По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Как было рассмотрено ранее, IPS/IDS системы это устройства, которые предназначены для обнаружения атак на корпоративную сеть. Подпись в рамках понятия IPS/IDS систем - это набор правил, который сопоставляет заранее настроенные шаблоны к проходящим через устройство пакетам. Системы обнаружения Cisco и предотвращения вторжений имеют тысячи настроенных по умолчанию шаблонов, которые нуждаются лишь в активации. С появлением все более изощренных атак, компания Cisco Systems постоянно создает дополнительные шаблоны. На сегодняшний день, система обнаружения и предотвращения вторжений на базе IPS/IDS это самый существенный метод обнаружения атак. Общая политика безопасности Данный тип защиты от атак может быть реализован на основании политик безопасности компании. Например, компания имеет правило, что из внешней сети не должно быть доступа в определенный сетевой сегмент, например, серверную ферму. Доступ будет недоступен по протоколу Telnet, 23 порт. При поступлении пакета, с адресом назначения из сегмента серверной фермы и портом назначения 23, IPS оповестит систему мониторинга и сбросит данный пакет. Проверка на базе нелинейности поведения Проверка на нелинейность трафика – это еще один мощный инструмент в защите периметра сети. Примером работы алгоритма отслеживания нелинейности, может стать ситуация, при которой администратор сети заранее задает максимальное количество TCP запросов в минуту, который не получили ответ. Например, администратор задал максимум, в количестве 50 сессий. Как только максимальная отметка будет преодолена, IPS/IDS система оповестит систему мониторинга и начнет отбрасывать подобные пакеты. Такое поведение называется нелинейностью, или аномалией. Данный механизм используется для обнаружения «червей», которые пытаются попасть в сетевой корпоративный ландшафт. Проверка на основании репутации Данный механизм строится на базе уже совершенных кибер – атак. Устройство IPS, функционирующее на основании данного алгоритма, собирает данные с других систем предотвращения вторжения, которые находятся в глобальной сети. Как правило, блокировка осуществляется на основании IP – адресов, универсальных локаторов ресурса, или Uniform Resource Locator (URL), доменных систем и так далее. Алгоритм Преимущества Недостатки Проверка на базе подписи Легкость конфигурации Не может отследить атаки, выходящие за рамки настроенных правил. Порой, необходимо отключать подписи, которые запрещают нужный трафик. Необходимо периодическое обновление шаблонов. Общая политика безопасности Легкость настройки под конкретные нужды, простота и надежность. Необходимость создания вручную. Имеет место человеческий фактор. Трафик, создаваемый программным обеспечением станков и оборудования Обеспечение доступной полосы пропускания минимум 256 кб/с В открытом виде Проверка нелинейности поведения Обнаруживает «червей» на базе нелинейности трафика, даже если данный запрет не создан в подписях. Трудность адаптации в больших сетях. Данный алгоритм может запрещать нужный трафик помимо вредоносного трафика. Проверка на основании репутации Техника раннего обнаружения. Предотвращает известные методы атак. Необходимо периодическое обновление данных.
img
Новое в IPv6-это автоконфигурация, которая является почти "мини-DHCP" - сервером, и некоторые протоколы были удалены или изменены. Точно так же, как IPv4, хосты, настроенные на IPv6, должны узнать MAC-адрес других устройств, но мы больше не используем ARP, он был заменен протоколом под названием NDP (Neighbour Discovery Protocol). Теоретические основы Помимо изучения MAC-адресов, NDP используется для решения ряда задач: Router Discovery (обнаружение маршрутизаторов): NDP используется для изучения всех доступных маршрутизаторов IPv6 в подсети. Обнаружение MAC-адресов: после того, как хост выполнил проверку DAD и использует IPv6 адрес он должен будет обнаружить MAC адреса хостов с которыми он хочет общаться. DAD (обнаружение дубликатов адресов): каждый хост IPv6 будет ждать, чтобы использовать свой адрес, если только он не знает, что ни одно другое устройство не использует тот же адрес. Этот процесс называется DAD, и NDP делает это за нас. SLAAC: NDP используется, чтобы узнать, какой адрес и длину префикса должен использовать хост. Мы рассмотрим все задачи, чтобы увидеть, как они работают. Начнем с обнаружения маршрутизатора. Когда хост настроен на IPv6, он автоматически обнаруживает маршрутизаторы в подсети. Хост IPv6 может использовать NDP для обнаружения всех маршрутизаторов в подсети, которые могут использоваться в качестве шлюза по умолчанию. В принципе, хост отправляет сообщение с запросом, есть ли там какие-либо маршрутизаторы, и маршрутизаторы ответят. Используются два сообщения: RS (Router Solicitation), который отправляется на "все маршрутизаторы ipv6" FF02::2 multicast адрес. RA (Router Advertisement) отправляется маршрутизатором и включает в себя его link-local IPv6 адрес. Когда хост отправляет запрос маршрутизатору, маршрутизатор будет отвечать на одноадресный адрес хоста. Маршрутизаторы также будут периодически отправлять рекламные объявления маршрутизаторов для всех заинтересованных сторон, они будут использовать для этого адрес FF02:: 1 "все узлы". Большинство маршрутизаторов также будут иметь global unicast адрес, настроенный на интерфейсе, в этом случае хосты будут узнавать не только о link-local адресе, но и о префиксе, который используется в подсети. Этот префикс можно использовать для SLAAC. NPD также используется в качестве замены ARP. Для этого он использует два вида сообщений: NS (Neighbor Solicitation) NA (Neighbor Advertisement) Запрос соседа работает аналогично запросу ARP, он запрашивает определенный хост для своего MAC-адреса, и объявление соседа похоже на ответ ARP, поскольку оно используется для отправки MAC-адреса. В основном это выглядит так: Всякий раз, когда хост посылает запрос соседу, он сначала проверяет свой кэш, чтобы узнать, знает ли он уже MAC-адрес устройства, которое он ищет. Если его там нет, он пошлет соседу запрос. Эти соседние запрашивающие сообщения используют solicited-node multicast адрес запрашиваемого узла. Помимо обнаружения MAC-адресов, сообщения NS и NA также используются для обнаружения дубликатов IPv6-адресов. Прежде чем устройство IPv6 использует одноадресный адрес, оно выполнит DAD (обнаружение дубликатов адресов), чтобы проверить, не использует ли кто-то другой тот же IPv6-адрес. Если адрес используется, хост не будет его использовать. Вот как это выглядит: Host1 был настроен с IPv6-адресом 2001:1:1:1::2, который уже используется Host2. Он будет посылать запрос соседства, но поскольку host2 имеет тот же IPv6-адрес, он ответит объявлением соседа. Host1 теперь знает, что это дубликат IPv6-адреса. Эта проверка выполняется для всех одноадресных адресов, включая link-local адреса. Это происходит, когда вы настраиваете их и каждый раз, когда интерфейс находится в состоянии "up". Последний NPD, который мы рассмотрим, - это SLAAC, которая позволяет хостам автоматически настраивать свой IPv6-адрес. Для IPv4 мы всегда использовали DHCP для автоматического назначения IP-адреса, шлюза по умолчанию и DNS-сервера нашим хостам, и эта опция все еще доступна для IPv6 (мы рассмотрим ее ниже). DHCP прекрасная "вещь", но недостатком является то, что вам нужно установить DHCP-сервер, настроить пул с диапазонами адресов, шлюзами по умолчанию и DNS-серверами. Когда мы используем SLAAC, наши хосты не получают IPv6-адрес от центрального сервера, но он узнает префикс, используемый в подсети, а затем создает свой собственный идентификатор интерфейса для создания уникального IPv6-адреса. Вот как работает SLAAC: Хост сначала узнает о префиксе с помощью сообщений NDS RS RA. Хост принимает префикс и создает идентификатор интерфейса, чтобы создать уникальный IPv6-адрес. Хост выполняет DAD, чтобы убедиться, что IPv6-адрес не используется никем другим. Маршрутизаторы Cisco будут использовать EUI-64 для создания идентификатора интерфейса, но некоторые операционные системы будут использовать случайное значение. Благодаря SLAAC хост будет иметь IPv6-адрес и шлюз, но один элемент все еще отсутствует...DNS-сервер. SLAAC не может помочь нам с поиском DNS-сервера, поэтому для этого шага нам все еще требуется DHCP. DHCP для IPv6 называется DHCPv6 и поставляется в двух формах: Stateful Stateless Мы рассмотрим DHCPv6 чуть позже, но для SLAAC нам нужно понять, что такое stateless DHCPv6. Обычно DHCP-сервер отслеживает IP-адреса, которые были арендованы клиентами, другими словами, он должен сохранять "состояние" того, какие IP-адреса были арендованы и когда они истекают. Сервер stateless DHCPv6 не отслеживает ничего для клиентов. Он имеет простую конфигурацию с IPv6-адресами нескольких DNS-серверов. Когда хост IPv6 запрашивает у сервера DHCPv6 IPv6-адрес DNS-сервера, он выдает этот адрес, и все. Поэтому, когда вы используете SLAAC, вам все еще нужен stateless DHCPv6, чтобы узнать о DNS-серверах. Теперь вы узнали все задачи, которые NPD выполняет для нас: Router Discovery MAC Address Discovery Duplicate Address Detection Stateless Address Autoconfiguration Настройка на Cisco Давайте посмотрим на NPD на некоторых маршрутизаторах, чтобы увидеть, как он работает в реальности. Будет использоваться следующая топология для демонстрации: Будем использовать OFF1 в качестве хоста, который будет автоматически настраиваться с помощью SLAAC и OFF2 в качестве маршрутизатора. 2001:2:3:4//64 это префикс, который мы будем использовать. Давайте сначала настроим OFF2: OFF2(config)#ipv6 unicast-routing Прежде чем OFF2 будет действовать как маршрутизатор, нам нужно убедиться, что включена одноадресная маршрутизация IPv6. Теперь давайте настроим IPv6 адрес на интерфейсе: OFF2(config)#interface fa0/0 OFF2(config-if)#no shutdown OFF2(config-if)#ipv6 address 2001:2:3:4::1/64 Перед настройкой OFF1 мы включим отладку NPD на обоих маршрутизаторах, чтобы могли видеть различные сообщения: OFF1#debug ipv6 nd ICMP Neighbor Discovery events debugging is on OFF2#debug ipv6 nd ICMP Neighbor Discovery events debugging is on Команда debug ipv6 nd очень полезна, так как она будет показывать различные сообщения, которые использует NPD. Давайте теперь настроим OFF1: OFF1(config)#interface fa0/0 OFF1(config-if)#no shutdown OFF1(config-if)#ipv6 address autoconfig OFF1 будет настроен для использования SLAAC с командой ipv6 address autoconfig. При включенной отладке вы увидите на своей консоли следующие элементы: OFF1# ICMPv6-ND: Sending NS for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: FE80::C000:6FF:FE7C:0 is unique. Он посылает NS для своего собственного IPv6-адреса, и когда никто не отвечает, он понимает, что это единственный хост, использующий этот адрес. Вы также можете видеть, что OFF1 отправляет объявление соседства в сторону OFF2: OFF1# ICMPv6-ND: Sending NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 OFF2# ICMPv6-ND: Received NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 Мы можем просмотреть базу данных с информацией L2 и L3 следующим образом: OFF2#show ipv6 neighbors IPv6 Address Age Link-layer Addr State Interface FE80::C000:6FF:FE7C:0 21 c200.067c.0000 STALE Fa0/0 show ipv6 neighbors покажет вам IPv6-адреса и MAC-адреса. OFF1 также отправит запрос маршрутизатора, а OFF2 в ответ отправит объявление маршрутизатора: OFF1# ICMPv6-ND: Sending RS on FastEthernet0/0 OFF2# ICMPv6-ND: Received RS on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 ICMPv6-ND: Sending solicited RA on FastEthernet0/0 ICMPv6-ND: Sending RA from FE80::C001:6FF:FE7C:0 to FF02::1 on FastEthernet0/0 ICMPv6-ND: MTU = 1500 ICMPv6-ND: prefix = 2001:2:3:4::/64 onlink autoconfig ICMPv6-ND: 2592000/604800 (valid/preferred) OFF1# ICMPv6-ND: Received RA from FE80::C001:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Selected new default router FE80::C001:6FF:FE7C:0 on FastEthernet0/0 Если вы хотите увидеть все маршрутизаторы, о которых знает ваш хост, вы можете использовать следующую команду: OFF1#show ipv6 routers Router FE80::C001:6FF:FE7C:0 on FastEthernet0/0, last update 0 min Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500 HomeAgentFlag=0, Preference=Medium Reachable time 0 msec, Retransmit time 0 msec Prefix 2001:2:3:4::/64 onlink autoconfig Valid lifetime 2592000, preferred lifetime 604800 Поскольку OFF1 настроен для SLAAC он будет использовать префикс в объявлении маршрутизатора для настройки самого себя: OFF1# ICMPv6-ND: Prefix Information change for 2001:2:3:4::/64, 0x0 - 0xE0 ICMPv6-ND: Adding prefix 2001:2:3:4::/64 to FastEthernet0/0 ICMPv6-ND: Sending NS for 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Autoconfiguring 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: 2001:2:3:4:C000:6FF:FE7C:0 is unique. Он будет использовать префикс и автоматически настраивать IPv6-адрес. Прежде чем он использует адрес, он будет использовать DAD, чтобы убедиться, что адрес уникален. Давайте посмотрим IPv6-адрес: OFF1#show ipv6 int brief FastEthernet0/0 [up/up] FE80::C000:6FF:FE7C:0 2001:2:3:4:C000:6FF:FE7C:0 Как вы видите, OFF1 использовал 2001:2:3:4::/64 префикс для настройки самого себя. Это вся информация о NPD для вас сейчас, давайте продолжим изучение материала обратив подробное внимание на DHCPv6! Статусный DHCPv6 работает аналогично DHCP для IPv4. Мы все еще используем его для предоставления адресов, шлюзов по умолчанию, DNS-серверов и некоторых других опций клиентам, но одним из ключевых отличий являются сообщения, которые мы теперь используем. DHCP для IPv4 использует сообщения Discover, Offer, Request и ACK. DHCPv6 использует Solicit, Advertise, Request и Reply message. Время получения сообщения, похожие на сообщения обнаружения. Хост будет использовать это сообщение, когда он ищет IPv6-адрес сервера DHCPv6. Сообщение advertise используется для предоставления хосту IPv6-адреса, шлюза по умолчанию и DNS-сервера. Сообщение запроса используется хостом, чтобы спросить, можно ли использовать эту информацию, и ACK отправляется сервером для подтверждения этого. Аналогично, как и для DHCP IPv4, когда ваш DHCP-сервер не находится в той же подсети, вам потребуется DHCP relay для пересылки сообщений DHCP на центральный DHCP-сервер.
img
Привет, мир! Рассказываем про 10 самых часто используемых команд nslookup. Что такое nslookup? Давайте для начала определимся, что такое nslookup. Это мощная сетевая утилита командной строки, доступная для большинства популярных ОС. Она используется для запросов в систему доменных имён (DNS) с целью выявления имен или IP-адресов, а также других специфических DNS записей. 1. Выявление A записи для домена A запись домена – это сопоставление доменного имени IP-адресу ресурса. Именно благодаря этому типу записи, когда вы набираете merionet.ru переходите на страницу нашего сайта. Чтобы определить IP-адрес ресурса (это может быть компьютер в вашей сети или же любой сайт в Интернете) нужно ввести следующую команду: nslookup merionet.ru 2. Определение NS-записей домена Когда вы набираете в адресной строке браузера адрес сайта, то компьютер обращается к DNS серверу, указанному в настройках сетевого интерфейса. А тот в свою очередь к более NS серверам, где хранятся записи о том, какой IP-адрес соответствует данному доменному имени. Утилита nslookup позволяет определять, какие NS –сервера использует тот или иной хост (сайт). Команда выглядит следующим образом: nslookup –type=ns merionet.ru 3. Определение SOA записи узла SOA-запись (Start of Authority) — начальная запись зоны, которая указывает местоположение эталонной записи о домене. Она содержит в себе контактную информацию лица, ответственного за данную зону, время кэширования информации на серверах и данные о взаимодействии DNS. SOA-запись создается автоматически. Для определения SOA записи используется команда: nslookup –type=SOA merionet.ru 4. Как найти MX-запись хоста Электронная почта сегодня используется повсеместно. Чтобы отправлять и получать электронные письма хост используется тип записи MX. В каждой MX-записи хранятся два поля: имя почтового сервера, который обслуживает домен порядковый номер, по которому определяется какой сервер первым будет обрабатывать запросы клиентов Для определения MX-записей хоста используется команда: nslookup –type=MX merionet.ru 5. Определение всех типов DNS-записей По умолчанию, команда nslookup отображает соответствие IP-адреса доменному имени. Но можно заставить утилиту вернуть все возможные записи для указанного хоста: nslookup –type=any merionet.ru 6. Явное указание DNS-сервера Утилита nslookup при сопоставлении имён, по умолчанию обращается к DNS-серверу, который установлен в настройках сетевой карты. Но утилите можно передать название или IP-адрес, который хотим использовать для сопоставления имён. nslookup merionet.ru dns2.yandex.ru Как видно из скриншота, ответ нам вернул уже сервер Яндекса. 7. Обратный DNS lookup Обычно утилита nslookup используется для определения IP-адреса переданного хоста. Но что если IP-адрес уже есть, но нужно найти доменное имя? И здесь можно использовать nslookup передав в качестве значения IP-адрес узла. 8. Изменение номера порта для запроса По умолчанию, для запросов DNS использует 53 (UDP) порт. Но это поведение тоже можно изменить, хотя особого необходимости в этом нет. nslookup –port=56 merionet.ru 9. Изменение интервала ожидания Бывают случаи, особенно при слабых Интернет соединениях, что ответа от сервера приходится ждать долго. По умолчанию, если ответ не приходит в течении 5 секунд, то запрос повторяется, увеличив время ожидания в два раза. Но можно вручную задать это значение в секундах: nslookup –timeout=10 merionet.ru Отработку этой команды увидеть сложно, но она может быть эффективна при соединениях с низкой скоростью. 10. Включение режима отладки Режим отладки позволяет получать более детальную информацию об узле. Для этого используется команда: nslookup –debug merionet.ru Заключение Когда утилита nslookup возвращает ответ, там указывается с какого сервера вернулся ответ. Эти сервера бывают authoritative и non-authoritative answer. Authoritative answer – это ответ, полученные непосредственно от сервера, который располагает информацией об указанном домене. В нашем случае – это dns2.yandex.ru. Non-authoritative answer – это ответ, полученный от промежуточного сервера. В нашем случае – это мой роутер.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59