По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Всем привет! В сегодняшней статье расскажем о том, как настроить отправку статистики о пакетах, проходящих через наш роутер Mikrotik на коллектор для дальнейшего анализа. Все мы знаем про такой протокол как Netflow, предназначенный для учёта сетевого трафика, разработанный компанией Cisco, так вот у Mikrotik есть своя реализация данного решения, которая полностью совместима со стандартом Cisco Netflow - Mikrotik Traffic Flow. Помимо мониторинга и анализа трафика, с помощью Traffic Flow, администратор может выявлять различные проблемы, которые могут появляться в сети, а также анализировать и оптимизировать общие сетевые характеристики. Поскольку Traffic Flow полностью совместим с Cisco Netflow, то он может использоваться различными утилитами, которые разработаны для Netflow. Traffic Flow поддерживает следующие версии Netflow: version 1 - Самая первая версия формата данных Netflow. Рекомендуется использовать только если нет альтернатив version 5 - Дополнение первой версии, которой появилась возможность добавления номеров автономных систем (AS) BGP и порядковых номеров потоков version 9 - новая версия, позволяющая добавлять новые поля и типы записей благодаря шаблонному исполнению Настройка Итак, для того, чтобы начать собирать статистическую информацию о трафике, необходимо сначала включить Traffic Flow и определиться с каких интерфейсов осуществлять сбор. Делается это при помощи комбинации следующих команд: /ip traffic-flow set enabled=yes interfaces=ether1 В нашем случае, указан лишь один интерфейс ether1, однако, если вы хотите собирать статистику с нескольких интерфейсов, просто укажите их через запятую. Если со всех - интерфейсов введите interfaces=all. Вы также можете настроить количество потоков, которые могут одновременно находиться в памяти роутера командой cache-entries и указав нужное значение - (128k | 16k | 1k | 256k | 2k / 4k - по умолчанию) Командой active-flow-timeout - можно настроить максимальное время жизни потока, по умолчанию это 30 минут. Некоторые потоки, могут стать неактивными через какое-то время, то есть, в них не будет происходить обмен пакетами, этот тайм-аут настраивается командой inactive-flow-timeout. Если пакетов в потоке нет и данное время истекло, то в следующий раз traffic flow создаст новый поток, если обмен возобновится. По умолчанию это 15 секунд, но если сделать данное время слишком коротким, то это может привести к созданию большого количества отдельных поток и переполнению буфера. После того как мы включили Traffic Flow и определились с интерфейсами, с которых хотим получать информацию о потоках, необходимо настроить хост назначения, который будет получать данную информацию (в терминологии Netflow такой хост называется коллектором). Делается это при помощи следующей команды ip traffic-flow target Затем указывается IP адрес и UDP порт хоста назначения -add dst-address=(IP address) port=(UDP port). Если вы хотите использовать конкретную версию протокола, то укажите ее командой version= (1,5,9) Пример Рассмотрим пример конфигурации Traffic Flow на роутере Mikrotik Допустим мы хотим собирать статическую информацию о трафике, который проходит через интерфейс ether3 нашего роутера и отправлять её на коллектор по адресу 192.168.2.123 используя 5 версию протокола. В этом случае конфигурация может выглядеть следующим образом: Сначала включаем Traffic Flow и указываем интерфейс /ip traffic-flow set enabled=yes interfaces=ether3 Затем указываем адрес коллектора, стандартный порт и версию протокола 5: /ip traffic-flow target add dst-address=192.168.2.123 port=2055 version=5 Если Вы предпочитаете консоли утилиту WinBox, то для настройки Traffic Flow левом меню откройте пункт IP и выберите Traffic Flow, перед Вами откроется следующее окно: Необходимо включить Traffic Flow, поставив галочку напротив Enabled и выбрать желаемый интерфейс для сбора информации. После этого переходим на вкладку Targets и добавляем параметры коллектора, достаточно внести IP адрес, порт и версию. После этого нажимаем на кнопку Apply После этого наш роутер начнет отправлять информацию на коллектор. Если вы хотите указать несколько коллекторов, то это можно сделать, используя разные версии протокола и номера UDP портов.
img
Существует большое количество методов аутентификации клиентов беспроводных сетей при подключении. Эти методы появлялись по мере развития различных беспроводных технологий и беспроводного оборудования. Они развивались по мере выявления слабых мест в системе безопасности. В этой статье рассматриваются наиболее распространенные методы проверки подлинности. Открытая аутентификация Стандарт 802.11 предлагал только два варианта аутентификации клиента: open authentication и WEP. Open authentication-предполагает открытый доступ к WLAN. Единственное требование состоит в том, чтобы клиент, прежде чем использовать 802.11, должен отправить запрос аутентификации для дальнейшего подключения к AP (точке доступа). Более никаких других учетных данных не требуется. В каких случаях используется open authentication? На первый взгляд это не безопасно, но это не так. Любой клиент поддерживающий стандарт 802.11 без проблем может аутентифицироваться для доступа к сети. В этом, собственно, и заключается идея open authentication-проверить, что клиент является допустимым устройством стандарта 802.11, аутентифицируя беспроводное оборудование и протокол. Аутентификация личности пользователя проводится другими средствами безопасности. Вы, вероятно, встречали WLAN с open authentication, когда посещали общественные места. В таких сетях в основном аутентификация осуществляется через веб-интерфейс. Клиент подключается к сети сразу же, но предварительно должен открыть веб-браузер, чтобы прочитать и принять условия использования и ввести основные учетные данные. С этого момента для клиента открывается доступ к сети. Большинство клиентских операционных систем выдают предупреждение о том, что ваши данные, передаваемые по сети, не будут защищены. WEP Как вы понимаете, open authentication не шифрует передаваемые данные от клиента к точке доступа. В стандарте 802.11 определен Wired Equivalent Privacy (WEP). Это попытка приблизить беспроводную связь к проводному соединению. Для кодирования данных WEP использует алгоритм шифрования RC4. Данный алгоритм шифрует данные у отправителя и расшифровывает их у получателя. Алгоритм использует строку битов в качестве ключа, обычно называемого WEP- ключом. Один кадр данных-один уникальный ключ шифрования. Расшифровка данных осуществляется только при наличии ключа и у отправителя, и у получателя. WEP- это метод безопасности с общим ключом. Один и тот же ключ должен быть как у отправителя, так и получателя. Этот ключ размещается на устройствах заранее. WEP-ключ также может использоваться в качестве дополнительного метода аутентификации, а также инструмента шифрования. Если клиент отправляет неправильный ключ WEP, он не подключится к точке доступа. Точка доступа проверяет знание клиентом ключа WEP, посылая ему случайную фразу вызова. Клиент шифрует фразу вызова с помощью WEP и возвращает результат точке доступа (АР). АР сравнивает шифрование клиента со своим собственным, чтобы убедиться в идентичности двух ключей WEP. Длина WEP - ключей могут быть длиной 40 или 104 бита, представленные в шестнадцатеричной форме из 10 или 26 цифр. Как правило, более длинные ключи предлагают более уникальные биты для алгоритма, что приводит к более надежному шифрованию. Это утверждение не относится к WEP. Так как WEP был определен в стандарте 802.11 в 1999 году, и соответственно сетевые беспроводные адаптеры производились с использованием шифрования, специфичного для WEP. В 2001 году были выявлены слабые места WEP, и началась работа по поиску более совершенных методов защиты беспроводной связи. К 2004 году поправка 802.11i была ратифицирована, и WEP официально устарел. Шифрование WEP и аутентификация с общим ключом WEP являются слабыми методами защиты WLAN. 802.1x/EAP При наличии только open authentication и WEP, доступных в стандарте 802.11, требовался более безопасный метод аутентификации. Аутентификация клиента обычно включает в себя отправку запроса, получение ответа, а затем решение о предоставлении доступа. Помимо этого, возможен обмен ключами сессии или ключами шифрования в дополнение к другим параметрам, необходимым для клиентского доступа. Каждый метод аутентификации может иметь уникальные требования как уникальный способ передачи информации между клиентом и точкой доступа. Вместо того чтобы встроить дополнительные методы аутентификации в стандарт 802.11, была выбрана более гибкая и масштабируемая структура аутентификации-разработан расширяемый протокол аутентификации (EAP). Как следует из его названия, EAP является расширяемым и не состоит из какого-либо одного метода аутентификации. Вместо этого EAP определяет набор общих функций, которые применяют фактические методы аутентификации, используемые для аутентификации пользователей. EAP имеет еще одно интересное качество: он интегрируется со стандартом управления доступом на основе портов стандарта IEEE 802.1X. Когда порт стандарта 802.1X включен, он ограничивает доступ к сетевому носителю до тех пор, пока клиент не аутентифицируется. Это означает, что беспроводной клиент способен связываться с точкой доступа, но не сможет передавать данные в другую часть сети, пока он успешно не аутентифицируется. Open authentication и WEP аутентификация беспроводных клиентов выполняется локально на точке доступа. В стандарте 802.1 x принцип аутентификации меняется. Клиент использует открытую аутентификацию для связи с точкой доступа, а затем фактический процесс аутентификации клиента происходит на выделенном сервере аутентификации. На рисунке 1 показана трехсторонняя схема стандарта 802.1x, состоящая из следующих объектов: Клиент: клиентское устройство, запрашивающее доступ Аутентификатор: сетевое устройство, обеспечивающее доступ к сети (обычно это контроллер беспроводной локальной сети [WLC]) Сервер аутентификации (AS): устройство, принимающее учетные данные пользователя или клиента и разрешающее или запрещающее доступ к сети на основе пользовательской базы данных и политик (обычно сервер RADIUS) На рисунке клиент подключен к точке доступа через беспроводное соединение. AP представляет собой Аутентификатор. Первичное подключение происходит по стандарту open authentication 802.11. Точка доступа подключена к WLC, который, в свою очередь, подключен к серверу аутентификации (AS). Все в комплексе представляет собой аутентификацию на основе EAP. Контроллер беспроводной локальной сети является посредником в процессе аутентификации клиента, контролируя доступ пользователей с помощью стандарта 802.1x, взаимодействуя с сервером аутентификации с помощью платформы EAP. Далее рассмотрим некоторые вариации протокола защиты EAP LEAP Первые попытки устранить слабые места в протоколе WEP компания Cisco разработала собственный метод беспроводной аутентификации под названием Lightweight EAP (LEAP). Для проверки подлинности клиент должен предоставить учетные данные пользователя и пароля. Сервер проверки подлинности и клиент обмениваются челендж сообщениями, которые затем шифруются и возвращаются. Это обеспечивает взаимную аутентификацию. Аутентификация между клиентом и AS осуществляется только при успешной расшифровке челендж сообщений. На тот момент активно использовалось оборудование, работавшее с WEP- протоколом. Разработчики протокола LEAP пытались устранить слабые места WEP применением динамических, часто меняющихся ключей WEP. Тем не менее, метод, используемый для шифрования челендж сообщений, оказался уязвимым. Это послужило поводом признать протокол LEAP устаревшим. Существуют организации, которые все еще используют данный протокол. Не рекомендуется подключаться к таким сетям. EAP-FAST EAP-FAST (Flexible Authentication by Secure Tunneling) безопасный метод, разработанный компанией Cisco. Учетные данные для проверки подлинности защищаются путем передачи зашифрованных учетных данных доступа (PAC) между AS и клиентом. PAC- это форма общего секрета, который генерируется AS и используется для взаимной аутентификации. EAP-FAST- это метод состоящий из трех последовательных фаз: Фаза 0: PAC создается или подготавливается и устанавливается на клиенте. Фаза 1: после того, как клиент и AS аутентифицировали друг друга обсуждают туннель безопасности транспортного уровня (TLS). Фаза 2: конечный пользователь может быть аутентифицирован через туннель TLS для дополнительной безопасности. Обратите внимание, что в EAP-FAST происходят два отдельных процесса аутентификации-один между AS и клиентом, а другой с конечным пользователем. Они происходят вложенным образом, как внешняя аутентификация (вне туннеля TLS) и внутренняя аутентификация (внутри туннеля TLS). Данный метод, основанный на EAP, требует наличие сервера RADIUS. Данный сервер RADIUS должен работать как сервер EAP-FAST, чтобы генерировать пакеты, по одному на пользователя. PEAP Аналогично EAP-FAST, защищенный метод EAP (PEAP) использует внутреннюю и внешнюю аутентификацию, однако AS предоставляет цифровой сертификат для аутентификации себя с клиентом во внешней аутентификации. Если претендент удовлетворен идентификацией AS, то они строят туннель TLS, который будет использоваться для внутренней аутентификации клиента и обмена ключами шифрования. Цифровой сертификат AS состоит из данных в стандартном формате, идентифицирующих владельца и "подписанных" или подтвержденных третьей стороной. Третья сторона известна как центр сертификации (CA) и известна и доверяет как AS, так и заявителям. Претендент также должен обладать сертификатом CA только для того, чтобы он мог проверить тот, который он получает от AS. Сертификат также используется для передачи открытого ключа на видном месте, который может быть использован для расшифровки сообщений из AS. Обратите внимание, что только AS имеет сертификат для PEAP. Это означает, что клиент может легко подтвердить подлинность AS. Клиент не имеет или не использует свой собственный сертификат, поэтому он должен быть аутентифицирован в туннеле TLS с помощью одного из следующих двух методов: MSCHAPv2; GTC (универсальная маркерная карта): аппаратное устройство, которое генерирует одноразовые пароли для пользователя или вручную сгенерированный пароль; EAP-TLS PEAP использует цифровой сертификат на AS в качестве надежного метода для аутентификации сервера RADIUS. Получить и установить сертификат на одном сервере несложно, но клиентам остается идентифицировать себя другими способами. Безопасность транспортного уровня EAP (EAP-TLS) усиливает защиту, требуя сертификаты на AS и на каждом клиентском устройстве. С помощью EAP-TLS AS и клиент обмениваются сертификатами и могут аутентифицировать друг друга. После этого строится туннель TLS, чтобы можно было безопасно обмениваться материалами ключа шифрования. EAP-TLS считается наиболее безопасным методом беспроводной аутентификации, однако при его реализации возникают сложности. Наряду с AS, каждый беспроводной клиент должен получить и установить сертификат. Установка сертификатов вручную на сотни или тысячи клиентов может оказаться непрактичной. Вместо этого вам нужно будет внедрить инфраструктуру открытых ключей (PKI), которая могла бы безопасно и эффективно предоставлять сертификаты и отзывать их, когда клиент или пользователь больше не будет иметь доступа к сети. Это обычно включает в себя создание собственного центра сертификации или построение доверительных отношений со сторонним центром сертификации, который может предоставлять сертификаты вашим клиентам.
img
Почитать лекцию №16 про модель сети Министерства обороны США (DoD) можно тут. В 1960-х годах, вплоть до 1980-х годов, основной формой связи была коммутируемая схема; отправитель просил сетевой элемент (коммутатор) подключить его к определенному приемнику, коммутатор завершал соединение (если приемник не был занят), и трафик передавался по результирующей схеме. Если это звучит как традиционная телефонная система, то это потому, что на самом деле она основана на традиционной сетевой системе (теперь называемой обычной старой телефонной службой [POTS]). Крупные телефонные и компьютерные компании были глубоко инвестированы в эту модель и получали большой доход от систем, разработанных вокруг методов коммутации цепей. По мере того, как модель DoD (и ее набор сопутствующих протоколов и концепций) начали завоевывать популярность у исследователей, эти сотрудники решили создать новую организацию по стандартизации, которая, в свою очередь, построит альтернативную систему, обеспечивающую "лучшее из обоих миров". Они будут включать в себя лучшие элементы коммутации пакетов, сохраняя при этом лучшие элементы коммутации каналов, создавая новый стандарт, который удовлетворит всех. В 1977 году эта новая организация по стандартизации была предложена и принята в качестве International Organization for Standardizatio (ISO). Основная цель состояла в том, чтобы обеспечить взаимодействие между крупными системами баз данных, доминировавшими в конце 1970-х гг. Комитет был разделен между инженерами связи и контингентом баз данных, что усложнило стандарты. Разработанные протоколы должны были обеспечить как ориентированное на соединение, так и бесконтактное управление сеансами, а также изобрести весь набор приложений для создания электронной почты, передачи файлов и многих других приложений (помните, что приложения являются частью стека). Например, необходимо было кодифицировать различные виды транспорта для транспортировки широкого спектра услуг. В 1989 году-целых десять лет спустя-спецификации еще не были полностью выполнены. Протокол не получил широкого распространения, хотя многие правительства, крупные производители компьютеров и телекоммуникационные компании поддерживали его через стек и модель протокола DoD. Но в течение десяти лет стек DoD продолжал развиваться; была сформирована Инженерная рабочая группа по разработке Интернету (Engineering Task Force -IETF) для поддержки стека протоколов TCP/IP, главным образом для исследователей и университетов (Интернет, как тогда было известно, не допускал коммерческого трафика и не будет до 1992 года). С отказом протоколов OSI материализоваться многие коммерческие сети и сетевое оборудование обратились к пакету протоколов TCP/IP для решения реальных проблем "прямо сейчас". Кроме того, поскольку разработка стека протоколов TCP/IP оплачивалась по грантам правительства США, спецификации были бесплатными. На самом деле существовали реализации TCP/IP, написанные для широкого спектра систем, доступных благодаря работе университетов и аспирантов, которые нуждались в реализации для своих исследовательских усилий. Однако спецификации OSI могли быть приобретены только в бумажном виде у самой ISO и только членами ISO. ISO был разработан, чтобы быть клубом "только для членов", предназначенным для того, чтобы держать должностных лиц под контролем развития технологии коммутации пакетов. Однако принцип "только члены" организации работал против должностных лиц, что в конечном счете сыграло свою роль в их упадке. Однако модель OSI внесла большой вклад в развитие сетей; например, пристальное внимание, уделяемое качеству обслуживания (QoS) и вопросам маршрутизации, принесло дивиденды в последующие годы. Одним из важных вкладов стала концепция четкой модульности; сложность соединения многих различных систем с множеством различных требований побудила сообщество OSI призвать к четким линиям ответственности и четко определенным интерфейсам между слоями. Второй - это концепция межмашинного взаимодействия. Средние блоки, называемые затем шлюзами, теперь называемые маршрутизаторами и коммутаторами, явно рассматривались как часть сетевой модели, как показано на рисунке 3. Гениальность моделирования сети таким образом заключается в том, что она делает взаимодействие между различными частями намного легче для понимания. Каждая пара слоев, перемещаясь вертикально по модели, взаимодействует через сокет или приложение. Programming Interface (API). Таким образом, чтобы подключиться к определенному физическому порту, часть кода на канальном уровне будет подключаться к сокету для этого порта. Это позволяет абстрагировать и стандартизировать взаимодействие между различными уровнями. Компонент программного обеспечения на сетевом уровне не должен знать, как обращаться с различными видами физических интерфейсов, только как получить данные для программного обеспечения канального уровня в той же системе. Каждый уровень имеет определенный набор функций для выполнения. Физический уровень, также называемый уровнем 1, отвечает за модулирование или сериализацию 0 и 1 на физическом канале. Каждый тип связи будет иметь различный формат для передачи сигналов 0 или 1; физический уровень отвечает за преобразование "0" и "1" в эти физические сигналы. Канальный уровень, также называемый уровнем 2, отвечает за то, чтобы некоторая передаваемая информация фактически отправлялась на нужный компьютер, подключенный к той же линии. Каждое устройство имеет свой адрес канала передачи данных (уровень 2), который можно использовать для отправки трафика на конкретное устройство. Уровень канала передачи данных предполагает, что каждый кадр в потоке информации отделен от всех других кадров в том же потоке, и обеспечивает связь только для устройств, подключенных через один физический канал. Сетевой уровень, также называемый уровнем 3, отвечает за передачу данных между системами, не связанными через единую физическую линию связи. Сетевой уровень, таким образом, предоставляет сетевые адреса (или Уровень 3), а не локальные адреса линий связи, а также предоставляет некоторые средства для обнаружения набора устройств и линий связи, которые должны быть пересечены, чтобы достичь этих пунктов назначения. Транспортный уровень, также называемый уровнем 4, отвечает за прозрачную передачу данных между различными устройствами. Протоколы транспортного уровня могут быть либо "надежными", что означает, что транспортный уровень будет повторно передавать данные, потерянные на каком-либо нижнем уровне, либо "ненадежными", что означает, что данные, потерянные на нижних уровнях, должны быть повторно переданы некоторым приложением более высокого уровня. Сеансовый уровень, также называемый уровнем 5, на самом деле не переносит данные, а скорее управляет соединениями между приложениями, работающими на двух разных компьютерах. Сеансовый уровень гарантирует, что тип данных, форма данных и надежность потока данных все представлены и учтены. Уровень представления, также называемый уровнем 6, фактически форматирует данные таким образом, чтобы приложение, работающее на двух устройствах, могло понимать и обрабатывать данные. Здесь происходит шифрование, управление потоком и любые другие манипуляции с данными, необходимые для обеспечения интерфейса между приложением и сетью. Приложения взаимодействуют с уровнем представления через сокеты. Уровень приложений, также называемый уровнем 7, обеспечивает интерфейс между пользователем и приложением, которое, в свою очередь, взаимодействует с сетью через уровень представления. Не только взаимодействие между слоями может быть точно описано в рамках семислойной модели, но и взаимодействие между параллельными слоями на нескольких компьютерах может быть точно описано. Можно сказать, что физический уровень на первом устройстве взаимодействует с физическим уровнем на втором устройстве, уровень канала передачи данных на первом устройстве с уровнем канала передачи данных на втором устройстве и так далее. Точно так же, как взаимодействие между двумя слоями на устройстве обрабатывается через сокеты, взаимодействие между параллельными слоями на разных устройствах обрабатывается через сетевые протоколы. Ethernet описывает передачу сигналов "0" и "1" на физический провод, формат для запуска и остановки кадра данных и средство адресации одного устройства среди всех устройств, подключенных к одному проводу. Таким образом, Ethernet попадает как в физический, так и в канальный уровни передачи данных (1 и 2) в модели OSI. IP описывает форматирование данных в пакеты, а также адресацию и другие средства, необходимые для отправки пакетов по нескольким каналам канального уровня, чтобы достичь устройства за несколько прыжков. Таким образом, IP попадает в сетевой уровень (3) модели OSI. TCP описывает настройку и обслуживание сеанса, повторную передачу данных и взаимодействие с приложениями. TCP затем попадает в транспортный и сеансовый уровни (4 и 5) модели OSI. Одним из наиболее запутанных моментов для администраторов, которые когда-либо сталкиваются только со стеком протоколов TCP/IP, является другой способ взаимодействия протоколов, разработанных в/для стека OSI, с устройствами. В TCP/IP адреса относятся к интерфейсам (а в мире сетей с большой степенью виртуализации несколько адресов могут относиться к одному интерфейсу, или к услуге anycast, или к multicast и т. д.). Однако в модели OSI каждое устройство имеет один адрес. Это означает, что протоколы в модели OSI часто называются типами устройств, для которых они предназначены. Например, протокол, несущий информацию о достижимости и топологии (или маршрутизации) через сеть, называется протоколом промежуточной системы (IS-IS), поскольку он работает между промежуточными системами. Существует также протокол, разработанный для того, чтобы промежуточные системы могли обнаруживать конечные системы; это называется протоколом End System to Intermediate System (ES-IS).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59