По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Последние два года выдались для роутеров MikroTik нелегкими. Они подвергались сканированию, уводились в ботнеты, майнили крипту без ведома хозяев и почти всё это стало возможным благодаря всего одной уязвимости в сервисе www, а точнее – незащищённому открытому 80 порту. (Используется для настройки роутера через web интерфейс) Мы беспокоимся о своих читателях, поэтому хотим ещё раз предупредить всех обладателей роутеров MikroTik о данной проблеме. Впервые, информация о том, что в роутерах MikroTik присутствует критическая уязвимость, позволяющая злоумышленнику исполнить произвольный код в случае успешной эксплуатации, появилась на весьма специфичном ресурсе – WikiLeaks, в рамках серии публикаций об средствах, которыми пользуется ЦРУ для взлома электронных девайсов, под названием Vault 7. Эксплоит получил название Chimay Red, точно также называется одно бельгийское пиво, вкусное или нет - не знаем. Итак, давайте знакомиться – Chimay Red, cheers, друзья! Вот лишь некоторый список того, на что способен данный эксплойт: Удаленно выполнить код, в командной строке роутера. Например, перезагрузить устройство без Вашего ведома; Извлекать пользовательские логины и пароли; На моделях роутеров с жидкокристаллическим экраном, можно вывести на него какое-нибудь сообщение; Скрыть все логи устройства; И даже - заставить роутер играть какую-нибудь монофоническую мелодию. Например, из Super Mario :) Согласитесь, не очень приятно знать, что кто-то может заставить Ваш роутер "петь" Super Mario. В общем, для тех, кто не хочет читать дальше сообщаем - MikroTik выпустил прошивки чтобы закрыть эту уязвимость, поэтому если версия RouterOS у Вас ниже 6.37.5 или 6.38.5, то срочно обновитесь! А мы продолжаем. Благодаря уязвимости Chimay Red, позже стало возможным создание вредоносных инструментов для проведения ряда атак. VPNfilter Вредонос, который обнаружило подразделение кибербезопасности Cisco Talos. Помимо роутеров MikroTik, данный вредонос бил и по другим устройствам класса SOHO. Сначала было непонятно, как вредоносные файлы загружались на роутеры MikroTik, однако позже выяснилось, что всему виной может быть уязвимость в сервисе www. Несмотря на то, что вредонос получил название VPNfilter, ничего общего с технологией VPN он не имеет. Что умеет VPNfilter: Подслушивать ваш трафик; Внедрять вредоносный контент в трафик, проходящий через роутер, и, с помощью этого, устанавливать вредоносное ПО на подключенные устройства; Тупо выводить роутер из строя; Извлекать пользовательские пароли и другую чувствительную информацию; Устанавливать соединения в анонимные сети TOR к командному серверу и делать роутер частью ботнет сети. Как понять, что Ваше устройство инфицировано: Ваш роутер устанавливает неидентифицированные соединения по управляющим портам ко внешним неизвестным ресурсам; Проверить можно на вкладке IP → Firewall → Connections. Там не должно быть соединений от вашего роутера к публичным IP адресам по портам удаленного администрирования, о которых Вы не знаете. Допустим, внешний адрес Вашего роутера – 91.191.191.91 На Вашем роутере появились следующие директории: var/run/vpnfilterm /var/run/vpnfilterw var/run/torr var/run/tord Ваш роутер самопроизвольно отключается, перезагружается, появляются изменения конфигурации, которые Вы не вносили Как защитить устройство от вредоноса или удалить его, если оно уже заражено: Итак, если Вы давно не обновлялись и используете старую версию RouterOS, а также у вас открыт доступ по 80 порту из Интернета, то ваше устройство может быть заражено. Перезагрузить устройство. Однако, данная мера может не помочь, т.к вредонос способен "пережить" перезагрузку. Так что надёжнее будет сделать сброс к заводским настройкам. Предварительно, сохраните конфигурацию устройства Обновить версию RouterOS на выпущенную после марта 2017 года. Исправления появились в 6.38.5, 6.37.5. Рекомендуется установить последнюю актуальную версию и патчи для Вашего устройства Сменить пароль, особенно на встроенных профилях (admin). По возможности, отключите устройство от публичной сети, выполняя данный шаг Настроить Firewall для сервиса www (порт 80). Лучше всего будет запретить использование данного сервиса и обращения к порту 80 из Интернета. Однако, если это невозможно, то необходимо разрешить доступ только с доверенных адресов. Данный вредонос поразил такое большое количество устройств и вызвал такой большой резонанс, что компания Symantec даже разработала специальный ресурс, позволяющий определить, заражён ли Ваш роутер VPN filter'ом. Инструмент может проверить Ваш роутер на наличие плагина ssler, который вредонос устанавливает на определенной стадии заражения: Symantec Просто перейдите по ссылке компьютера, находящегося за роутером, который Вы хотите проверить и нажмите Run VPNfilter Check. Даже если проверка не выявит признаков заражения ssler, роутер всё равно может быть заражён другими модулями VPNfilter. Ботнет Немного иначе обстоят дела с другим "вредоносом", а точнее целым ботнетом - Hajime. Этот ботнет уже попадал в поле зрения исследователей, когда захватывал в свои ряды умные устройства (IoT), однако, в марте 2018 года, ботнет резко переключился на роутеры MikroTik. Это подтверждается тем, что ботнет начал сканировать рандомные подсети по 80 (www) и 8291 (WinBox) порту. Сканирование порта 8291, говорит от том, что оно направлено именно на оборудование MikroTik. После успешной идентификации устройства, ботнет применял ряд эксплоитов, чтобы ввести его в свои ряды. Дальше дело пока не заходило, ботнет Hajime пока не был замечен ни в массированных DDoS атаках, ни даже в рассылке спама. Есть даже предположение, что автор Hajime - это добрый хакер (white hat), который укрепляет безопасность систем. Исследователи Symantec нашли в заражённых устройствах зашифрованное сообщение именно такого содержания. Так или иначе, ещё раз рекомендуем установить последние обновления для Ваших роутеров и регулярно следить, чтобы прошивка была актуальной. Если Вы подозреваете, что Ваше устройство заражено или просто хотите это проверить, то предлагаем воспользоваться следующим способом. В интернете есть множество открытых ресурсов, которые следят за вредоносной активностью в сети и ведут соответствующие записи. Такие ресурсы как: VirusTotal AbusedIP Spamhaus IBM-X Threat Cisco Talos Помогут Вам определить, замечался ли Ваш публичный IP адрес во вредоносной активности. Просто введите его в строку поиска на соответствующем ресурсе и посмотрите результат. Данный способ актуален только если у вас статический IP адрес или, если он динамический, то Вы точно знаете когда он менялся.
img
Буферизация пакетов для работы с перегруженным интерфейсом кажется прекрасной идеей. Действительно, буферы необходимы для обработки трафика, поступающего слишком быстро или несоответствия скорости интерфейса - например, при переходе от высокоскоростной LAN к низкоскоростной WAN. До сих пор это обсуждение QoS было сосредоточено на классификации, приоритизации и последующей пересылке пакетов, помещенных в очередь в этих буферах, в соответствии с политикой. Максимально большой размер буферов кажется хорошей идеей. Теоретически, если размер буфера достаточно велик, чтобы поставить в очередь пакеты, превышающие размер канала, все пакеты в конечном итоге будут доставлены. Однако, как большие, так и переполненные буферы создают проблемы, требующие решения. Когда пакеты находятся в буфере, они задерживаются. Некоторое количество микросекунд или даже миллисекунд добавляется к пути пакета между источником и местом назначения, пока они находятся в буфере, ожидая доставки. Задержка перемещения является проблемой для некоторых сетевых разговоров, поскольку алгоритмы, используемые TCP, предполагают предсказуемую и в идеале небольшую задержку между отправителем и получателем. В разделе активного управления очередью вы найдете различные методы управления содержимым очереди. Некоторые методы решают проблему переполненной очереди, отбрасывая достаточно пакетов, чтобы оставить немного места для вновь поступающих. Другие методы решают проблему задержки, поддерживая небольшую очередь, минимизируя время, которое пакет проводит в буфере. Это сохраняет разумную задержку буферизации, позволяя TCP регулировать скорость трафика до скорости, соответствующей перегруженному интерфейсу. Управление переполненным буфером: взвешенное произвольное раннее обнаружение (WRED) Произвольное раннее обнаружение (RED) помогает нам справиться с проблемой переполненной очереди. Буферы не бесконечны по размеру: каждому из них выделено определенное количество памяти. Когда буфер заполняется пакетами, новые поступления отбрасываются. Это не сулит ничего хорошего для критического трафика, такого как VoIP, от которого нельзя отказаться, не повлияв на взаимодействие с пользователем. Способ решения этой проблемы - убедиться, что буфер никогда не будет полностью заполнен. Если буфер никогда не заполняется полностью, то всегда есть место для приема дополнительного трафика. Чтобы предотвратить переполнение буфера, RED использует схему упреждающего отбрасывания выбранного входящего трафика, оставляя места открытыми. Чем больше заполняется буфер, тем больше вероятность того, что входящий пакет будет отброшен. RED является предшественником современных вариантов, таких как взвешенное произвольное раннее обнаружение (WRED). WRED учитывает приоритет входящего трафика на основе своей отметки. Трафик с более высоким приоритетом будет потерян с меньшей вероятностью. Более вероятно, что трафик с более низким приоритетом будет отброшен. Если трафик использует какую-либо форму оконного транспорта, например, такую как TCP, то эти отбрасывания будут интерпретироваться как перегрузка, сигнализирующая передатчику о замедлении. RED и другие варианты также решают проблему синхронизации TCP. Без RED все входящие хвостовые пакеты отбрасываются при наличии переполненного буфера. Для трафика TCP потеря пакетов в результате отбрасывания хвоста приводит к снижению скорости передачи и повторной передаче потерянных пакетов. Как только пакеты будут доставлены снова, TCP попытается вернуться к более высокой скорости. Если этот цикл происходит одновременно во многих разных разговорах, как это происходит в сценарии с отключением RED-free, интерфейс может испытывать колебания использования полосы пропускания, когда канал переходит от перегруженного (и сбрасывания хвоста) к незагруженному и недоиспользованному, поскольку все д throttled-back TCP разговоры начинают ускоряться. Когда уже синхронизированные TCP-разговоры снова работают достаточно быстро, канал снова становится перегруженным, и цикл повторяется. RED решает проблему синхронизации TCP, используя случайность при выборе пакетов для отбрасывания. Не все TCP-разговоры будут иметь отброшенные пакеты. Только определенные разговоры будут иметь отброшенные пакеты, случайно выбранные RED. TCP-разговоры, проходящие через перегруженную линию связи, никогда не синхронизируются, и колебания избегаются. Использование каналов связи более устойчиво. Управление задержкой буфера, Bufferbloat и CoDel Здесь может возникнуть очевидный вопрос. Если потеря пакетов - это плохо, почему бы не сделать буферы достаточно большими, чтобы справиться с перегрузкой? Если буферы больше, можно поставить в очередь больше пакетов, и, возможно, можно избежать этой досадной проблемы потери пакетов. Фактически, эта стратегия больших буферов нашла свое применение в различных сетевых устройствах и некоторых схемах проектирования сети. Однако, когда перегрузка канала приводит к тому, что буферы заполняются и остаются заполненными, большой буфер считается раздутым. Этот феномен так хорошо известен в сетевой индустрии, что получил название: bufferbloat. Bufferbloat имеет негативный оттенок, потому что это пример слишком большого количества хорошего. Буферы - это хорошо. Буферы предоставляют некоторую свободу действий, чтобы дать пачке пакетов где-нибудь остаться, пока выходной интерфейс обработает их. Для обработки небольших пакетов трафика необходимы буферы с критическим компромиссом в виде введения задержки, однако превышение размера буферов не компенсирует уменьшение размера канала. Канал имеет определенную пропускную способность. Если каналу постоянно предлагается передать больше данных, чем он может передать, то он плохо подходит для выполнения требуемой от него задачи. Никакая буферизация не может решить фундаментальную проблему пропускной способности сети. Увеличение размера буфера не улучшает пропускную способность канала. Фактически, постоянно заполненный буфер создает еще большую нагрузку на перегруженный интерфейс. Рассмотрим несколько примеров, противопоставляющих протоколов Unacknowledged Datagram Protocol (UDP) и Transmission Control Protocol (TCP). В случае VoIP-трафика буферизованные пакеты прибывают с опозданием. Задержка чрезвычайно мешает голосовой беседе в реальном времени. VoIP - это пример трафика, передаваемого посредством UDP через IP. UDP-трафик не подтверждается. Отправитель отправляет пакеты UDP, не беспокоясь о том, доберутся ли они до места назначения или нет. Повторная передача пакетов не производится, если хост назначения не получает пакет UDP. В случае с VoIP - здесь важно, пакет приходит вовремя или нет. Если это не так, то нет смысла передавать его повторно, потому что уже слишком поздно. Слушатели уже ушли. LLQ может прийти вам в голову как ответ на эту проблему, но часть проблемы - это слишком большой буфер. Для обслуживания большого буфера потребуется время, вызывающее задержку доставки трафика VoIP, даже если LLQ обслуживает трафик VoIP. Было бы лучше отбросить VoIP-трафик, находящийся в очереди слишком долго, чем отправлять его с задержкой. В случае большинства приложений трафик передается по протоколу TCP через IP, а не по протоколу UDP. TCP - протокол подтверждений. Отправитель трафика TCP ожидает, пока получатель подтвердит получение, прежде чем будет отправлен дополнительный трафик. В ситуации bufferbloat пакет находится в переполненном, слишком большом буфере перегруженного интерфейса в течение длительного времени, задерживая доставку пакета получателю. Получатель получает пакет и отправляет подтверждение. Подтверждение пришло к отправителю с большой задержкой, но все же пришло. TCP не заботится о том, сколько времени требуется для получения пакета, пока он туда попадает. И, таким образом, отправитель продолжает отправлять трафик с той же скоростью через перегруженный интерфейс, что сохраняет избыточный буфер заполненным и время задержки увеличивается. В крайних случаях отправитель может даже повторно передать пакет, пока исходный пакет все еще находится в буфере. Перегруженный интерфейс, наконец, отправляет исходный буферизованный пакет получателю, а вторая копия того же пакета теперь находится в движении, что создает еще большую нагрузку на уже перегруженный интерфейс! Эти примеры демонстрируют, что буферы неподходящего размера на самом деле не годятся. Размер буфера должен соответствовать как скорости интерфейса, который он обслуживает, так и характеру трафика приложения, который может проходить через него. Одна из попыток со стороны сетевой индустрии справиться с большими буферами, обнаруженными вдоль определенных сетевых путей, - это контролируемая задержка, или CoDel. CoDel предполагает наличие большого буфера, но управляет задержкой пакетов, отслеживая, как долго пакет находится в очереди. Это время известно, как время пребывания. Когда время пребывания пакета превысило вычисленный идеал, пакет отбрасывается. Это означает, что пакеты в начале очереди-те, которые ждали дольше всего-будут отброшены до пакетов, находящихся в данный момент в хвосте очереди. Агрессивная позиция CoDel в отношении отбрасывания пакетов позволяет механизмам управления потоком TCP работать должным образом. Пакеты, доставляемые с большой задержкой, не доставляются, а отбрасываются до того, как задержка станет слишком большой. Отбрасывание вынуждает отправителя TCP повторно передать пакет и замедлить передачу, что очень желательно для перегруженного интерфейса. Совокупный результат - более равномерное распределение пропускной способности для потоков трафика, конкурирующих за интерфейс. В ранних реализациях CoDel поставлялся в устройства потребительского уровня без параметров. Предполагаются определенные настройки по умолчанию для Интернета. Они включают 100 мс или меньше времени двустороннего обмена между отправителями и получателями, а задержка 5 мс является максимально допустимой для буферизованного пакета. Такая конфигурация без параметров упрощает деятельность поставщиков сетевого оборудования потребительского уровня. Потребительские сети являются важной целью для CoDel, поскольку несоответствие высокоскоростных домашних сетей и низкоскоростных широкополосных сетей вызывает естественную точку перегрузки. Кроме того, сетевое оборудование потребительского уровня часто страдает от слишком большого размера буферов.
img
Иногда, системному администратору необходимо отключить интерфейс, не прибегая к переключению и удалению кабеля. Проще говоря, мы должны иметь возможность решать, какие порты будут включены, а какие отключены. В Cisco используются интерфейсные подкоманды для административного включения и отключения порта: команда shutdown (отключить) и команда no shutdown (включить). Команду no shutdown является неотъемлемой частью при настройке сетевых устройств (чаще всего используют сокращенные команды "shut" и "no shut"). Ниже показан пример 1 отключения интерфейса с помощью команды shutdown. В этом примере на коммутаторе SW-1 имеется рабочий интерфейс F0 / 1. Пользователь подключается к консоли и отключает интерфейс. IOS генерирует сообщение журнала событий каждый раз, когда интерфейс переходит из одного состояния в другое, и сообщения журнала появляются на консоли, как показано в примере: Чтобы включить интерфейс, необходимо выполнить ту же последовательность команд, но вместо команды shutdown использовать команду no shutdown. Прежде чем использовать команды shutdown/no shutdown, используйте команды show, которые отображают состояние интерфейса . Команда show interfaces <номер порта> status выводит одиночное сообщение о состоянии интерфейса. Если интерфейс выключен, то выводится на экран статус интерфейса как "disabled". Команда show interfaces (без ключевого слова status) выводит на экран детализированную информацию о состоянии порта. Информация, выведенная с использованием этой команды, состоит из двух частей. Первая часть отображает фразу "administratively down". Она выделена в сообщении журнала в примере 2. Здесь показаны примеры использования этих команд. Обратите внимание, что в обоих примерах используется параметр F0/1 (сокращение от Fast Ethernet0/1). Этот параметр позволяет выводить сообщения только о состоянии порта F0/1. Удаление настроек с помощью команды no С помощью некоторых команд конфигурации IOS (но не всех) можно вернуться к настройкам по умолчанию, введя команду no <команда>. Что это значит? Давайте рассмотри несколько примеров : Если вы ранее настроили скорость 100 Mb/s на интерфейсе, команда no speed на том же интерфейсе, вернет настройки скорости по умолчанию (включится режим speed auto). Так же и с командной настройки дуплекса: ранее произведенные настройки дуплекса, переводящие порт в режим duplex half или duplex full, можно отменить командой no duplex, введенной на том же интерфейсе. Эта команда возвращает настройки по умолчанию - duplex auto. Если вы произвели настройку описания, используя команду description , то чтобы вернуться к состоянию по умолчанию, удалить описание вообще, используйте команду no description. В примере 3 показан этот процесс. В этом примере порт F0/2 коммутатора SW-1 был предварительно настроен со скоростью 100 Mb/s, режим дуплекса - duplex half, и описанием Link to BUH и отключен (shutdown). Все это отображено в листинге примера. (Для лучшего понимания работы команд, часть листинга была удалена)
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59