По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для того, чтобы начать разговор про загрузчиков, для начала необходимо понимать, как разбиваются жесткие диски и систему их разбиения. MBR Master Boot Record это первые 512 Байт диска, это не раздел, не партиция это участок места в начале жесткого диска, зарезервированный для загрузчика Операционной системы и таблицы разделов. Когда компьютер включается BIOS производит тестовые процедуры. После чего, передает код управления начальному загрузчику, который как раз расположен в первых байтах MBR. Причем, какому жесткому диску передавать управление мы определяем самостоятельно в соответствующих настройках BIOS. MBR это очень важная часть нашего жесткого диска, потеря его чревата потерей данных с нашего жесткого диска или невозможностью загрузится. Поэтому ранее возникала потребность в резервном копировании данной части жесткого диска. Но это было достаточно давно. В настоящее время большинство машин не использует BIOS, а использует UEFI это современная замена BIOS, которая более функциональнее и имеет больше плюсов. Нужно понимать, что UEFI это более защищенная загрузка и более скоростная, потому что позволяет инициализировать параллельно различные интерфейсы и различную последовательность команд. Так вот если у нас не BIOS, а UEFI, то HDD будет разбит не по принципу MBR, а по принципу GPT - GUID Partition table. Это другой формат размещения таблицы разделов. Это UEFI, а UEFI использует GPT там, где BIOS использует MBR. GPT для сохранения преемственности и работы старых операционных систем оставила в самом начали диска блок для MBR. Разница изначально между MBR и GPT, в том, что MBR использует адресацию типа цилиндр, головка, сектор, а GPT использует логические блоки, LBA0, LBA1, LBA2. А также для GPT необходимо понимать, что есть логическое дублирование оглавление таблицы разделов записано, как в начале, так и в конце диска. И в принципе для организации резервного копирования Linux в принципе ничего не предлагает. Но в случае если у нас MBR это необходимо делать. Для начала надо нам понять, что и куда у нас смонтировано какой раздел у нас является загрузочным и его скопировать. Вводим команду fdisk l и видим следующее: Устройство /dev/sda1 является загрузочным и, следовательно, на нем находится MBR. Команда, которая осуществляет резервное копирование она простая - это dd. Это утилита, которая позволяет копировать и конвертировать файлы. Главное отличие данной утилиты в том, что она позволяет это делать по секторно, т.е. она учитывает геометрию диска. Использование: dd if=/dev/sda of=/root/backup.mbr bs=512 count=1. if что мы копируем, of - куда мы это копируем, bs что мы копируем 1 блок размера 512, count - количество блоков. Только, что мы скопировали первый блок жесткого диска, это то самое место, где на жестком диске находится MBR. Загрузчики Первый загрузчик Lilo Linux Loader Это был самый популярный загрузчик для Linux и для Unix систем в целом, он не зависел от файловой системы, мог загружать ОС с жесткого диска или с дискеты. Из этого выходила его особенность, загрузчик Lilo хранил в своем теле положение ядер и пункты меню и требовал обновления себя с помощью специальной утилиты, можно было поместить до 16 пунктов меню при загрузке. Данного загрузчика уже нету во многих дистрибутивах ОС Linux. В настоящее время повсеместно используется загрузчик GRUB2, но мы можем поставить загрузчик Lilo, чтобы с ним разобраться. Установка довольно-таки банальная apt-get install lilo. В процессе установки выскакивает предупреждение, что это первая установка lilo, после установки необходимо будет исполнить команду, а затем запустить непосредственно загрузчик, который применит непосредственно все изменения. Нажимаем ОК. Далее запускаем liloconfig. Ничего не произошло, просто утилита создала файл и этот файл является файлом конфигурации. С помощью команды cat /etc/lilo.conf мы можем посмотреть файл конфигурации загрузчика. В заголовке файла написано сразу, что после внесения изменений необходимо выполнить команду lilo, чтобы он сразу применил их. Далее идут основные параметры конфигурационного файла. Первый параметр lba32. Вот он как раз и меняет ту самую традиционную конфигурацию цилинд-головка-сектор, на logical block адреса, что позволяет работать с большими дисками. В разделе boot мы должны указать на каком диске у нас находится MBR. Если внимательно посмотреть, то можно увидеть подсказку, где посмотреть /dev/disks/by-id/ata* uuid дисков. После, чего можно скопировать имя диска и вставить его и тогда его сможет загружать. Lilo узнает, где MBR и будет оттуда загружать систему. Verbose = 1 Verbose level - это параметр, который показывает сколько выводить информации при загрузке. Install = menu - Данный параметр отвечает, как будет выглядеть меню загрузки. Lilo предлагает 3 варианта. И для каждого варианта, есть внизу дополнительные закомментированные параметры. Prompt это параметр отвечает за ожидание пользователя, его реакции. По умолчанию 10сек. Значение параметра в децасекундах. Далее мы можем посмотреть, где находятся ядра нашей операционной системы. Когда мы запустили liloconfig загрузчик нашел наши ядра операционной системы. Как видно на скриншоте определил версию ядра, определил где будет корневая файловая система. Смонтировал в режиме read-only. В данных параметрах мы может отредактировать строчку lable, чтобы переименовать отображение при загрузке. Если есть желание можно отредактировать данный файл и добавить еще ядро, если установлена вторая OS. Загрузчик GRUB Старый загрузчик GRUB эта та версия загрузчика, который использовался с Lilo. Тогда Lilo был самый распространенный. Теперь данный загрузчик называется Grub legacy. Больше никак не развивается, для него выходят только патчи и обновления и его даже невозможно установить на новые операционные системы. Т.к. команды и инструментарий используется одинаковый, как для старого GRUB, так и для нового. Далее мы будем рассматривать современный вариант загрузчика GRUB 2. Вот так он при загрузке примерно выглядит. Загрузчик GRUB 2 был полностью переделал и имеет мало чего общего с предыдущим загрузчиком. Он может загружать любую ОС и передавать загрузку, так же другому загрузчику, альтернативной ОС. Например, MS Windows это NTDLR. Является самым популярным загрузчиком на сегодня и стоит по умолчанию в подавляющем количестве операционных систем типа Linux. Если, что-то случилось, например кто-то переставил на загрузчик lilo, мы можем вернуть загрузчик Grub обратно командой grub-install /dev/sda. Можно узнать версию загрузчика следующим способом grub-install version. Основной файл конфигурации можно посмотреть cat /boot/grub/grub.cfg. Файл настройки и конфигурации, достаточно сильно отличается от файла конфигурации lilo или первой версии GRUB. Данный файл не редактируется, т.к он создается скриптами с использованием нескольких настроечных файлов, которые мы можем найти в папке /etc/grub.d с использованием настроек файла /etc/default/grub. Примерно так выглядит файл настроек для загрузки. И здесь в более или менее в понятном нам виде находятся настройки. И данные настройки определяют поведение. Например, grub_default = 0 устанавливает ядро для запуска по умолчанию, параметр grub_hidden_timeout = 0 обозначает использоваться пустой экран. grub_hidden_timeout_quiet = true - это утверждает, что будет использоваться пустой экран.Т.е загрузка будет происходить в скрытом режим и мы не увидим. Далее обычный таймаут ожидание действий пользователя. Grub_cmdlin_linux_default = quiet тихий режим, splash - это заставка. Отредактировать данный файл возможно в редакторе. Второй путь к папке /etc/grub.d в ней лежат исполняемые файлы. Данные файлы сканируют, также ядра при необходимости добавят нужные параметры в загрузчик. Мы всегда можем добавить опцию и написать скрипт. Для применения настроек в загрузчике, надо выполнить update-grub.
img
Прогресс не стоит на месте и постепенно, телефонные станции на базе IP вытесняют устаревшие аналоговые АТС. При миграции с аналоговой на IP – АТС, основной головной болью для бизнеса является сохранение телефонной емкости, которая была подключена к аналоговой АТС и к которой так привыкли постоянные клиенты. В данном случае на помощь приходит FXO шлюз. Забегая вперед хочется отметить, что процесс подключения аналоговых линий всегда сложен: возникает множество проблем с корректной передачей CallerID, определением Busy Tones (сигналов занято), шумами или помехами на линии и прочими неприятностями. Итак, если вас не отпугивает вышеперечисленные трудности, то мы с радостью спешим рассказать как настроить бюджетный VoIP шлюз D-Link DVG-7111S и подключить его к IP-АТС Asterisk. Данная статья будет полезна тем, кто имеет аналоговые телефонные линии и хочет скрестить их сетью VoIP. Что такое FXO и FXS? Зачастую, некоторые компании, по тем или иным причинам, не могут отказаться от использования старых аналоговых линий. Причин может быть множество, например, провайдер может отказаться переводить на протокол SIP номер, который многие годы знают все заказчики или невозможность миграции со старой мини-АТС. Именно для таких случаев необходим VoIP-шлюз, который позволит состыковать устройства разных поколений. Разберемся с терминологией. Для соединения IP-АТС с аналоговыми линиями служат интерфейсы FXO (Foreign eXchange Office) и FXS (Foreign Exchange Station). Интерфейс FXS – это порт, с помощью которого аналоговый абонент подключается к аналоговой телефонной станции. Простейшим примером может служить телефонная розетка в стене у Вас дома. FXO – это интерфейс, в который включаются аналоговые линии. Следовательно, любая аналоговая линия имеет два конца, на одном из который интерфейс FXS (АТС), а на другом FXO (Телефон). Другими словами, чтобы было совсем понятно: FXS - если вам требуется подключить аналоговый телефон к IP – АТС, то воспользуйтесь FXS портом (шлюзом) FXO - если вам требуется подключить аналоговую линию от провайдера к IP – АТС, то воспользуйтесь FXO портом (шлюзом) Таким образом, для того чтобы скрестить сеть VoIP с аналоговой нам нужно иметь такое адаптирующее устройство, которое бы преобразовывало сигналы аналоговой телефонной линии в сигналы VoIP. Настройка В нашем примере мы имеем в распоряжении: аналоговую линию от провайдера услуг, IP-АТС Asterisk и шлюз D-Link DVG-7111S. Первое, что необходимо сделать – включить шлюз в одну сеть с IP-АТС Asterisk с помощью интерфейса WAN, порт LAN подключить в локальный свич, а также подключить имеющуюся аналоговую линию в порт FXO на шлюзе. Теперь шлюз можно найти по адресу 192.168.8.254, только предварительно нужно на управляющей АРМ настроить адрес 192.168.8.1. Перед нами открывается вэб-интерфейс, через который можно управлять шлюзом. Стандартный логин admin без пароля. Теперь необходимо сконфигурировать дополнительные сетевые настройки. Для этого переходим в раздел Setup -> Internet Setup и настраиваем новый адрес шлюза из той же сети, в которой находится Asterisk, а также адреса серверов DNS. Жмём Apply Далее переходим на вкладку VoIP Setup и настраиваем следующие параметры: PHONE 1 - FXS Настраивается если у вас есть отдельный аналоговый телефон. Сюда заносим его Extension, который зарегистрирован на Asterisk. В разделе PHONE 2 - FXO настраиваются параметры имеющейся аналоговой линии в соответствии с настройками транка на Asterisk. Номер и пароль на шлюзе и на Asterisk должна совпадать. В разделе SIP PROXY SERVER настраиваются параметры подключения к IP-Атс Asterisk. Указываем IP-адрес нашего сервера, порт (по умолчанию 5060) и время регистрации TTL. Нажимаем Apply. Во вкладке LAN Setup выбираем режим Bridge, всё остальное оставляем без изменений. Переходим в раздел ADVANCED -> VOIP CODECS и настраиваем нужный приоритет голосовых кодеков. В разделе CPT/ Cadence рекомендуем выключить опцию BTC, поскольку разные провайдеры могут по-разному отдавать сигнал “Занято” это может являться причиной внезапных обрывов. В разделе HOT LINE включаем данную функцию и вписываем номер телефонной линии. Теперь, при звонке из ТФоП, шлюз сам наберет данный номер с минимальной задержкой и вызов пойдёт через Asterisk. На этом настройка шлюза завершена, рекомендуем провести следующий набор действий MAINTENANCE -> Backup and Restore -> System--Save and Reboot -> Save all settings -> Reboot Настройка FreePBX Теперь необходимо на IP-АТС Asterisk создать соответствующий транк. В нашем случае, транк для подключения аналоговой линии от D-Link будет выглядеть так: В разделе sip Settings -> Outgoing указываем адрес, который настраивали на шлюзе host=192.168.1.2 //ip - адрес шлюза port=5060 context=from-trunk qualify=yes type=peer insecure=no В разделе sip Settings -> Incoming настраиваем такие же параметры аналоговой линии, которые настраивали на шлюзе. Номер и пароль должны совпадать. host=dynamic username=495123456 secret=тут_ваш_пароль context=from-trunk qualify=yes type=friend insecure=no Готово! Осталось только настроить входящую и исходящую маршрутизацию. О ее настройке можете почитать по ссылке ниже: Настройка маршрутизации вызовов
img
Теперь мы можем продолжить поиск и устранение неисправностей. В большинстве случаев вы ожидаете увидеть определенную сеть в таблице маршрутизации, но ее там нет. Далее рассмотрим несколько сценариев неправильной (или полностью не рабочей) работы EIGRP и как исправить наиболее распространенные ошибки. Ниже перечислены часто встречающиеся ошибки: Первую часть статьи про траблшутинг EIGRP можно почитать здесь. Кто-то настроил distribute-list, чтобы информация о маршрутах фильтровалась. Было настроено автосуммирование или кто-то настроил суммирование вручную Split-horizon блокирует объявление маршрутной информации. Перераспределение было настроено, но информация из EIGRP не используется. Перераспределение было настроено, но никакие внешние маршруты EIGRP не отображаются. Case #1 Давайте начнем с простой топологии. OFF1 и OFF2 работают под управлением EIGRP, и каждый маршрутизатор имеет интерфейс обратной связи. Вот конфигурация обоих маршрутизаторов: OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF1(config-router)#network 1.1.1.0 0.0.0.255 OFF1(config-router)#network 192.168.12.0 0.0.0.255 OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary OFF2(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config-router)#network 192.168.12.0 0.0.0.255 Все работает нормально, пока через пару недель один из пользователей не пожаловался на то, что ему не удалось подключиться к сети 2.2.2.0 / 24 из-за OFF1. Посмотрите на таблицу маршрутизации на OFF1, и вот что вы видите: По какой-то причине нет сети 2.2.2.0 / 24 в таблице маршрутизации. Видно, что на OFF1 не настроен distribute lists. OFF2 содержит сеть 1.1.1.0 / 24 в своей таблице маршрутизации. Давайте выполним быструю отладку, чтобы увидеть, что происходит. Отладка показывает нам, что происходит. Прежде чем вы увидите это сообщение, придется немного подождать, или вы можете сбросить соседство EIGRP, чтобы ускорить процесс. Как видите, в сети 2.2.2.0 / 24 отказано из-за distribute list. Другой быстрый способ проверить это - использовать команду show ip protocol. В этом случае использование show run могло бы быстрее обнаружить distribute-list. Вот список доступа, доставляющий нам неприятности. OFF2(config)#router eigrp 12 OFF2(config-router)#no distribute-list 1 out Удалим distribute-list. Задача решена! Извлеченный урок: если команды network верны, проверьте, есть ли у вас distribute-list, который запрещает объявлять префиксы или устанавливать их в таблицу маршрутизации. Имейте в виду, distribute-list могут быть настроены как входящие или исходящие, как список доступа. Case #2 В следующем сценарии те же 2 маршрутизатора, но разные сети в loopback. Вот конфигурация: OFF1(config)#router eigrp 12 OFF1(config-router)#network 192.168.12.0 OFF1(config-router)#network 10.0.0.0 OFF2(config)#router eigrp 12 OFF2(config-router)#network 192.168.12.0 OFF2(config-router)#network 10.0.0.0 Как вы видите - это довольно базовая конфигурация. Глядя на таблицы маршрутизации, не видно сети 10.1.1.0 / 24 или 10.2.2.0 / 24. Видна запись для сети 10.0.0.0/8, указывающую на интерфейс null0. Эта запись отображается только при настройке суммирования и используется для предотвращения циклов маршрутизации. Давайте включим отладку и посмотрим, что мы можем найти. OFF2#clear ip eigrp 12 neighbors Этой командой мы сделаем сброс соседства EIGRP, чтобы ускорить процесс. Имейте в виду, что это, вероятно, не самое лучшее, что можно сделать в производственной сети, пока вы не узнаете, что не так, но это действительно помогает ускорить процесс. Вот наш ответ. Отладка говорит нам, что сеть 10.2.2.0 / 24 не следует объявлять, а сеть 10.0.0.0 / 8 нужно объявлять (это вкратце). Это может произойти по двум причинам: Суммирование было кем-то настроено Авто-суммирование включено для EIGRP. Как вы видите, авто-суммирование включено для EIGRP. В зависимости от версии IOS авто-суммирование включено или отключено по умолчанию. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary Отключение автоматического суммирования должно помочь. Ну что, наши сети появились в таблице маршрутизации. Извлеченный урок: если включена автоматическое суммирование EIGRP, вы можете столкнуться с нестабильными сетями. Case #3 Очередная проблема. В приведенном выше примере у нас есть 2 маршрутизатора, но разные сети. OFF1 содержит сеть 172.16.1.0 / 24 на интерфейсе обратной связи, а OFF2 содержит сеть 172.16.2.0 / 24 и 172.16.22.0 / 24 на своих интерфейсах обратной связи. Посмотрим конфигурацию EIGRP обоих маршрутизаторов: Как вы видите, что все сети объявляются. Обратите внимание, что в OFF1 включено автоматическое суммирование, а в OFF2 отключено автоматическое суммирование. Кто-то настроил суммирование на OFF2 и отправляет ее на OFF1. Суммирование создана для сети 172.16.0.0 / 16. Однако, если посмотреть на таблицу маршрутизации OFF1, она не появится. Мы видим запись для сети 172.16.0.0 / 16, но она указывает на интерфейс null0, а не на OFF2. Что здесь происходит? OFF2#clear ip eigrp 12 neighbors Давайте сделаем отладку на OFF2, чтобы увидеть, объявляется ли суммирование. Выполним команду clear ip eigrp neighbors, просто чтобы ускорить процесс. Глядя на отладку, видно, что OFF2 работает правильно. Он объявляет сводный маршрут 172.16.0.0 / 16 так, как должен. Это означает, что проблема должна быть в OFF1. Давайте проведем отладку OFF1. Мы можем видеть, что OFF1 получает сводный маршрут от OFF2, но решает не использовать его. Это хороший момент для проверки таблицы топологии EIGRP. Вы видите, что он имеет суммирование сети 172.16.0.0 / 16 от OFF2 в своей таблице топологии EIGRP, но OFF1 решает не использовать ее, потому что вход через интерфейс null0 является лучшим путем. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary Решение состоит в том, что нам нужно избавиться от записи null0 в таблице маршрутизации. Единственный способ сделать это - отключить автоматическое суммирование. Отключение автоматического суммирования удаляет запись null0, и теперь суммирование OFF2 установлено проблема решена! Извлеченный урок: автоматическое суммирование EIGRP создает запись через интерфейс null0, которая может помешать установке суммирования, которые вы получаете от соседних маршрутизаторов. Case #4 Есть еще одна проблема с суммированием, которую сейчас и разберем. Мы используем топологию, которую вы видите выше, и ниже конфигурация EIGRP обоих маршрутизаторов. Все сети объявлены, и автоматическое суммирование отключено на обоих маршрутизаторах. Суммирование было настроено на OFF2 и должно быть объявлено к OFF1. К сожалению, ничего не видно на OFF1. Давайте проверим OFF2, чтобы посмотреть, что не так. Когда дело доходит до устранения неполадок с сетью, вашими друзьями являются не Google или Яндекс, а команды Debug и show. Странно, это единственная сеть, которую OFF2 объявляет. Одно из золотых правил маршрутизации: вы не можете объявлять то, чего у вас нет. Очевидно, OFF2 знает только о сети 192.168.12.0 / 24. Вот это ошибка! Кто-то выполнил команду отключения на интерфейсах обратной связи. OFF2(config)#interface loopback 0 OFF2(config-if)#no shutdown OFF2(config)#interface loopback 1 OFF2(config-if)#no shutdown Включим интерфейсы. Теперь мы видим, что суммирование объявляется. Теперь мы видим суммирование в таблице маршрутизации OFF1- проблема решена! Извлеченный урок: вы не можете объявлять то, чего у вас нет в таблице маршрутизации. ВАЖНО. Последняя проблема может быть показаться простой, но есть важный момент, который вы не должны забывать: для объявления итогового маршрута в таблице маршрутизации объявляемого маршрутизатора должен быть указан хотя бы один префикс, попадающий в итоговый диапазон! Case #5 Давайте посмотрим на другую топологию. На рисунке выше у нас есть концентратор Frame Relay и соответствующая топология. Каждый из OFF1 и OFF2 имеет интерфейс обратной связи, который мы будем объявлять в EIGRP. Вот соответствующая конфигурация всех маршрутизаторов: CONC(config)#router eigrp 123 CONC(config-router)#no auto-summary CONC(config-router)#network 192.168.123.0 OFF1(config-if)#router eigrp 123 OFF1(config-router)#no auto-summary OFF1(config-router)#network 192.168.123.0 OFF1(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config)#router eigrp 123 OFF2(config-router)#no auto-summary OFF2(config-router)#network 192.168.123.0 OFF2(config-router)#network 3.3.3.0 0.0.0.255 Видно, что все сети объявлены. Наш концентратор-маршрутизатор видит сети из двух OFF-маршрутизаторов. К сожалению, наши маршрутизаторы не видят ничего ... Похоже, что маршрутизатор-концентратор не объявляет сети, которые он изучает с помощью OFF-маршрутизаторов. Давайте включим отладку, чтобы увидеть, что происходит. CONC#clear ip eigrp 123 neighbors Сбросим соседство EIGRP, чтобы ускорить процесс. В отладке мы видим, что наш маршрутизатор-концентратор узнает о сети 2.2.2.0 / 24 и 3.3.3.0 / 24, но объявляет только сеть 192.168.123.0 / 24 для OFF-маршрутизаторов. Разделение горизонта не позволяет размещать объявление от одного маршрутизатора на другой. CONC(config)#interface serial 0/0 CONC(config-if)#no ip split-horizon eigrp 123 Давайте отключим разделение горизонта на последовательном интерфейсе маршрутизатора-концентратора. Теперь мы видим, что маршрутизатор-концентратор объявляет все сети. OFF-маршрутизаторы теперь могут узнавать о сетях друг друга, поскольку split horizon отключено. Это хорошо, но это еще не все. Извлеченный урок: RIP и EIGRP являются протоколами маршрутизации на расстоянии и используют split horizon. Split horizon предотвращает объявление префикса вне интерфейса, на котором мы его узнали. Хотя сети отображаются в таблицах маршрутизации мы не можем пропинговать от одного OFF-маршрутизатора к другому. Это не проблема EIGRP, но она связана с Frame Relay. Мы должны это исправить. Когда OFF1 отправляет IP-пакет на OFF2, IP-пакет выглядит следующим образом: Давайте пока подумаем, как роутер, и посмотрим, что здесь происходит. Сначала нам нужно проверить, знает ли OFF1, куда отправить 3.3.3.3: Существует запись для 3.3.3.3, а IP-адрес следующего перехода - 192.168.123.1 (маршрутизатор-концентратор). Можем ли мы достичь 192.168.123.1? Нет проблем, кажется, OFF1 может пересылать пакеты, предназначенные для сети 3.3.3.0/24. Давайте перейдем к маршрутизатору CONC. У маршрутизатора-концентратора нет проблем с отправкой трафика в сеть 3.3.3.0 / 24, поэтому на данный момент мы можем сделать вывод, что проблема должна быть в маршрутизаторе OFF2. Это IP-пакет, который получает маршрутизатор OFF2, и когда он отвечает, он создает новый IP-пакет, который выглядит следующим образом: Способен ли OFF2 достигать IP-адрес 192.168.123.2 Давайте узнаем! Теперь мы знаем проблему ... OFF2 не может достичь IP-адреса 192.168.123.2 Если мы посмотрим на таблицу маршрутизации OFF2, то увидим, что сеть 192.168.123.0 / 24 подключена напрямую. С точки зрения третьего уровня у нас нет никаких проблем. Пришло время перейти вниз по модели OSI и проверить уровень 2 ... или, может быть, между уровнем 2 и 3. Frame Relay использует Inverse ARP для привязки уровня 2 (DLCI) к уровню 3 (IP-адрес). Вы можете видеть, что нет сопоставления для IP-адреса 192.168.123.2. OFF2(config)#int s0/0 OFF2(config-if)#frame-relay map ip 192.168.123.2 301 Давайте frame-relay map сами. Теперь роутер OFF2 знает, как связаться с роутером OFF1 Наконец, маршрутизатор OFF1 может пропинговать интерфейс обратной связи маршрутизатора OFF2. Когда мы пытаемся пропинговать от маршрутизатора OFF2 к интерфейсу обратной связи маршрутизатора OFF1, у нас возникает та же проблема, поэтому мы также добавим туда оператор frame-relay map: OFF1(config)#int s0/0 OFF1(config-if)#frame-relay map ip 192.168.123.3 201 Теперь у нас есть extra frame-relay map на маршрутизаторе OFF1. И наш пинг проходит!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59