По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Буферизация пакетов для работы с перегруженным интерфейсом кажется прекрасной идеей. Действительно, буферы необходимы для обработки трафика, поступающего слишком быстро или несоответствия скорости интерфейса - например, при переходе от высокоскоростной LAN к низкоскоростной WAN. До сих пор это обсуждение QoS было сосредоточено на классификации, приоритизации и последующей пересылке пакетов, помещенных в очередь в этих буферах, в соответствии с политикой. Максимально большой размер буферов кажется хорошей идеей. Теоретически, если размер буфера достаточно велик, чтобы поставить в очередь пакеты, превышающие размер канала, все пакеты в конечном итоге будут доставлены. Однако, как большие, так и переполненные буферы создают проблемы, требующие решения. Когда пакеты находятся в буфере, они задерживаются. Некоторое количество микросекунд или даже миллисекунд добавляется к пути пакета между источником и местом назначения, пока они находятся в буфере, ожидая доставки. Задержка перемещения является проблемой для некоторых сетевых разговоров, поскольку алгоритмы, используемые TCP, предполагают предсказуемую и в идеале небольшую задержку между отправителем и получателем. В разделе активного управления очередью вы найдете различные методы управления содержимым очереди. Некоторые методы решают проблему переполненной очереди, отбрасывая достаточно пакетов, чтобы оставить немного места для вновь поступающих. Другие методы решают проблему задержки, поддерживая небольшую очередь, минимизируя время, которое пакет проводит в буфере. Это сохраняет разумную задержку буферизации, позволяя TCP регулировать скорость трафика до скорости, соответствующей перегруженному интерфейсу. Управление переполненным буфером: взвешенное произвольное раннее обнаружение (WRED) Произвольное раннее обнаружение (RED) помогает нам справиться с проблемой переполненной очереди. Буферы не бесконечны по размеру: каждому из них выделено определенное количество памяти. Когда буфер заполняется пакетами, новые поступления отбрасываются. Это не сулит ничего хорошего для критического трафика, такого как VoIP, от которого нельзя отказаться, не повлияв на взаимодействие с пользователем. Способ решения этой проблемы - убедиться, что буфер никогда не будет полностью заполнен. Если буфер никогда не заполняется полностью, то всегда есть место для приема дополнительного трафика. Чтобы предотвратить переполнение буфера, RED использует схему упреждающего отбрасывания выбранного входящего трафика, оставляя места открытыми. Чем больше заполняется буфер, тем больше вероятность того, что входящий пакет будет отброшен. RED является предшественником современных вариантов, таких как взвешенное произвольное раннее обнаружение (WRED). WRED учитывает приоритет входящего трафика на основе своей отметки. Трафик с более высоким приоритетом будет потерян с меньшей вероятностью. Более вероятно, что трафик с более низким приоритетом будет отброшен. Если трафик использует какую-либо форму оконного транспорта, например, такую как TCP, то эти отбрасывания будут интерпретироваться как перегрузка, сигнализирующая передатчику о замедлении. RED и другие варианты также решают проблему синхронизации TCP. Без RED все входящие хвостовые пакеты отбрасываются при наличии переполненного буфера. Для трафика TCP потеря пакетов в результате отбрасывания хвоста приводит к снижению скорости передачи и повторной передаче потерянных пакетов. Как только пакеты будут доставлены снова, TCP попытается вернуться к более высокой скорости. Если этот цикл происходит одновременно во многих разных разговорах, как это происходит в сценарии с отключением RED-free, интерфейс может испытывать колебания использования полосы пропускания, когда канал переходит от перегруженного (и сбрасывания хвоста) к незагруженному и недоиспользованному, поскольку все д throttled-back TCP разговоры начинают ускоряться. Когда уже синхронизированные TCP-разговоры снова работают достаточно быстро, канал снова становится перегруженным, и цикл повторяется. RED решает проблему синхронизации TCP, используя случайность при выборе пакетов для отбрасывания. Не все TCP-разговоры будут иметь отброшенные пакеты. Только определенные разговоры будут иметь отброшенные пакеты, случайно выбранные RED. TCP-разговоры, проходящие через перегруженную линию связи, никогда не синхронизируются, и колебания избегаются. Использование каналов связи более устойчиво. Управление задержкой буфера, Bufferbloat и CoDel Здесь может возникнуть очевидный вопрос. Если потеря пакетов - это плохо, почему бы не сделать буферы достаточно большими, чтобы справиться с перегрузкой? Если буферы больше, можно поставить в очередь больше пакетов, и, возможно, можно избежать этой досадной проблемы потери пакетов. Фактически, эта стратегия больших буферов нашла свое применение в различных сетевых устройствах и некоторых схемах проектирования сети. Однако, когда перегрузка канала приводит к тому, что буферы заполняются и остаются заполненными, большой буфер считается раздутым. Этот феномен так хорошо известен в сетевой индустрии, что получил название: bufferbloat. Bufferbloat имеет негативный оттенок, потому что это пример слишком большого количества хорошего. Буферы - это хорошо. Буферы предоставляют некоторую свободу действий, чтобы дать пачке пакетов где-нибудь остаться, пока выходной интерфейс обработает их. Для обработки небольших пакетов трафика необходимы буферы с критическим компромиссом в виде введения задержки, однако превышение размера буферов не компенсирует уменьшение размера канала. Канал имеет определенную пропускную способность. Если каналу постоянно предлагается передать больше данных, чем он может передать, то он плохо подходит для выполнения требуемой от него задачи. Никакая буферизация не может решить фундаментальную проблему пропускной способности сети. Увеличение размера буфера не улучшает пропускную способность канала. Фактически, постоянно заполненный буфер создает еще большую нагрузку на перегруженный интерфейс. Рассмотрим несколько примеров, противопоставляющих протоколов Unacknowledged Datagram Protocol (UDP) и Transmission Control Protocol (TCP). В случае VoIP-трафика буферизованные пакеты прибывают с опозданием. Задержка чрезвычайно мешает голосовой беседе в реальном времени. VoIP - это пример трафика, передаваемого посредством UDP через IP. UDP-трафик не подтверждается. Отправитель отправляет пакеты UDP, не беспокоясь о том, доберутся ли они до места назначения или нет. Повторная передача пакетов не производится, если хост назначения не получает пакет UDP. В случае с VoIP - здесь важно, пакет приходит вовремя или нет. Если это не так, то нет смысла передавать его повторно, потому что уже слишком поздно. Слушатели уже ушли. LLQ может прийти вам в голову как ответ на эту проблему, но часть проблемы - это слишком большой буфер. Для обслуживания большого буфера потребуется время, вызывающее задержку доставки трафика VoIP, даже если LLQ обслуживает трафик VoIP. Было бы лучше отбросить VoIP-трафик, находящийся в очереди слишком долго, чем отправлять его с задержкой. В случае большинства приложений трафик передается по протоколу TCP через IP, а не по протоколу UDP. TCP - протокол подтверждений. Отправитель трафика TCP ожидает, пока получатель подтвердит получение, прежде чем будет отправлен дополнительный трафик. В ситуации bufferbloat пакет находится в переполненном, слишком большом буфере перегруженного интерфейса в течение длительного времени, задерживая доставку пакета получателю. Получатель получает пакет и отправляет подтверждение. Подтверждение пришло к отправителю с большой задержкой, но все же пришло. TCP не заботится о том, сколько времени требуется для получения пакета, пока он туда попадает. И, таким образом, отправитель продолжает отправлять трафик с той же скоростью через перегруженный интерфейс, что сохраняет избыточный буфер заполненным и время задержки увеличивается. В крайних случаях отправитель может даже повторно передать пакет, пока исходный пакет все еще находится в буфере. Перегруженный интерфейс, наконец, отправляет исходный буферизованный пакет получателю, а вторая копия того же пакета теперь находится в движении, что создает еще большую нагрузку на уже перегруженный интерфейс! Эти примеры демонстрируют, что буферы неподходящего размера на самом деле не годятся. Размер буфера должен соответствовать как скорости интерфейса, который он обслуживает, так и характеру трафика приложения, который может проходить через него. Одна из попыток со стороны сетевой индустрии справиться с большими буферами, обнаруженными вдоль определенных сетевых путей, - это контролируемая задержка, или CoDel. CoDel предполагает наличие большого буфера, но управляет задержкой пакетов, отслеживая, как долго пакет находится в очереди. Это время известно, как время пребывания. Когда время пребывания пакета превысило вычисленный идеал, пакет отбрасывается. Это означает, что пакеты в начале очереди-те, которые ждали дольше всего-будут отброшены до пакетов, находящихся в данный момент в хвосте очереди. Агрессивная позиция CoDel в отношении отбрасывания пакетов позволяет механизмам управления потоком TCP работать должным образом. Пакеты, доставляемые с большой задержкой, не доставляются, а отбрасываются до того, как задержка станет слишком большой. Отбрасывание вынуждает отправителя TCP повторно передать пакет и замедлить передачу, что очень желательно для перегруженного интерфейса. Совокупный результат - более равномерное распределение пропускной способности для потоков трафика, конкурирующих за интерфейс. В ранних реализациях CoDel поставлялся в устройства потребительского уровня без параметров. Предполагаются определенные настройки по умолчанию для Интернета. Они включают 100 мс или меньше времени двустороннего обмена между отправителями и получателями, а задержка 5 мс является максимально допустимой для буферизованного пакета. Такая конфигурация без параметров упрощает деятельность поставщиков сетевого оборудования потребительского уровня. Потребительские сети являются важной целью для CoDel, поскольку несоответствие высокоскоростных домашних сетей и низкоскоростных широкополосных сетей вызывает естественную точку перегрузки. Кроме того, сетевое оборудование потребительского уровня часто страдает от слишком большого размера буферов.
img
Cisco Unified Communications Manager (CUCM) поддерживает множество дополнительных телефонных функций, таких как Call Forward, Shared Lines, Call Pickup, Call Haunting и Call Park, которые объединены одним термином Call Coverage. В этой статье мы рассмотрим Call Pickup или перехват вызова. В группу перехвата (Call Pickup Group) включаются номера (Directory Number) и самой группе присваивается номер. Может быть сконфигурировано три типа перехвата вызова: Call Pickup: Если несколько номеров находятся в одной группе и один из них звонит, то на другом телефоне можно нажать на кнопку для перехвата этого звонка. Group Call Pickup: Если два телефона находятся в разных группах перехвата и один из них звонит, то на другом телефоне можно нажать на кнопку для перехвата группового вызова и набрать номер группы, в который находится звонящий телефон. После этого звонок будет перехвачен. Есть вариант этой функции под названием Directed Call Pickup, в котором для перехвата нужно набрать номер телефона, на который приходит звонок. Other Group Pickup: Этот тип позволяет перехватывать звонки из связанной группы, не вводя ее номер. Настройка Call Pickup Переходим во вкладку Call Routing → Call Pickup Group и нажимаем Add New. Тут указываем название и уникальный номер группы в полях Call Pickup Group Name и Call Pickup Group Number. Также выбирает тип уведомлений в поле Call Pickup Group Notification Policy и какая информация будет отображаться на дисплее в поле Calling Information Display For Call Pickup Group Notification. Для использования функции перехвата, необходимо добавить телефоны в группу. Для этого переходим во вкладку Device → Phone, затем выбираем необходимый телефон и на странице его настроек в левой части нажимаем на Line [1] . В этом окне в разделе Call Forward and Call Pickup Settings в поле Call Pickup Group выбираем созданную нам группу. Таким же способом настраиваем другие телефоны, которые будут состоять в группе перехвата. Затем настроим Softkey клавишу для перехвата звонка на телефоне. Переходим в меню Device → Device Settings → Softkey Template. Здесь выбираем либо уже существующий шаблон, либо нажимаем Add New и добавляем новый. В этом случае выбираем шаблон который будет браться за основу и сохраняем его. В правом верхнем углу в меню Related Tasks выбираем Configure Softkey Layout и нажимаем Go. Далее добавляем из правого меню клавиши Pickup, Group Pickup или Other Group Pickup (каждая клавиша может быть выбрана для Off Hook и On Hook состояния). После выбора нажимаем Save и сохраняем. Теперь эту настройку нужно применить на телефоне. Переходим в меню Device → Phone, выбираем нужный телефон , и на странице его настроек в разделе Device Information в поле Softkey Template указываем созданный нами шаблон, и применяем настройки нажатием кнопок Save и Apply Config.
img
Мессенджер Telegram - удобное и популярное средство связи на территории РФ. Несмотря на ограничение доступа, многие юзеры продолжают пользоваться и обмениваться сообщениями в Телеграме. А кто-то пошел еще дальше и интегрирует различные системы с отличным и прозрачным API от «телеги». Сегодня поговорим про готовый модуль интеграции с Telegram для графической оболочки FreePBX, который будет отправлять вам уведомления о пропущенных вызовах и в случае, если пользователю оставлена голосовая почта. Кстати, этот материал и модуль в очередной раз прислал наш друг Максим (BioDamage) через портал ShareIT :) Обновление 0.1.1 - 15 августа 2018 г.: Поддержка extensions типа SIP, PJSIP, IAX2; Работа в группах вызовов (ring group); Модуль протестирован на сборках FreePBX Distro (SNG7-FPBX-64bit-1805-1.iso) и на чистом Asterisk поверх Debian с отдельным web – интерфейсом FreePBX 14. Работает :) Профит и идея Настройка кастомных контекстов и корректировка диалплана вручную бывает сложна для новичков, которые только приступают к изучению Asterisk и используют графическую оболочку FreePBX. К тому же, большой недостаток таких интеграция, это отсутствие гибкой настройки уведомлений (кому отправлять, а кому нет, в том числе персонализированные уведомления). Есть потребность – будет и решение. За основу был взят один из старых модулей под названием missedcallnotify человека по имени John Nurick. Скачать модуль можно по ссылке ниже: Скачать модуль для FreePBX Установка Установка вполне стандартная – переходим в раздел Admin → Module Admin и нажимаем Upload modules. В следующем меню выбираем Upload (From Hard Disk), выбираем архив, который скачали по кнопке выше и загружаем: После этого, в списке модулей находим модуль Missed Call Notifications Telegram, раскрываем описание и жмем Install: Готово. Переходим к настройке модуля. Настройка Cоздаем бота в Телеграме (если его нет). Воспользуйтесь нашим пошаговым материалом по созданию бота, который доступен по ссылке ниже. Выполнив все шаги, которые указаны в пункте «Создание бота в Telegram» - возвращайтесь сюда и переходите к следующему шагу. Создание бота С возвращением :) В разделе Applications → Extensions, выбираем нужный нам внутренний номер и открываем его для редактирования. Во вкладке Other делаем следующее: Уведомления - чтобы включить уведомления, выбираем Enabled, выключить - Disabled; Токен телеграм бота - токен, который вы получили, пройдя по ссылке в начале этого раздела; Telergram ID - ID группового чата, который вы получили, пройдя по ссылке в начале этого раздела, либо личный идентификатор; Тест Мы – инженеры. И, чтобы проверить модуль, мы смотрим в консоль, а не в лучезарный интерфейс Telegram :) Итак, звоним, не отвечаем на вызов: Как тебе такое, Илон Маск?
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59