По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Микросервисы – это шаблон сервис-ориентированной архитектуры, в котором приложения создаются в виде наборов небольших и независимых сервисных единиц. Такой подход к проектированию сводится к разделению приложения на однофункциональные модули с четко прописанными интерфейсами. Небольшие команды, управляющие всем жизненным циклом сервиса могут независимо развертывать и обслуживать микросервисы. Термин «микро» относится к размеру микросервиса – он должен быть удобным в управлении одной командой разработчиков (5-10 специалистов). В данной методологии большие приложения делятся на крошечные независимые блоки. Что такое монолитная архитектура? Если говорить простым языком, то монолитная архитектура – это как бы большой контейнер, в котором все компоненты приложения соединяются в единый пакет. В качестве примера монолитной архитектуры давайте рассмотрим сайт для электронной торговли. Например, онлайн-магазин. В любом таком приложении есть ряд типовых опций: поиск, рейтинг и отзывы, а также оплаты. Данные опции доступны клиентам через браузер или приложение. Когда разработчик сайта онлайн-магазина развертывает приложение, это считается одной монолитной (неделимой) единицей. Код различных опций (поиска, отзывов, рейтинга и оплаты) находится на одном и том же сервере. Чтобы масштабировать приложение, вам нужно запустить несколько экземпляров (серверов) этих приложений. Что такое микросервисная архитектура? Микросервисной архитектурой называется методика разработки архитектуры, позволяющая создавать приложения в виде набора небольших автономных сервисов для работы с конкретными предметными областями. Такой вариант структурированной архитектуры позволяет организовать приложения в множество слабосвязанных сервисов. Микросервисная архитектура содержит мелкомодульные сервисы и упрощенные протоколы. Давайте рассмотрим пример приложения для онлайн-торговли с микросервисной архитектурой. В данном примере каждый микросервис отвечает за одну бизнес-возможность. У «Поиска», «Оплаты», «Рейтинга и Отзывов» есть свои экземпляры (сервер), которые взаимодействуют между собой. В монолитной архитектуре все компоненты сливаются в одну модель, тогда как в микросервисной архитектуре они распределяются по отдельным модулям (микросервисам), которые взаимодействуют между собой (см. пример выше). Коммуникация между микросервисами – это взаимодействие без сохранения состояния. Каждая пара запросов и ответов независима, поэтому микросервисы легко взаимодействуют друг с другом. Микросервисная архитектура использует федеративные данные. Каждый микросервис имеет свой отдельный массив данных. Микросервисы и монолитная архитектура: сравнение Микросервисы Монолитная архитектура Каждый блок данных создается для решения определенной задачи; его размер должен быть предельно малым Единая база кода для всех бизнес-целей Запуск сервиса происходит сравнительно быстро На запуск сервиса требуется больше времени Локализовать ошибки довольно просто. Даже если один сервис сломается, другой – продолжит свою работу Локализовать ошибки сложно. Если какая-то определенная функция не перестает работать, то ломается вся система. Чтобы решить проблему, придется заново собирать, тестировать и развертывать приложение. Все микросервисы должны быть слабо связанными, чтобы изменения в одном модуле никак не влияли на другой. Монолитная архитектура тесно связана. Изменения в одному модуле кода влияет на другой Компании могут выделять больше ресурсов на самые рентабельные сервисы Сервисы не изолированы; выделение ресурсов на отдельные сервисы невозможно Можно выделить больше аппаратных ресурсов на самые популярные сервисы. В примере выше посетители чаще обращаются к каталогу товаров и поиску, а не к разделу оплат. Таким образом, будет разумнее выделить дополнительные ресурсы на микросервисы каталога товаров и поиска Масштабирование приложения – задача сложная и экономически не выгодная Микросервисы всегда остаются постоянными и доступными Большая нагрузка на инструменты для разработки, поскольку процесс необходимо запускать с нуля Федеративный доступ к данным, благодаря чему под отдельные микросервисы можно подбирать наиболее подходящую модель данных Данные централизованы Небольшие целевые команды. Параллельная и ускоренная разработка Большая команда; требуется серьезная работа по управлению командой Изменения в модели данных одного микросервиса никак не сказывается на других микросервисах Изменения в модели данных влияют на всю базу данных Четко прописанный интерфейс позволяет микросервисам эффективно взаимодействовать между собой Не предусмотрено Микросервисы делают акцент на продуктах (модулях), а не проектах Сосредоточены на проекте в целом Отсутствие перекрестных зависимостей между базами кода. Для разных микросервисов можно использовать разные технологии Одна функция или программа зависит от другой Сложности в работе с микросервисами Микросервисы полагаются друг на друга, поэтому необходимо выстроить коммуникацию между ними. В микросервисах создается больше модулей, чем в монолитных системах. Эти модули пишутся на разных языках, и их необходимо поддерживать. Микросервисы – это распределенная система, так что, по сути, мы имеем дело со сложной системой. В разных сервисах используются свои механизмы; для неструктурированных данных требуется больший объем памяти. Для предотвращения каскадных сбоев необходимо эффективное управление и слаженная командная работа. Трудно воспроизвести ошибку, если она пропадает в одной версии и вновь появляется в другой. Независимое развертывание и микросервисы – вещи слабо совместимые. Микросервисная архитектура требует большего количества операций. Сложно управлять приложением, когда в систему добавляются новые сервисы. Для поддержки всевозможных распределенных сервисов требуется большая команда опытных специалистов. Микросервисы считаются дорогостоящими решениями, поскольку для разных задач создаются и поддерживаются разные серверные пространства. Сервис-ориентированная архитектура (СОА) или микросервисы СОА-сервисы (SOA - Service-oriented architecture) поддерживаются через реестр, который считается перечнем файлов каталога. Приложения должны найти сервис в реестре и вызвать его. Иначе говоря, СОА похож оркестр: каждый музыкант играет на своем инструменте, а всеми артистами управляет дирижер. Микросервисы – это разновидность СОА-стиля. Приложения создаются в виде набора небольших сервисов, а не цельной программы. Микросервисы похожи на труппу артистов: каждый танцор знает свою программу и не зависит от других. Даже если кто-то забудет какое-то движение, вся труппа не собьется с ритма. Теперь давайте поговорим о различиях между СОА и микросервисах. Параметр СОА Микросервисы Тип проектирования В СОА компоненты приложения открыты для внешнего мира; они доступны в виде сервисов Микросервисы – это часть СОА. Такая архитектура считается реализацией СОА Зависимость Подразделения – зависимы Они не зависят друг от друга Размер приложения Размер приложения больше, чем у обычных программ Размер приложения всегда небольшой Стек технологий Стек технологий ниже, чем у микросервисов Стек технологий очень большой Сущность приложения Монолитная Полностековая Независимость и ориентированность СОА-приложения создаются для выполнения множества бизнес-задач Создаются для выполнения одной бизнес-задачи Развертывание Процесс развертывания растянут по времени Несложное развертывание, на которое тратится меньше времени Рентабельность Более рентабельно Менее рентабельно Масштабируемость Меньше, чем у микросервисов Высокая масштабируемость Бизнес-логика Компоненты бизнес-логики хранятся внутри одного сервисного домена. Простые проводные протоколы (HTTP с XML JSON). API управляется с помощью SDK/клиентов Бизнес-логика распределена между разными корпоративными доменами Микросервисные инструменты Wiremock – тестирование микросервисов WireMock – это гибкая библиотека для создания заглушек и сервисов-имитаций. В ней можно настроить ответ, который HTTP API вернет при получении определенного запроса. Также может использоваться для тестирования микросервисов. Docker Docker – это проект с открытым кодом для создания, развертывания и запуска приложений с помощью контейнеров. Использование такого рода контейнеров позволяет разработчикам запускать приложение в виде одного пакета. Кроме того, в одном пакете могут поставляться библиотеки и другие зависимости. Hystrix Hystrix – это отказоустойчивая Java-библиотека. Данный инструмент предназначен для разделения точек доступа к удаленным сервисам, системам и сторонним библиотекам в распределенной среде (микросервисах). Библиотека улучшает всю систему в целом, изолируя неисправные сервисы и предотвращая каскадный эффект от сбоев. Лучшие примеры использования микросервисной архитектуры Отдельное хранение данных для каждого микросервиса. Поддержание кода на едином уровне зрелости Отдельная сборка для каждого микросервиса. Заключение Микросервисы – это СОА-шаблон, в котором приложения создаются как набор малых и независимых серверных единиц. Микросервисная архитектура относится к стилям разработки архитектуры, позволяющим создавать приложение в виде небольших и автономных сервисов для определенных предметных областей. Монолитная архитектура похожа на большой контейнер, в котором все компоненты приложения собраны в один пакет. Каждый блок приложения в микросервисе имеет предельно малый размер и выполняет определенную функцию. Большая база кода в монолитной архитектуре замедляет процесс разработки. Выход новых версий может растянуться на месяцы. Поддерживать такую базу кода довольно сложно. Существует 2 типа микросервисов: Stateless (без сохранения состояния) и Stateful (с отслеживанием состояния) Микросервисы на Java полагаются друг на друга; они должны взаимодействовать между собой. Микросервисы позволяют в большей степени сконцентрироваться на определенных функциях или потребностях бизнеса. Сервисно-ориентированная архитектура, или СОА, – это усовершенствованные распределенные вычисления, основанные на проектной модели запроса/ответа в синхронных или асинхронных приложениях. Компоненты приложения в СОА открыты для внешнего мира и представлены в виде сервисов; микросервисы считаются частью СОА. Это реализация СОА. К популярным микросервисным инструментам относятся Wiremock, Docker и Hystrix.
img
Итак, у нас загрузилось ядро операционной системы. Далее отрабатывают системы инициализации операционной системы. Три варианта: SysV, systemd, Upstart. Init в стиле SysV Init в стиле SysV данная процедура инициализации, самая старая она более классический Unix вариант инициализации операционной системы. Для того, чтобы понять, как происходит инициализация необходимо понять, что такое режимы загрузки (они же runlevel), разобраться как между ними переключатся, рассмотреть работу со службами. Обычно есть 7 уровней выполнения по умолчанию: Выключение Однопользовательский режим (чаще всего используется для отладки и настройки операционной системы) DebianUbuntu по умолчанию RedHatSuse по умолчанию текстовый режим. WildCard (программируемый режим, можно сюда поставить любой) RedHatSuse GUI (Graphical User Interface) Перезагрузка. Но существуют операционные системы, где 10 уровней по умолчанию. Конечно речь идет о самых распространенных ядрах и сборках *nix образных операционных системах. Для дальнейших пояснений, как работает инициализация в стиле sysV нам необходим операционная система CentOS 5.4 или ниже, потому что в более новых операционных системах данный процесс давно уже заменен. Отроем файл настроек текстовым редактором vi или любым другим удобным для вас. Мы можем увидеть содержание файла. Те самые уровни о которых шла речь выше. Плюс прописан уровень используемые при загрузке по умолчанию. Строчка id:3:initdefault: Мы данный параметр можем отредактировать и например сказать, чтобы операционная система загружалась по умолчанию в Single Mode например. Если мы посмотрим далее файл, мы можем увидеть настройку, которая описывает действия нажатия клавиш Ctrl+alt-delete. А также наглядно прописано, что запуск определенного уровня - это запуск определённого скрипта. Все скрипты запускаются из папки /etc/rc.d/ Все дальнейшие варианты инициализации растут, вот из этого варианта. И этой процедуры инициализации. Перейдем в директорию, где лежат все скрипты инициализации и выполняются данные скрипты при старте системы. В данной папке куча скриптов, которые запускают определенные службы, например, ssh запускает демона ssh для подключения клиентом по 22 порту. Т.е здесь куча служб и запускаются они этими скриптами. Если мы например хотим остановить какую нибудь службу то набираем ./rsync stop , ну и соответственно ./rsync start для запуска данной службы. Аналогично мы можем управлять через команду service, например: service rsync restart . Поднимемся на уровень выше cd .. Найдем все файлы, которые начинаются с rc. Для этого набираем: ls -l | grep rc. В результате мы увидим несколько скриптов. Посмотрим rc3.d . А для этого перейдем в эту директорию. В ней можно увидеть кучу скриптов. В вариации Ubuntu современной и затем в вариации CentOS 5.4 Те скрипты, которые начинаются с буквы K, эти скрипты при старте убивают сервис, те скрипты, которые имеют первой букву S запускают сервис. Ну и соответственно порядковый номер исполнения скрипта в очереди. Для каждого runlevel свой набор скриптов. Основные команды Init управление инициализацией с помощью нее можно перемещаться между runlevel. Telinit управление процессом init , в старых дистрибутива использовалась именно эта команда. Wall вывод сообщения пользователям системы Halt - выключение компьютера Reboot перезагрузка компьютера Shutdown - запланированное выключение Service service_name start|stop|reload|restart Для того, чтобы перемещаться по уровням загрузки, нам необходимо понять на каком уровне мы находимся сейчас. Набираем runlevel . Соответственно, если мы хотим переключится telinit 1 отрабатывают скипты мы попадаем в однопользовательский режим 1. Для того, чтобы послать сообщение все пользователям на данной машине необходимо набрать с соблюдением регистра wall "Abrakadabra". У всех пользователей появится данное сообщение на экране. Для выключения сейчас компьютера можно использовать shutdown h now. Init в стиле Systemd Init в стиле Systemd более современная система инициализации операционной системы Linux. Необходимым элементом работы системы systemd , являются Unit. Unit- это модуль которыми оперирует systemd: .service службы .mount точки монтирования .device устройства .socket сокеты Если при работе в консоли мы не указывает расширение юнита, то в принципе system может догадаться в каком случае, что используется. В операционной системе существуют 2 папки в которых хранятся Unit: /usr/lib/systemd директория с Units по умолчанию, в которой создаются units при установке какого либо программного обеспечения. /etc/systemd директория с управляемыми Units. Тут лежат те Unit которыми может управлять админ, добавлять , редактировать. Посмотрим, что находится в данных директориях переходим в /usr/lib/system Нам интересны 2 директории system и user. Содержимое папки system выглядит вот так. В данной директории лежат все необходимые Units для системы в директории user для пользователя. Картинка будет примерно аналогичная. Директория /etc/systemd. Тут точно также есть две папки system и user, а также конфигурационные фалы. Данные конфигурационные файлы и отвечают за настройку systemd. Это те файлы которые пришли на замену /etc/inittab, предыдущей версии инициализации операционной системы. Файлы юнитов в директориях system и user мы можем редактировать для каких-то своих целей и даже писать targets. Далее мы можем посмотреть запущенные Units. Для этого мы можем выполнить systemctl команду, она отвечает за все действия с systemd. Для примера команда systemctl list-units нам выведет все запущенные Units, сокеты ,устройства ,точки монтирования. Можно посмотреть юниты, которые не стартанули systemd failed. А также мы можем управлять юнитами systemctl status|start|stop|restart crond. Так же Systemd работает с Target (целями). Есть target которые работают так же как runlevel в классической процедуре инициализации, они не пронумерованы в отличии от runlevel у них есть конкретные имена. В табличке можно посмотреть какие target соотносятся с какими runlevel. Их этих target может быть несколько, потому что target бывают не только загрузочные. Данная система использования target обратно совместимая с системой инициализации. Для переключения мы можем использовать команду telinit. Сами по себе target есть некая группировка юнитов, последовательность вызова юнитов. Это может быть target последовательного вызова нескольких служб и ниже стоящий target. Текущий уровень мы можем посмотреть командой runlevel. По умолчанию это будет 3. Далее мы можем написать systemctl list-units --type=target И можно увидеть, что находимся на 3-м уровне также т.к target соответствует. Так же мы можем переключатся между runlevel командой telinit. Например, для перехода в однопользовательский режим telinit 1. А так же мы можем использовать через синтаксис systemctl isolate reboot.target. Для того чтобы поставить какой-то загрузочный target по умолчанию, необходимо отредактировать загрузчик, вставить параметры ядра, которые будут запускаться. Или сделать проще командой systemctl set-default f multi-user.target (использование например 3 runlevel по умолчанию). Одной из особенностей system является интересная система журналирования journald. Демон журналов. Эта система уникальна тем, что собирает информацию из разных источников событий и привязывает их к конкретным юнитам и сервисам. Благодаря этому мы можем всю диагностическую информацию просматривать в одном месте. Соответственно находить неисправности и их устранять. Работает следующим образом: Journalctl f - показывает события по мере их возникновения. Journalctl n 10 вывод последних 10 событий Инициализация Init в стиле Инициализация Init в стиле upstart это система инициализации, в том стиле которая задумывалась для Ubuntu, и заменила процедуру инициализации, которая пришла из Unix стандартную init процедуру. Процедура инициализации upstart контролирует инициализацию демонов и служб в течении загрузки системы и их остановку если у нас система выключается или нужно переключится в другой режим. Основное отличие от классической процедуры инициализации в том, что задачи и службы останавливаются по событиям и сами события могут генерироваться задачами и службами, могут приняты быть от любого процесса системы. Могут быть службы перезапущены в автоматическом режиме если они вдруг были завершены в аварийном режиме. Еще одно отличие в том, что у данного режима инициализации есть задачи (tasks). Основными понятиями являются службы и задачи. Основное отличие службы от задачи в том, что служба перезапускается если была аварийно завершена, а задача нет. Процесс инициализации системы по upstart берет конфигурацию из файлов каталога /etc/init каталог файлов-заданий (jobs). Каждый файл отвечает за запуск каждого задания или службы и должен заканчиваться с расширением .conf . Уровни инициализации остались те же самые. Определение и переключение между уровнями выполняются теми же командами, описанными выше. Изменился файл, в котором мы описываем runlevel запуска по умолчанию. И для управления upstart используется утилита initctl. Как мы видим в каталоге /etc/init находятся конфигурационные файлы Jobs. Каждый отвечает за запуск отдельной службы. Смотрим файл конфигурации простейшего файрвола операционной системы cat ufw.conf Как мы видим ufw стартует при условии, описанном start on, выключается на определенных runlevel. Файл конфигурации с runlevel по умолчанию находится в файле cat /etc/init/rc-sysinit.conf Управляются службы простыми командами status ufw start ufw stop ufw. В данной статье мы рассмотрели различные вариации инициализации. Думаю, информация будет очень полезной.
img
На базе нашего опыта реализации проектов, хайринга, консультаций с действующими техническими тренерами по Cisco в сетевых академиях мы сформировали уникальную программу курса, которая на наш взгляд, позволит человека с нуля (без начальных знания) освоить сетевые технологии (всею необходимую теорию, коммутацию, маршрутизацию, настройка и траблшутинг), а также курс прекрасно подойдет для DevOps специалистов, которые хотят углубить свои знания по сетям. В курсе мы используем примеры конфигураций, лабораторные работы и тестирование в разрезе вендора Cisco - именно с Cisco конфигами и сетапами связан курс. Именно поэтому прохождение курса даст вам нужную базу для сдачи CCNA и частично подготовит к CCNP. Давайте разберемся в деталях. Для кого этот курс? Новички: если вы начинающий специалист и хотите прокачать свои скиллы и знания по сетевым технологиям и DevOps, то мы обучим вас с нуля всем необходимым навыкам, а наши онлайн-тренажеры позволят вам отточить приобретенные знания на практике; Опытный инженер: данный курс пригодится вам, если вы уже работаете с корпоративными сетями и хотите расширить набор знаний, узнать куда движется тренд технологий, что нового появится в стеке, а также освежить в памяти теоретические знания и потренироваться на тренажерах; Full-stack специалистам: если вы DevOps инженер, инженер-телефонист, сотрудник оператора связи или хотите просто развить свой профессиональный кругозор, то этот курс позволит вам прокачать знания в корпоративных сетях и разговаривать на одном языке с опытными специалистам. Полная программа онлайн-курса Мы тщательно продумали программу курса шаг за шагом, где блок за блоком в указанном ниже порядке вы будете осваивать тот или иной блок, с тестированием и лабораторной работой. Введение в сетевые технологии Модель OSI Маршрутизатор. Коммутатор. Хаб. Что это и в чем разница? IP, LAN и WAN, TCP и UDP - deep dive в основы DNS, Ethernet, VLSM, ARP - что это? Как вашу сеть будут атаковать злоумышленники? NAT на пальцах и введение в IPv6 Сравнение проводных и беспроводных сетей и режимы передачи данных Что такое VPN, DHCP, MAC и QoS - важнейшее Что такое витая пара и как ее обжать? Иерархическая модель сети от Cisco и почему сегментация сетей так важна? ОС, CLI, структура команд и траблшутинг в Cisco IOS Про VLAN (Virtual Local Area Network) Настройка сетей VLAN Настройка маршрутизации между сетями VLAN с использованием конфигурации ROS (Router-on-a-Stick) TCP и UDP Протоколы TCP/IP 4 уровня: TCP и UDP Популярные приложения TCP/IP Установление и прекращение TCP соединения Что нужно знать: про TCP и UDP Принципы построения коммутируемых сетей Принципы коммутации и маршрутизации Работа с маршрутизатором Базовая конфигурация маршрутизатора Настройка статических маршрутов Настройка NAT на Cisco Port Forwarding: теория и настройка Cisco Протокол динамической маршрутизации EIGRP EIGRP (Enhanced Interior Gateway Routing Protocol) что это? Базовая настройка протокола EIGRP для IPv4 Полное руководство по EIGRP Протокол динамической маршрутизации OSPF OSPF что это? Настройка базового протокола OSPFv2 для одной области Поиск и устранение неполадок в работе OSPFv2 для одной области Настройка OSPFv2 для нескольких областей Протокол динамической маршрутизации BGP (Border Gateway Protocol) BGP (Border Gateway Protocol)- что это? Полное руководство по BGP Говорим про Route Redistribution Перераспределение маршрутов (Route redistribution) Про DHCP (Dynamic Host Configuration Protocol) Все, что вам нужно знать про DHCP Рассказываем про динамические адреса Настройка DHCP на оборудовании Cisco Пример настройки DHCPv6 Как настроить DHCPv6 форвардинг сообщений между DHCP - клиентом и DHCP - сервером на Cisco Настройка DHCP Snooping и Dynamic Arp Inspection на Cisco Пошаговая настройка DHCP Snooping и Dynamic Arp Inspection на Cisco Технология, которая защитит от подмены DHCP сервера Траблшутинг DHCP на оборудовании Cisco Настройка протокола DHCP с помощью команд Cisco IOS Листы контроля доступа (ACL) Основы IPv4 Access Control Lists Соответствие пакетов в IP ACL Wildcard в ACL: бинарные обратные маски Стандартные листы контроля доступа (ACL) Расширенные листы контроля доступа (Extended ACL) ACL check - анализ списков доступа сетевого оборудования Cisco Настройка стандартных именованных ACL-списков Настройка расширенных ACL-списков Протокол Spanning Tree (STP) Протокол Spanning Tree (STP) - что это? Агрегация по технологии EtherChannel Настройка EtherChannel на Cisco Настройка LACP и PAgP на Cisco Как с минимальным даунтаймом на продакшн оборудовании настроить EtherChannel Устранение неисправностей EtherChannel На примерах объясним, как происходит устранение неисправностей EtherChannel Настройка EtherChannel Поиск и устранение неполадок в работе EtherChannel WLAN (беспроводные сети) Топологии беспроводных сетей Анатомия защищенного соединения в беспроводных сетях KIP, CCMP и GCMP. Про безопасность Wi-Fi Рассказываем про безопасность Wi-Fi. Подробно про TKIP, CCMP, GCMP, WPA, WPA2 и WPA3 Настройка VPN (Site-To-Site IPSec, DMVPN Настройка Site-To-Site IPSec VPN на Cisco Настройка DMVPN на оборудовании Cisco Dynamic Multipoint VPN - гибкое и масштабируемое решение в области виртуальных частных сетей от компании Cisco Частный траблшутинг и устранение неисправностей Траблшутинг NAT/PAT на Cisco Устранение неисправностей DHCP на Cisco FHRP траблшутинг на Cisco Траблшутинг Network Management Protocols Сброс пароля на коммутаторах и маршрутизаторах Cisco Troubleshooting в Cisco IOS Проверка и отладка настроек NAT Пройти курс Как происходит обучение Поговорим как будет происходить ваше обучение в нашей онлайн образовательной системе. Изучаете тему В курсе - практические видеоуроки и материал для чтения: Выполняете задания В темпе, который подходит именно вам: Как в игре, но только будет еще и полезно. Если возникнут вопросы - поможем найти нужный материал Чат с участниками обучения и наш бот будут всегда на связи. Пройти курс Финальный тест и получение сертификата Добавляете сертификат в свое резюме ;)
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59