По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Создание разделов диска позволяет разделить жесткий диск на несколько разделов, которые действуют независимо. В Linux пользователи должны структурировать устройства хранения (USB и жесткие диски) перед их использованием. Разбиение на разделы также полезно, когда вы устанавливаете несколько операционных систем на одном компьютере. В этом пошаговом руководстве вы узнаете, как создать раздел с помощью команды Linux parted или fdisk. Вариант 1: разбить диск на разделы с помощью команды parted Выполните следующие действия, чтобы разбить диск в Linux с помощью команды parted. Шаг 1. Список разделов Перед созданием раздела составьте список доступных запоминающих устройств и разделов. Это действие помогает определить устройство хранения, которое вы хотите разбить на разделы. Выполните следующую команду с sudo, чтобы вывести список устройств хранения и разделов: sudo parted -l Терминал распечатывает доступные устройства хранения с информацией о: Model - Модель запоминающего устройства. Disk - Имя и размер диска. Sector size - логический и физический размер памяти. Не путать с доступным дисковым пространством. Partition Table - тип таблицы разделов (msdos, gpt, aix, amiga, bsd, dvh, mac, pc98, sun и loop). Disk Flags - разделы с информацией о размере, типе, файловой системе и флагах. Типы разделов могут быть: Primary (Основной) - содержит файлы операционной системы. Можно создать только четыре основных раздела. Extended (Расширенный) - особый тип раздела, в котором можно создать более четырех основных разделов. Logical (Логический) - Раздел, созданный внутри расширенного раздела. В нашем примере есть два устройства хранения - /dev/sda и /dev/sdb Примечание. Первый диск хранения (dev/sda или dev/vda) содержит операционную систему. Создание раздела на этом диске может сделать вашу систему не загружаемой. Создавайте разделы только на дополнительных дисках (dev/sdb, dev/sdc, dev/vdb или dev/vdc). Шаг 2: Откройте диск для хранения Откройте диск хранения, который вы собираетесь разделить, выполнив следующую команду: sudo parted /dev/sdb Всегда указывайте запоминающее устройство. Если вы не укажете имя диска, он будет выбран случайным образом. Чтобы сменить диск на dev/sdb, выполните: select /dev/sdb Шаг 3: Создайте таблицу разделов Прежде чем разбивать диск, создайте таблицу разделов. Таблица разделов расположена в начале жесткого диска и хранит данные о размере и расположении каждого раздела. Типы таблиц разделов: aix, amiga, bsd, dvh, gpt, mac, ms-dos, pc98, sun и loop. Чтобы создать таблицу разделов, введите следующее: mklabel [partition_table_type] Например, чтобы создать таблицу разделов gpt, выполните следующую команду: mklabel gpt Введите Yes, чтобы выполнить: Примечание. Два наиболее часто используемых типа таблиц разделов - это gpt и msdos. msdos поддерживает до шестнадцати разделов и форматирует до 16 ТБ, а gpt форматирует до 9,4 ЗБ и поддерживает до 128 разделов. Шаг 4: проверьте таблицу Запустите команду print, чтобы просмотреть таблицу разделов. На выходе отображается информация об устройстве хранения: Примечание. Запустите команду help mkpart, чтобы получить дополнительную справку о том, как создать новый раздел. Шаг 5: Создайте раздел Давайте создадим новый раздел размером 1854 Мбайт, используя файловую систему ext4. Назначенное начало диска должно быть 1 МБ, а конец диска - 1855 МБ. Чтобы создать новый раздел, введите следующее: mkpart primary ext4 1MB 1855MB После этого запустите команду print, чтобы просмотреть информацию о вновь созданном разделе. Информация отображается в разделе Disk Flags: В таблице разделов gpt, тип раздела - это обязательное имя раздела. В нашем примере primary - это имя раздела, а не тип раздела. Чтобы сохранить свои действия и выйти, введите команду quit. Изменения сохраняются автоматически с помощью этой команды. Примечание. Сообщение «You may need to update /etc/fstab file» сигнализирует о том, что раздел может быть смонтирован автоматически во время загрузки. Вариант 2: разбить диск на разделы с помощью команды fdisk Выполните следующие действия, чтобы разбить диск в Linux с помощью команды fdisk. Шаг 1. Список существующих разделов Выполните следующую команду, чтобы вывести список всех существующих разделов: sudo fdisk -l Вывод содержит информацию о дисках и разделах хранилища: Шаг 2: Выберите диск для хранения Выберите диск для хранения, на котором вы хотите создать разделы, выполнив следующую команду: sudo fdisk /dev/sdb Диск /dev/sdbstorage открыт: Шаг 3: Создайте новый раздел Запустите команду n, чтобы создать новый раздел. Выберите номер раздела, набрав номер по умолчанию (2). После этого вас попросят указать начальный и конечный сектор вашего жесткого диска. Лучше всего ввести в этом разделе номер по умолчанию (3622912). Последний запрос связан с размером раздела. Вы можете выбрать несколько секторов или установить размер в мегабайтах или гигабайтах. Введите + 2 GB, чтобы установить размер раздела 2 ГБ. Появится сообщение, подтверждающее создание раздела. Шаг 4: запись на диск Система создала раздел, но изменения не записываются на диск. 1. Чтобы записать изменения на диск, выполните команду w: 2. Убедитесь, что раздел создан, выполнив следующую команду: sudo fdisk -l Как видите, раздел /dev/sdb2 создан. Отформатируйте раздел После создания раздела с помощью команды parted или fdisk отформатируйте его перед использованием. Отформатируйте раздел, выполнив следующую команду: sudo mkfs -t ext4 /dev/sdb1 Смонтировать раздел Чтобы начать взаимодействие с диском, создайте точку монтирования (mount point) и смонтируйте к ней раздел. 1. Создайте точку монтирования, выполнив следующую команду: sudo mkdir -p /mt/sdb1 2. После этого смонтируйте раздел, введя: sudo mount -t auto /dev/sbd1 /mt/sdb1 Терминал не распечатывает вывод, если команды выполнены успешно. 3. Убедитесь, что раздел смонтирован, с помощью команды df hT:
img
Почитать лекцию №17 про модель OSI (Open Systems Interconnect) можно тут. У моделей DoD и OSI есть два общих пункта: Они оба содержат прикладные уровни; это имеет смысл в контексте более раннего мира сетевой инженерии, поскольку прикладное и сетевое программное обеспечение были частью более крупной системы. Они объединяют концепции того, какие данные и где должны содержаться, с концепцией того, какая цель достигается на определенном уровне. Это приводит к некоторым странным вопросам, таким как: Border Gateway Protocol (BGP), который обеспечивает маршрутизацию (достижимость) между независимыми объектами (автономными системами), работает поверх транспортного уровня в обеих моделях. Это делает его приложением? В то же время этот протокол предоставляет информацию о достижимости, которая необходима сетевому уровню. Делает ли это протокол сетевого уровня? IPsec добавляет информацию в заголовок интернет-протокола (IP) и определяет шифрование информации, передаваемой по сети. Поскольку IP - это сетевой уровень, а IPsec (вроде) работает поверх IP, делает ли это IPsec транспортным протоколом? Или, поскольку IPsec работает параллельно IP, это протокол сетевого уровня? Споры по такого рода вопросам могут доставить массу удовольствия на технической конференции или совещании по стандартам; однако они также указывают на некоторую неопределенность в том, как определяются эти модели. Неоднозначность возникает из-за тщательного смешения формы и функции, найденных в этих моделях; описывают ли они, где содержится информация, кто использует информацию, что делается с информацией, или конкретную цель, которая должна быть достигнута для решения конкретной проблемы при передаче информации через сеть? Ответ таков-все вышеперечисленное. Или, возможно, это зависит от обстоятельств. Это приводит к следующему наблюдению: на самом деле любой протокол переноса данных может выполнять только четыре функции: транспортировка, мультиплексирование, исправление ошибок и управление потоком. Внутри этих четырех функций есть две естественные группировки: транспорт и мультиплексирование, контроль ошибок и управление потоком. Таким образом, большинство протоколов выполняют одну из двух вещей: Протокол обеспечивает транспорт, включая некоторую форму перевода из одного формата данных в другой; и мультиплексирование, возможность протокола хранить данные от различных хостов и приложений отдельно. Протокол обеспечивает контроль ошибок либо за счет возможности исправлять небольшие ошибки, либо за счет повторной передачи потерянных или поврежденных данных; а также контроль потока, который предотвращает неоправданную потерю данных из-за несоответствия между возможностями сети по доставке данных и возможностями приложения по генерированию данных. С этой точки зрения Ethernet предоставляет транспортные услуги и управление потоком, поэтому он представляет собой смешанный пакет, сконцентрированный на одном канале, port to port (или tunnel endpoint to tunnel endpoint) в сети. IP это multihop протокол (протокол, охватывающий более одного физического канала), обеспечивающий транспортные услуги, в то время как TCP - это multihop протокол, который использует транспортные механизмы IP и обеспечивает исправление ошибок и управление потоком. Рисунок 4 иллюстрирует итеративную модель. Каждый слой модели имеет одну из тех же двух функций, только в другой области. Эта модель не получила широкого распространения в работе с сетевыми протоколами, но она обеспечивает гораздо более простое представление о динамике и операциях сетевых протоколов, чем семиуровневые или четырехуровневые модели, и добавляет концепцию области действия, которая имеет жизненно важное значение при рассмотрении работы сети. Объем информации является основой стабильности и устойчивости сети.
img
Сегодня мы расскажем про то, как обновить IOS на устройствах Cisco. Новые версии IOS выходят постоянно и в них добавляют новый функционал, исправляют уязвимости и баги, поэтому важно иметь обновленное устройство. Обновление Начнем с того, что посмотрим, какая версия IOS установлена на данный момент, используя команду show version Router#show version Cisco IOS Software, 2800 Software (C2800NM-ADVIPSERVICESK9-M), Version 12.4(15)T1, RELEASE SOFTWARE (fc2) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2007 by Cisco Systems, Inc. Compiled Wed 18-Jul-07 06:21 by pt_rel_team ROM: System Bootstrap, Version 12.1(3r)T2, RELEASE SOFTWARE (fc1) Copyright (c) 2000 by cisco Systems, Inc. Из вывода этой команды мы видим, что текущая версия прошивки – 12.4.(15)T1. Подробнее о версиях IOS можно прочесть в этой статье. Далее найдем новую версию прошивки для нашего маршрутизатора на сайте cisco.com и скачаем её. Затем посмотрим доступный объем flash памяти, где находится текущий файл IOS, при помощи команды show flash. Router#show flash System flash directory: File Length Name/status 3 50938004 c2800nm-advipservicesk9-mz.124-15.T1.bin 2 28282 sigdef-category.xml 1 227537 sigdef-default.xml [51193823 bytes used, 12822561 available, 64016384 total] 63488K bytes of processor board System flash (Read/Write) Тут мы видим, что текущий файл IOS - c2800nm-advipservicesk9-mz.124-15.T1.bin занимает 50 мегабайт из доступных 64, и у нас остается свободно 12 мегабайт flash памяти. Чтобы загрузить новую версию прошивки нам не хватает места, поэтому нужно удалить старую. Используем команду delete /force /recursive flash:имя_файла. Router# delete /force /recursive flash:c2800nm-advipservicesk9-mz.124-15.T1.bin Теперь поместим скачанную версию IOS на TFTP или FTP сервере и с него скачаем себе на роутер. Для этого сначала используем команду copy [откуда] [куда] . Потом указываем IP адрес нашего TFTP сервера, имя файла и какое он будет иметь название после копирования. Router#copy tftp: flash: >Address or name of remote host []? 192.168.1.2 >Source filename []? c2800nm-advipservicesk9-mz.151-4.m12a.bin >Destination filename [c2800nm-advipservicesk9-mz.151-4.m12a.bin]? Accessing tftp://192.168.1.2/ c2800nm-advipservicesk9-mz.151-4.m12a.bin… Loading c2800nm-advipservicesk9-mz.151-4.m12a.bin from 192.168.1.2 (via FastEthernet0/0): !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Проверить содержимое памяти можно используя команду dir flash Router#dir flash Directory of flash:/ 3 -rw- 50938004 c2800nm-advipservicesk9-mz.151-4.m12a.bin 2 -rw- 28282 sigdef-category.xml 1 -rw- 227537 sigdef-default.xml 64016384 bytes total (58188981 bytes free) Также можно проверить все ли в порядке с самим файлом, сравнив его MD5 сумму, с той, которая указана у этого файла на сайте Cisco. Router#verify /md5 flash:c2800nm-adventerprisek9-mz.151-4.M12a.bin .................Done! verify /md5 (flash:c2800nm-adventerprisek9-mz.151-4.M12a.bin) = fcdaeb55b292534e97ecc29a394d35aa Если на нашей flash памяти хранится больше одного образа IOS, то нужно вручную при помощи команды boot system указать какой будет загружаться. Router(config)#boot system flash:c2800nm-adventerprisek9-mz.151-4.M12a.bin Затем отправляем наше устройство в ребут командой reload, и при включении загрузится новая версия. Проверить это можно снова выполнив команду show version и найдя строчку System image file is. System image file is "flash:c2800nm-adventerprisek9-mz.151-4.M12a.bin" Если мы тут видим название файла образа новой IOS, то значит, что мы успешно обновились.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59