешили бы создавать только один канал одному пользователю и в таблице с каналами ID создателя не могло повторяться. Такое себе, согласен? В таком случае вообще можно было бы обойтись и одной таблицей. Ну и третий тип связей, это “многие ко многим” (Many-to-many). Это когда у нас появляется промежуточная таблица связей, которая как бы соединяет два отношения “один ко многим”, которые мы обсудили в начале разбора типов связей. Давайте сделаем таблицу с лайками балалайками, где будем хранить ID пользователей и ID видео, к которым они поставили лайк: А вот так они связан: каждый пользователь может поставить лайк каждому видео. Теперь вопрос - а где все это хранить? Не в экселе же. И тут на сцену выходит термин СУБД, она же система управления базами данных - это программа, которая позволяет создавать, редактировать и администрировать реляционную базу. Ну и для управления всей этой петрушкой используется язык структурированных запросов, SQL (Structured Query Language) эскюэль или сиквел, как иногда его называют за рубежом. Он очень простой и понятный, вот смотри - чтобы найти названия всех видео с одного канала, нам нужно выполнить следующий запрос: SELECT name FROM videos WHERE channel_id = 201 То есть мы буквально говорим: выбери (SELECT) имена из (FROM) таблицы видео, где (WHERE) айдишник (ID) канала равен 201. Если вы хотите взять данные из нескольких таблиц и объединить результат, то нужно использовать в запрос параметр JOIN (от английского соединить). Вот такая упрощающая жизнь админам аналогия с разговорным языком. Так, SQL конечно позволяет добавлять, удалять и изменять данные и сами таблицы. Но важно не забывать про схему базы данных (Database schema), которая служит для описания структуры таблицы, ее полей и ограничений. Прикол в том, что если вам потребуется добавить или убрать столбец в таблице, то это изменение коснется вообще всех данных в таблице, таким образом если мы добавляем новый столбец, то он теперь будет присутствовать в каждой строке. Окей, а для чего вообще нужны ограничения? Для целостности твоих данных. Помнишь мы рассказали про первичный и внешний ключ? Так вот, благодаря им мы можем удостовериться, что в таблицу не попадет запись, которая ссылается на несуществующий айдишник. Или различные ограничения полей, которые не дадут записать дублирующие или пустые данные в нашу базу (Not NULL и Unique). И еще: транзакции. Эта штука, которая позволяет как бы склеить несколько SQL запросов в один. Ну вот представь такую задачку: вставить данные в первую таблицу, а во второй указать ID вставленной записи. Если ты делаешь это без использования транзакций, а во время второго этапа у тебя отвалится интернет, то первая запись попадет в базу, а вторая нет. Ага, появляется интернет, и ты с улыбкой на лице идешь снова выполнить эти запросы, только на этот раз получишь ошибку, что такая запись уже есть, ибо первая то уже в базе! А в случае использования транзакций, при получении ошибки, мы откатимся до того момента, который был до начала транзакции. А еще все эти радости помогают реляционным БД (базам данных) соответствовать так называемым требованиям ACID, которые нужны для сохранности данных - это очень важно в банковской отрасли, или любой другой, где целостность и сохранность данных супер важны. Давай разберемся с аббревиатурой: Atomicity — атомарность, или же проще говоря, непрерывность: это как раз про транзакции, которые мы обсудили только что. Либо операция выполняется целиком, либо никак. Consistency — согласованность: данные, записываемые в таблицу должны соответствовать всем выставленным правилам и ограничениям, помнишь, мы говорили про первичный и внешний ключи, а также про уникальность? Isolation — изолированность: если вы гоняете тонну транзакций одновременно, они не должны пересекаться и влиять друг на друга. Это очень важно для высоконагруженных баз Durability — надежность: если мы получили подтверждение, что транзакция выполнена, то значит наши данные в сохранности, даже если после этого произошел сбой. Ну и в качестве примеров таких баз данных назовем: Microsoft SQL Server, Oracle Database, MySQL, MariaDB и PostgreSQL.
img
Протокол Spanning Tree (STP) обеспечивает отсутствие петель в топологии любой сети. Помимо предотвращения петель, STP изолирует угрозу от широковещательного шторма в сетях на втором уровне модели OSI (L2). Разберемся в терминах: Какие бывают порты? Можно смело выделить 3 вида портов в рамках протокола Spanning Tree. А именно: Корневой порт (root port) Выделенный порт (designated port) Блокированный (альтернативный порт) Статусы портов Порт коммутатора может находиться в различных статусах, в зависимости от результата сходимости Spanning Tree: Блокирован - как видно из названия, данный порт находится в статусе блокировки. Это означает, что порт не участвует в приеме и пересылке фреймов. Все BPDU сообщения от соседних коммутаторов исключаются. BPDU (Bridge Protocol Data Unit) это фреймы, необходимые для обмена сообщениями между коммутаторами для выбора корневого (root) устройства в рамках механизма протокола STP (Spanning Tree Protocol). Слушает – коммутатор все еще не участвует в процессе передачи фреймов с данными, но получает и отправляет сообщения BPDU. Учится – в данном состоянии порт начинает фиксировать MAC – адреса устройств. Пересылка – в состоянии пересылки, коммутатор может отправлять и принимать фреймы BPDU параллельно с заполнением таблицы MAC - адресов. Выключен – порт выключен администратором. Этапы протокола STP Выбор «корневого» (root) коммутатора. Выбор «корневого» (root) порта. Назначение «выделенного» (designated) порта. Блокировка остальных портов в рамках алгоритма STP. Выбор корневого коммутатора Коммутатор с наименьшим идентификатором (ID) выбирается как корневое устройство. Идентификатор коммутатора (switch ID) состоит из следующих компонентов: . Номер приоритета . MAC – адрес коммутатора Например: 24577.00:00:00:00:00:01 / Приоритет. MAC – адрес В процессе выбора корневого коммутатора, первым делом сравнивается приоритет. Если у двух коммутаторов одинаковых приоритет, то выбор базируется на MAC – адресе устройства. Выбор корневого порта Корневой порт выбирается на основании наименьшей «стоимости» пути к корневому коммутатору. Стоимость пути выражается из стоимости линков, ведущих к корневому коммутатору. Важно отметить: Корневые порты назначаются только на не корневых коммутаторах. Один не корневой коммутатор может иметь только один корневой порт. Выбор назначенного порта Порт коммутатора, который имеет кратчайший путь к корневому коммутатору - называется «назначенным». Каждый сегмент (путь) имеет свой назначенный порт. Назначенные порты определяются на всех коммутаторах (корневых и нет). Если два порта имеют одинаковую стоимость, сначала учитывается идентификатор устройства (Bridge ID), а затем идентификатор порта (Port ID). Все остальные порты переходят в альтернативный статус и блокируются. Пример До запуска алгоритма Spanning Tree: Выбор портов Финальная топология
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59