По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Начиная своё знакомство с iptables, следует рассказать про netfilter. Netfilter - это набор программных хуков внутри ядра Linux, которые позволяют модулям ядра регистрировать функции обратного вызова от стека сетевых протоколов. Хук (hook) - это программный элемент, который позволяет перехватывать функции обратного вызова в чужих процессах. Netfilter является основой для построения Firewall'а в дистрибутивах Linux, но для того, чтобы он заработал в полную силу его нужно настроить. Как раз с помощью iptables мы можем взаимодействовать с хуками Netfilter и создавать правила фильтрации, маршрутизации, изменения и транслирования пакетов. Иногда про Netfilter забывают и называют эту связку просто iptables. Введение Итак, iptables - это утилита для настройки программного Firewall'а (межсетевого экрана) linux, которая предустанавливается по умолчанию во все сборки Linux, начиная с версии 2.4. Запускается iptables из командной строки (CLI) под пользователем с правами root и настраивается там же. Можете в этом убедиться, набрав команду iptables -V в командной строке, она покажет вам версию iptables. Почему же iptables всем так понравился, что его стали включать во все сборки Linux? Всё дело в том, что iptables действительно очень прост в настройке. С помощью него можно решить следующие задачи: Настроить stateless и statefull фильтрацию пакетов версий IPv4 и IPv6; Stateless - это фильтрация, основанная на проверке статических параметров одного пакета, например: IP адрес источника и получателя, порт и другие не изменяющиеся параметры. Statefull - это фильтрация, основанная на анализе потоков трафика. С помощью нее можно определить параметры целой TCP сессии или UDP потока. Настраивать все виды трансляции IP адресов и портов NAT, PAT, NAPT; Настроить политики QoS; Производить различные манипуляции с пакетами, например - изменять поля в заголовке IP. Прежде чем переходить к практике, давайте обратимся к теории и поймём саму логику iptables. Логика и основные понятия iptables Правила Как и все файрволлы, iptables оперирует некими правилами (rules), на основании которых решается судьба пакета, который поступил на интерфейс сетевого устройства (роутера). Ну допустим у нас есть сетевое устройство с адресом 192.168.1.1, на котором мы настроили iptables таким образом, чтобы запрещать любые ssh (порт 22) соединения на данный адрес. Если есть пакет, который идёт, например, с адреса 192.168.1.15 на адрес 192.168.1.1 и порт 22, то iptables скажет: “Э, нет, брат, тебе сюда нельзя” и выбросит пакет. Или вообще ничего не скажет и выбросит, но об этом чуть позже :) Каждое правило в iptables состоит из критерия, действия и счётчика Критерий - это условие, под которое должны подпадать параметры пакета или текущее соединение, чтобы сработало действие. В нашем примере – этим условием является наличие пакета на входящем интерфейсе, устанавливающего соединение на порт 22 Действие - операция, которую нужно проделать с пакетом или соединением в случае выполнения условий критерия. В нашем случае – запретить пакет на порт 22 Счетчик - сущность, которая считает сколько пакетов было подвержено действию правила и на основании этого, показывает их объём в байтах. Цепочки Набор правил формируется в цепочки (chains) Существуют базовые и пользовательские цепочки. Базовые цепочки - это набор предустановленных правил, которые есть в iptables по умолчанию. Существует 5 базовых цепочек и различаются они в зависимости от того, какое назначение имеет пакет. Имена базовых цепочек записываются в верхнем регистре. PREROUTING - правила в этой цепочке применяются ко всем пакетам, которые поступают на сетевой интерфейс извне; INPUT - применяются к пакетам, которые предназначаются для самого хоста или для локального процесса, запущенного на данном хосте. То есть не являются транзитными; FORWARD - правила, которые применяются к транзитным пакетам, проходящими через хост, не задерживаясь; OUTPUT - применяются к пакетам, которые сгенерированы самим хостом; POSTROUTING - применяются к пакетам, которые должны покинуть сетевой интерфейс. В базовых цепочках обязательно устанавливается политика по умолчанию, как правило – принимать (ACCEPT) или сбрасывать (DROP) пакеты. Действует она только в цепочках INPUT, FORWARD и OUTPUT Таблица Таблицы - это набор базовых и пользовательских цепочек. В зависимости от того, в какой таблице находится цепочка правил, с пакетом или соединением производятся определённые действия Существует 5 таблиц: filter - таблица, выполняющая функции фильтрации пакетов по определённым параметрам. В большинстве случаев вы будете использовать именно её. Содержит следующие встроенные цепочки: FORWARD, INPUT, OUTPUT; raw - чтобы понять предназначение этой таблицы, нужно понимать логику работы statefull firewall'а. Дело в том, что по умолчанию, iptables рассматривает каждый пакет как часть большого потока и может определить какому соединению принадлежит тот или иной пакет. С помощью raw таблицы настраиваются исключения, которые будут рассматривать пакет как отдельную, ни к чему не привязанную сущность. Содержит следующие встроенные цепочки: INPUT, OUTPUT; nat - таблица, предназначенная целиком по функции трансляции сетевых адресов. Содержит следующие встроенные цепочки: PREROUTING, OUTPUT, POSTROUTING; mangle - таблица, предназначенная для изменения различных заголовков пакета. Можно, например, изменить TTL, количество hop'ов и другое. Содержит следующие встроенные цепочки: PREROUTING, INPUT, FORWARD, OUTPUT, POSTROUTING>; security - используется для назначения пакетам или соединениям неких меток, которые в дальнейшем может интерпретировать SElinux. Теперь мы можем представить себе логику iptables в виде следующей схемы: Действия Ну и последнее, о чем нужно рассказать, прежде чем мы с вами начнем писать правила - это target. В контексте iptables, target - это действие, которое нужно проделать с пакетом или соединением, которое совпало с критериями правила. Итак, наиболее используемые действия: ACCEPT - разрешить прохождение пакета; DROP - тихо выбросить пакет, не сообщая причин; QUEUE - отправляет пакет за пределы логики iptables, в стороннее приложение. Это может понадобиться, когда нужно обработать пакет в рамках другого процесса в другой программе; RETURN - остановить обработку правила и вернуться на одно правило назад. Это действие подобно break'у в языке программирования. Помимо этих четырех, есть ещё масса других действий, которые называются расширенными (extension modules): REJECT - выбрасывает пакет и возвращает причину в виде ошибки, например: icmp unreachable; LOG - просто делает запись в логе, если пакет соответствует критериям правила; Есть действия, которые доступны только в определенной цепочке и таблицах, например, только в табоице nat и цепочках OUTPUT и PREROUTING доступно действие DNAT, которое используется в NAT'ировании и меняет Destination IP пакета. В той же таблице, только в цепочке POSTRUNNING доступно действие SNAT, меняющее Source IP пакета. Отдельно остановимся на действии MASQUERADE, которое делает то же самое что SNAT, только применяется на выходном интерфейсе, когда IP адрес может меняться, например, когда назначается по DHCP. Пишем правила Отлично, теперь давайте приближаться к практике. Как Вы уже поняли, мы будем писать правила, поэтому нам нужно понять, как они строятся. Итак, допустим у нас есть хост с адресом 192.168.2.17, на 80 (http) порту которого, работает вэб-сервер Apache. Мы заходим на адрес http://192.168.2.17 с хоста с адресом 192.168.2.2 и всё отлично работает: А теперь открываем командную строку под root на хосте 192.168.2.17 и пишем: iptables -A INPUT -p tcp -s 192.168.2.2 --dport 80 -j DROP Попробуем открыть открыть http://192.168.2.17 ещё раз: Упс, не работает. Давайте теперь разбираться, что мы наделали? Всё очень просто – данной командой мы: вызвали утилиту iptables; -A - этим ключом мы указали, что нужно добавить правило к существующей цепочке; INPUT - указали цепочку, к которой хотим добавить правило; -p tcp - явно указали протокол TCP. Здесь также можно указывать другие протоколы (udp, icmp, sctp), или номер протокола, инкапсулируемого в IP (17 – udp, 6 – tcp и др.); -s 192.168.2.2 - указали, какой адрес источника должен быть у пакета, который мы хотим фильтровать; --dport 80 - указали адресованные какому порту пакеты мы хотим фильтровать. В данном случае - 80, на котором работает наш сервер Apache. -j DROP - указали что нужно сделать с пакетом, параметры которого совпали с данными критериями. В данном случае – просто тихо выбросить. Таким образом, мы заблокировали все пакеты с адреса 192.168.2.2 на локальный порт 80 и тем самым закрыли доступ к нашему серверу Apache для данного хоста. Обратите внимание – мы не указывали таблицу, в цепочки которой мы хотим добавить правило. Поэтому, по умолчанию таблица - filter. Для явного указания таблицы нужно перед указанием цепочки ввести ключ -t или (--table) Чтобы открыть доступ опять просто поменяем ключ -A в правиле на -D, тем самым мы удалим данное правило из iptables. Синтаксис iptables Друзья, на самом деле в iptables очень богатый синтаксис правил. Полный список ключей и параметров вы можете найти в официальном гайде на iptables.org. Мы же приведём самые “ходовые” опции, которыми вы, вероятно, будете пользоваться. Чтобы вы не запутались, мы приводим их в табличках ниже. Для удобства, в iptables реализовано очень много сокращений для разных ключей. Например, мы писали ключ -A вместо полного --append, -p вместо полного --proto и -s вместо полного --source, дальше мы покажем, что ещё можно сократить и где применить. Начнём с команд для редактирования правил и цепочек – добавления, удаления, замены и так далее: коротко синтаксис правила применение -A --append {цепочка правила} добавить правило к цепочке (в самое начало) -D --delete {цепочка правила} удалить правило из цепочки -D --delete {номер правила в цепочке} удалить правило из цепочки по номеру (1 - x) -I --insert {номер правила вцепочке} вставить правило в цепочку по номеру (1 - x) -R --replace {номер правила вцепочке} заменить правило в цепочке по номеру (1 - x) -X --delete-chain {цепочка} удалить цепочку (только для пользовательских) -E --rename-chain {старое имя цепочки} {новое имя цепочки} переименовать цепочку -N --new {имя цепочки} создание новой пользовательской цепочки -C --check {правило цепочки} проверит наличие правила в цепочке -F --flush {цепочка} удаляет все правила в цепочке, если цепочка не указана – удалятся все правила -Z --zero {цепочка} {номер правила вцепочке} обнуляет все счётчики пакетов и байтов в цепочке или всех цепочках -P --policy {цепочка} {номер правила вцепочке} изменяет политику по умолчанию, она должна основываться на встроенном target’e {ACCEPT, DROP, QUEUE} Продолжим синтаксисом настройки правил – на каком сетевом интерфейсе следить за пакетами, какой протокол проверять, адрес источника, назначения и так далее. Кстати, перед некоторыми параметрами можно ставить восклицательный знак - !, означающее логическое НЕ. В таблице мы пометим такие параметры таким значком – (!) коротко синтаксис опции применение -p (!) --proto {протокол} протокол {tcp, udp, udplite, icmp, esp, ah, sctp} или номер протокола {16,7}, all - все протоколы -4 --ipv4 указывает версию протокола ipv4 -6 --ipv6 указывает версию протокола ipv6 -s (!) --source {адрес/маска} указывает ip адрес источника -d (!) --destination {адрес/маска} указывает ip адрес назначения -m --match включает дополнительные модули, явно задающимися данным ключем. например <code>m limit --limit 3/min</code> - установит лимит на количество пакетов в минуту -f (!) --fragment включает обработку фрагментированных пакетов, в которых нет параметров изначального полного пакета, содержащихся в первом фрагменте пакета -i (!) --in-interface {имя интерфейса} обрабатывает только входящие пакеты, прилетающие на сетевой интерфейс {имя интерфейса} -o (!) --out-interface {имя интерфейса} обрабатывает только исходящие пакеты, прилетающие на сетевой интерфейс {имя интерфейса} --set-counters {пакеты} {байты} включает счётчик для ключей--insert, --append, --replace Теперь рассмотрим опции для действий, которые должны сработать по совпадению критериев: коротко синтаксис опции применение -j --jump {действие} применяет одно из действий accept, drop, reject и другие -g --goto {цепочка} переходит к другой цепочке правил Теперь рассмотрим какую информацию мы можем вытянуть с помощью iptables и какие опции для этого нужно использовать: коротко синтаксис команды применение -l --list {цепочка} {номер правила} показывает правила в цепочке или всех цепочках. по умолчанию покажет таблицу filter -s --list-rules{цепочка} {номер правила} показывает текст правила в цепочке или всех цепочках -n --numeric покажет параметры правила в числовом виде. например не порт будет не http, а 80 -v --verbose выводит более подробную информацию -v --version покажет версию iptables -x --exact покажет точные значения числовых параметров --line-numbers покажет номера правил Для быстрого получения информации о настроенных правилах и о метриках их срабатывания, часто применяется команда, комбинирующая 3 ключа - iptables -nLv. Например, для настроенного нами ранее правила – вывод будет такой: Пример посложнее Давайте рассмотрим ещё один пример. Допустим у нас во локальной сети есть хост 192.168.2.19 с сервером Apache. Мы хотим сделать его доступным из Интернета. Для этого нам нужно воспользоваться возможностями таблицы nat и написать правило, которое будет перенаправлять входящий http трафик на внешний интерфейс (пусть будет enp0s3 с адресом 101.12.13.14) и порт 80 на адрес нашего сервера внутри сети и 80 порт – 192.168.2.19:80. По сути – нужно сделать проброс портов. Напишем такое правило: iptables -t nat -A PREROUTING -i enp0s3 -p tcp --dport 80 -j DNAT --to 192.168.2.19:80 Теперь если мы перейдём по адресу http://101.12.13.14, то должны попасть на наш Apache. Возможности iptables настолько обширны, что мы могли бы начать писать новую Базу знаний по нему. В статье мы показали лишь базовые варианты применения. Это действительно великий инструмент и освоить его не так уж сложно. Надеюсь, данная статья Вам в этом поможет. Спасибо за внимание!
img
Уровни выполнения (runlevel) Linux можно представить, как режим, в котором запускается система. Каждый из этих режимов обладают своими процессами, которые включены или выключены в зависимости от запущенного уровня выполнения. С момента загрузки Linux выполняется в одном из режимов, нельзя запускать систему в нескольких режимах, но есть возможность переключаться между уровнями во время работы на компьютере. Например, при запуске системы с графическим интерфейсом выполняется один уровень, а если запускать систему в режиме командной строки выполнится другой. Это происходит потому, что режиму GUI нужны доступы к тем процессам, в которых командная строка не нуждается. В зависимости от того, какие службы нужно включить, а какие выключить система меняет уровни выполнения. Почему важны уровни доступа Вы можете годами пользоваться системой Linux, даже не понимая разницу между уровнями доступа, так как эта опция не является часто конфигурируемой. Тем не менее уровни выполнения Linux дают администраторам повышенный контроль над системой. Режим, в котором работает система, может быть изменен (как это сделать будет показано далее), как и сервисы, которые выполняются в этом режиме. Это позволяет нам полностью контролировать, к каким службам система будет иметь доступ в данный момент. Сколько уровней выполнения существует? В системе Linux есть семь уровней выполнения, которые нумеруются от 0 до 6. Разные дистрибутивы по-разному используют уровни выполнения, так что очень сложно составить список задач, которые выполняет конкретный уровень. Зато вы сами можете посмотреть какие задачи выполняют уровни доступа вашего дистрибутива. Ниже приведён список уровней выполнения и основных задач, выполняемых ими. Runlevel 0 завершает работу системы Runlevel 1 однопользовательский режим работы. Чаще всего используется в целях обслуживания и выполнения других административных задач. Это уровень также может называться runlevel S, где S означает single-user. Если вам когда-то приходилось сбрасывать пароль на Linux, то вы вероятно уже пользовались этим режимом. Runlevel 2 многопользовательский режим работы без поддержки сетевых служб (демонов). Runlevel 3 многопользовательский режим с поддержкой сети, но без графического интерфейса. Чаще всего серверные версии Linux работают именно на этом уровне выполнения. Runlevel 4 не используется. Пользователь может настраивать этот уровень исходя из его целей. О том, как это сделать также будет рассказано далее. Runlevel 5 этот режим схож с уровнем 3, но тут еще запускается графический интерфейс. В этом режиме работают десктопные версии Linux. Runlevel 6 этот уровень перезагружает систему. Как узнать текущий режим работы? Чтобы узнать текущий уровень выполнения достаточно ввести команду runlevel в командной строке. На выводе этой команды две цифры. Первая указывает на предыдущий режим работы, а второй на текущий. На скриншоте вместо первой цифры указана буква N, что значит система изначально запускалась и работает в 5 режиме, о чём говорит вторая цифра 5. Как менять уровень выполнения? Текущий уровень выполнения можно менять командой "telinit". Ниже приведён пример смены уровня выполнения на CentOS. $ telinit 3 Следует отметить, что эта операция требует прав привилегированного пользователя. Имейте ввиду, что на системах семейства Debian уровни выполнения работают по-другому. Например, Ubuntu в режиме командой строки запускается с уровнем выполнения 5. После выполнения команды указанной выше, ваш экран может стать пустым. Это потому, что вы остались на пустом терминале, чтобы вернутся на рабочий терминал нажмите комбинацию клавиш Alt+F1. Если запустить команду runlevel еще раз, то мы увидим, что текущий уровень выполнения 3, а предыдущий 5. Linux system против runlevels В последние годы systemd сменила многолетнюю систему уровней доступа (System V init). Фактически он работает по тому же принципу, но использует новые команды, которые в целом используют "runlevel" как "target". Runlevel 0 = poweroff.target (runlevel0.target) Runlevel 1 = rescue.target (runlevel1.target) Runlevel 2 = multi-user.target (runlevel2.target) Runlevel 3 = multi-user.target (runlevel3.target) Runlevel 4 = multi-user.target (runlevel4.target) Runlevel 5 = graphical.target (runlevel5.target) Runlevel 6 = reboot.target (runlevel6.target) По ходу статьи мы изучим systemd и его команды. Как поменять уровень выполнения по умолчанию? Может быть очень много причин для того чтобы загружаться с другим уровнем выполнения. Например, системные администраторы в основном используют систему в режиме командой строки, включая графический интерфейс только в случае необходимости. Именно для таких случаев нужно убедиться, что уровень выполнения по умолчанию 3, а не 5. В прошлом для этого приходилось редактировать файл /etc/inittab. Вы еще можете увидеть эту практику на некоторых системах. Если вы работаете с ОС, которые давно не обновляются до новых версий, этот путь будет приемлемым. $ vi /etc/inittab На скриншоте уровнем выполнения по умолчанию установлен 5. Но большинство систем Linux отказались от файла /etc/inittab в пользу systemd targets и мы рассмотрим разницу между ними по ходу статьи. Вы можете не найти в своей системе файл /etc/inittab или же файл inittab выведет вам сообщение с советом использовать systemd. Чтобы проверить текущий уровень выполнения по умолчанию введите команду $ systemctl get-default Система вернула нам "graphical.target". Как вы наверное и догадались, это не что иное, как уровень выполнения 5. Чтобы просмотреть остальные "target" и уровни выполнения, ассоциированные с ними введите команду: $ ls -l /lib/systemd/system/runlevel* Символьные ссылки указывают на то, что systemd работают так же как и runlevel. Итак, что необходимо сделать, чтобы поменять уровень выполнения по умолчанию? Для этого достаточно создать новую символьную ссылку на интересующую нас цель systemd. $ ln -sf /lib/systemd/system/runlevel3.target /etc/systemd/system/default.target Данной командой мы поменяли режим запуска системы по умолчанию с уровня выполнения 5, на 3 и при следующей загрузке система выполнить именно этот уровень. Ключ f указывает на то, что перед созданием новой символьной ссылки целевой файл должен быть удален. Это же самое могли бы сделать командой rm. Чтобы проверит успешно ли применились изменения достаточно повторно ввести команду "systemctl get-default". Разница между уровнями выполнения 3 и 5 Самыми часто используемыми уровнями выполнения являются уровни 3 и 5. В целом их разница сводится к тому, что 3 это режим командной строки, а 5 режим графического интерфейса. Конечно, не во всех дистрибутивах выполняется это условие или же ваша система может быть сконфигурирована так, что эти два уровня имеют больше отличий. Дальше мы рассмотрим, как узнать, какие процессы задействованы для того или иного уровня. Просмотр список служб конкретного уровня Чтобы просмотреть список служб, доступных для каждого уровня до недавнего времени использовалась команда "chkconfig -list". Если у вас стоит одна из последний версий, системы, то вероятно вы получите ошибку, как на скриншоте ниже: Чтобы проверить, какие службы запускаются во время загрузки системы в режиме графического интерфейса (уровень выполнения 5 для семейства RedHat), нужно запустить следующую команду: $ systemctl list-dependencies graphical.target Чтобы просмотреть список доступных служб другого уровня, просто замените "graphical.target" на нужную. Под каким уровнем работает процесс Если нужно посмотреть по каким уровнем выполнения запущена та или иная служба, можно ввести команду: $ systemctl show -p WantedBy [name of service] Например, чтобы посмотреть какой runlevel использует служба sshd, введите команду: $ systemctl show -p WantedBy sshd.service Судя по скриншоту выше, служба sshd запушена под уровнями 2,3 и 4 (multi-user.target) Меняем уровень запуска приложения Как было показано выше, демон SSH запущена только на уровнях 2-4. Что если нам нужно, чтобы он работал ещё и на уровне 5? Для этого нужно ввести следующее изменение: $ systemctl enable sshd.service Проблемы безопасности с уровнями доступа Linux Как было сказано ранее, уровни доступа дают администраторам возможность управлять службами, которые работают в определённых случаях. Такая возможность детального контроля повышает безопасность системы, так как системный администратор может быть уверен, что не запущена ни одна сторонняя служба. Проблема возникает, когда администратор не знает точно какие службы запущены и, следовательно, не может принять меры по уменьшению площади атаки. Используя методы из данного руководства, вы можете настроить уровень выполнения по умолчанию и контролировать запущенные приложения. Это, конечно, не уменьшит нагрузку на системные ресурсы, но сервер будет более защищен. Помните, что надо запускать тот уровень, который вам необходим. Нет смысла запускать систему в графическом режиме, если планируете работать там режиме командной строки. Каждый уровень выполнения запускает новые службы, большинство из которых работают в фоновом режиме, и вы можете забыть обезопасить их. Какой уровень выполнения выбрать? Выбор режима запуска системы полностью зависит от ситуации. В основном используется один из двух режимов: либо runlevel 3, либо runlevel 5. Если вам удобно работать с командной строкой и вам не нужен графический интерфейс, то уровень выполнения 3 самый подходящий. Это предотвратит запуск ненужных служб. С другой стороны, если вам хочется работать в десктопном режиме или же вам нужна графическая оболочка для работы какой-то программы, то выберите уровень 5. Если же нужно запустить систему в режиме обслуживания, то выбирайте уровень 1. В этом режиме в системе будете только вы, так как сетевые службы даже не запущены. Это позволит выполнить обслуживания без сбоя. В редких случаях появляется необходимость использовать уровень выполнения 4. Это может быть только в том случае, если администратору нужен уровень выполнения для особых задач. Как вы уже, наверное, заметили, мы не может запускать систему с уровнем 0 и 6, но можно переключаться на них если нужно выключить или перезагрузить систему. Но в этом нет особой необходимости, так как есть команды, которые выполняют эти операции. Можно ли создано новый уровень на Linux? Так как система Linux это система бесконечных возможностей, то и создание нового уровня не исключение. Но очень маловероятно, что вам когда-нибудь понадобится это. Но если вы все-таки решили создать новый уровень, то следует начать с копирования существующего уровня и изменения её под свои задачи. Целевые уровни расположены по следующему пути: /usr/lib/systemd/system Если хотите создать свой уровень на основе 5-го уровня выполнения, скопируйте искомую директорию в новую: $ cp /usr/lib/systemd/system/graphical.target /usr/lib/systemd/system/mynew.target Затем в новой директории создайте поддиректорую "wants": $ mkdir /etc/systemd/system/mynew.target.wants Затем просто создайте символьную ссылку на дополнительные службы в директории /usr/lib/systemd/system, которые необходимы вашему уровню.
img
Для присоединения к другим телефонным станциям, в SoftX3000 создаются транковые группы разных типов. Для начала рассмотрим порядок создания SIP-транка, который чаще всего используется для подключения небольших АТС предприятий УПАТС. Для начала следует определиться с правилами нумерации транков и сопутствующих записей внутри нашей АТС. Например, пусть SIP-транки будут иметь нумерацию с 1 по 100, транки ОКС-7 со 101 п 199. В рамках одного транка все команды и записи удобно будет вести с одним номером, чтобы было проще ориентироваться в настройках позже. ADD OFC этой командой создаем направление. Здесь параметры имеют следующее назначение: Office direction number порядковый номер направления. На этот номер будем ссылаться в других команда и таблицах. Office direction name название направления. Для удобства идентификации можно указать любое название. Peer office type тип удаленной станции, может принимать значения: PBX - УПАТС СС местная сельская АТС CMPX местная городская и сельская АТС NATT междугородная АТС INTT международная АТС Peer office level - уровень противоположной станции по отношению к текущей. Значения: HIGH выше текущей станции SAME одного уровня LOW ниже текущей ADD SRT создаем подмаршрут, который будет привязан непосредственно к транку. Можно создать несколько подмаршрутов и объединить их в один маршрут: при проблемах с первым подмаршрутом в списке станция будет пытаться использовать следующий. Параметры команды: Sub-route number порядковый номер подмаршрута. Можно установить любой свободный номер, но предпочтительнее, чтобы он совпадал с номером OFC, заданный в предыдущей команде. Office direction number номер OFC, который задан в предыдущей команде. Sub-route name название подмаршрута любое удобное название. ADD RT создаем маршрут, в котором указываем один или несколько подмаршрутов, созданных предыдущей командой. Если указано несколько подмаршрутов, станция будет пытаться использовать первый в списке, если он не доступен, то следующий по списку. Параметры команды: Route number порядковый номер маршрута. Любое число, но, по договоренности, устанавливаем то же значение, что и в командах ранее. Route name произвольное название. 1 st sub-route первый подмаршрут. Указываем номер подмаршрута, созданного в предыдущей команде. Остальные параметры необходимы, если создано несколько подмаршрутов и необходимо настроить параметры выбора между ними. ADD RTANA правило выбора маршрута. Эта таблица определяет по какому маршруту будет направлен вызов, основываясь на многочисленных параметрах вызова, среди которых: категория абонента, тип А-номера, дополнительный атрибут абонента прочие. Параметры команды: Route selection code код выбора маршрута. На этот код ссылается запись в таблице префиксов CNACLD Route selection source code этот код является одним из параметров callsrc. Caller category категория абонента, задается при создании абонента в командах ADD VSBR или ADD MSBR. Caller category категория абонента, устанавливается в командах ADD VSBR или ADD MSBR в параметре Subscriber type. Так же можно применить данное свойство для транзитных вызовов, задав категорию в команде ADD CNACLR. Service attribute указывает, какие типы вызовов могут использовать данный маршрут (INTT - международные, NATT - междугородные, CITY - местные, ALL - любые) Caller access если необходимо, чтобы маршрут могли выбрать только абоненты ISDN, выбрать ISDN, если только не ISDN-абоненты, то NONISDN. Transmission capability тип поддерживаемого трафика (голос, данные, видео и прочее) Time index временной индекс. Если в станции используется маршрутизация по временным меткам. Если не используется, устанавливается значение по-умолчанию 0. Route number номер маршрута, который задан в команде ADD RT. Signaling as prior приоритет выбора подмаршрута в соответствии с типом сигнализации. Nature of callee address indicator тип вызываемого номера (International, National, Subscriber, ALL) Customized caller type дополнительный параметр абонента, который задается в командах ADD VSBR или ADD MSBR (Customized subscriber type) Called number Plan identity план нумерации вызываемого номера. Чтобы вызов прошел по данному маршруту, должны совпасть все условия. Чтобы какое-то условие игнорировалось при выборе маршрута, необходимо установить значение в ALL или значение по-умолчанию. Применение Пример 1 Допустим, у нас есть направление OFC=1, на которое ссылается подмаршрут SRT=1, на который, в свою очередь, ссылается маршрут RT=1. Допустим, это присоединение УПАТС, и все вызовы на это направление с любых источников должны проходить без ограничений. В таком случае создадим правило RTANA со следующими параметрами: В данном случае: Route selection code = 1 код выбора маршрута, который нужно указать в команде ADD CNACLD Route number указание на созданный ранее маршрут RT=1 Route selection source code параметр, задаваемый в callsrc. Значение остальных параметров установлены так, что при их любом значении вызов будет смаршрутизирован. Пример 2 Допустим, направление из предыдущего примера является выходом на оператора междугородной связи и доступ к нему могут получать лишь те абоненты, которые заключили с ним договор. Эти абоненты имеют отличительный признак - Customized subscriber type=8. В таком случае устанавливаем в параметре Customized caller type значение CUST8, и абоненты, у которых этот параметр отличается от CUST8 не смогут использовать данный маршрут. По такому же принципу работает ограничение и по другим параметрам. Пример 3 Если ограничивающие параметры не применимы для вызова (например, Customized subscriber type невозможно задать для вызовов, приходящих с другого транка), то и ограничения данных вызовов не произойдет. Чтобы ограничить транзитные вызовы со входящих транков, необходимо создать дополнительный callsource и задать в нем произвольный Route selection source code, отличный от значения по-умолчанию: Теперь, если мы назначим входящем транку созданный callsrc, то сможем применять Route selection source code для маршрутизации, указывая его в команде RTANA. Пример 4 Так же мы можем создать несколько правил RTANA с одним и тем же Route selection code, но разными параметрами, как в примере ниже: Здесь приведено правило RTANA для звонков на междугородные направления, а выбора маршрута осуществляется в зависимости от различных параметров вызова (в частности, Caller category и Customize subscriber type). ADD SIPTG создает транк-группу, в которой задается количество каналов, код источника вызова (для входящих вызовов), и номер подмаршрута, к которому привязана транк-группа. Trunk group number порядковый номер транк-группы Call source code код источника вызова, используется для маршрутизации входящих вызовов Sub-route number номер подмаршрута, указываем созданный ранее подмаршрут Maximum caller number restriction максимальное количество вызовов в транке. При достижении этого количества вызовов в транке, все последующие вызовы отбрасываются. Stop call restriction при снижении количества вызовов до числа, указанного в этой команде, ограничение вызовов, сработавшее по предыдущему параметру, снимается ADD SIPIPPAIR задает параметры непосредственного стыка с противоположным оборудованием (ip-адрес удаленной станции, локальный порт для приема сигнализации) Trunk group number порядковый номер транк-группы, указываем номер из предыдущей команды IFMI module number номер модуля IFMI в системе, можно узнать, дав команду LST BRD Local server port порт приема сигнализации SIP Remote URI 1 ip-адрес противоположной станции. Если sip-транк настраивается через SBC, здесь указывается loopback-интерфейс, который назначен транку.` ADD CNACLD этой командой задается префикс выхода на созданную транк-группу. Local DN set номер Local DN set, в которой будет находится префикс набора. Как правило, в станции только один Local DN set, указываем его номер Call prefix префикс набора, по которому вызовы будут направляться в созданное нами направление Service attribute тип исходящего вызова, принимает значения: LCO (Intra-officce) внутренние вызовы станции, LC (Local), LCT (Local toll) местные, NTT (National toll) междугородные (федеральные), ITT (International toll) международные, EMC экстренные вызовы. Route selection code код выбора маршрута, номер, указанный в команде RTANA. Minimum number length минимальная длина номера по данному префиксу Maximum number length максимальная длина номера по данному префиксу Charging selection code код источника тарификации. Настройка SIP -транка в пограничном контроллере сессий Huawei SE 2200 Общие правила настройки sip-транка в SBC Interface LoopBack 1 интерфейс, который указываем в SoftX3000 как противоположную станцию description test - trunk справочное название интерфейса ip address 192.168.33.1 255.255.255.255 адрес созданного интерфейса Interface LoopBack 2 интерфейс, который указываем в противоположной станции как адрес SoftX3000 description test - trunk справочное название интерфейса ip address 192.168.44.1 255.255.255.255 адрес созданного интерфейса acl number 3011 создаем список доступа rule 0 permit ip source 192168.55.1 0 разрешаем трафик от адреса противоположной станции rule 5 permit ip source 192.168.22.0 0.0.0.255 разрешаем трафик от SoftX3000 и сопутствующего оборудования (в этой сети, вероятно, так же будет UMG и прочее оборудование в составе SoftX3000) rule 10 deny ip запретить все прочие адреса Выше обозначенная группа команд необходима для обеспечения безопасности, на нашей сети используются другие методы и эти команды не используются и не проверялись автором. Здесь они приведены для полной информации о правильной последовательности настройки. sbc wellknowport clientaddr 192.168.33.1 sip 5060 разрешаем прием сигнализации SIP по порту 5060 на адресе 192.168.33.1 (от SoftX3000) sbc wellknowport clientaddr 192.168.44.1 sip 5060 разрешаем прием сигнализации SIP по порту 5060 на адресе 192.168.44.1 (от противоположной станции) sbc wellknowport softxaddr 192.168.22.1 sip 5060 обозначаем адрес SoftX3000. (Если SBC уже настроен ранее и работает, данная команда уже, вероятно, есть в конфигурации) sbc mapgroup intercom - ip 1001 создаем mapgroup в сторону SoftX3000 description == test - trunk == - справочное название clientaddr 192.168.44.1 адрес в сторону противоположной станции match acl 3011 проверка адресов согласно списка acl 3011 serveraddr 192.168.33.1 адрес в сторону SoftX softxaddr 192.168.22.1 - адрес SoftX3000 media - clientaddr 192.168.44.1 адрес в сторону противоположной станции media - serveraddr 192.168.33.1 адрес в сторону SoftX enable команда на активацию mapgroup sbc mapgroup intercom - ip 1002 создаем mapgroup в сторону противоположной станции description ==test-trunk== clientaddr 192.168.33.1 адрес в сторону SoftX match acl 3011 - проверка адресов согласно списка acl 3011 serveraddr 192.168.44.1 адрес в сторону противоположной станции softxaddr 192.168.55.1 - адрес противоположной станции media - clientaddr 192.168.33.1 адрес в сторону SoftX media - serveraddr 192.168.44.1 адрес в сторону противоположной станции enable команда на активацию mapgroup
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59