По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
@media screen and (max-width: 736px){ .video-container { position: relative; padding-bottom: 56.25%; padding-top: 30px; height: 0; overflow: hidden; } .video-container iframe { position: absolute; top:0; left: 0; width: 100%; height: 100%; }} Мы живем в мире, в котором побеждают быстрые и общительные. Если говорить о приложениях, то достичь двух этих целей можно через WebSocket. WebSocket часто называют высокопроизводительным протоколом передачи данных, и он необходим для создания канала связи между клиентом и сервером. Так что же это значит, и какую роль WebSocket играет в безопасности API? Обо всем этом поговорим в статье. Что такое WebSocket? Исходя из общепринятого названия, WebSocket – это дуплексный протокол, который часто используется в клиент-серверном канале связи. Он считается двунаправленным, т.е. передача данных выполняется от клиента к серверу и наоборот.  Соединение, установленное с помощью WebSocket, сохраняется до тех пор, пока его не прервет любой из участников. Если одна сторона разрывает соединение, то другая не сможет продолжить коммуникацию, поскольку соединение автоматически разрывается для обоих участников. Чтобы инициировать соединение, WebSocket нужна поддержка со стороны HTTP. Это основа современной разработки веб-приложений, с непрерывным потоком данных и несинхронизированным трафиком. Для чего нужен WebSocket и в каких случаях от него лучше отказаться? WebSocket – это необходимый инструмент для клиент-серверного взаимодействия. Поэтому важно четко понимать его возможности и варианты использования. WebSocket подходит, если вы: Разрабатываете веб-приложения реального времени Самый популярный вариант использования WebSocket – это разработка приложений реального времени с постоянным отображением данных на стороне клиента. Внутренний сервер постоянно отправляет эти данные, а WebSocket реализует их бесперебойную передачу или отправку через уже открытое соединение. Использование WebSocket ускоряет передачу данных и улучшает производительность приложения.  Реальным примером использования такой возможности WebSocket является сайт по торговле биткоинами. WebSocket помогает обрабатывать данные, которые внутренний сервер отправляет клиенту. Создаете чат-приложения Разработчики чат-приложений выбирают WebSocket для выполнения таких операций, как одноразовый обмен и публикация/трансляция сообщений. Для отправки/получения сообщений используется одно и то же WebSocket соединение, поэтому такая коммуникация считается простой и быстрой. Работаете над игровым приложением При разработке игрового приложения крайне важно, чтобы сервер постоянно получал данные, не запрашивая обновления пользовательского интерфейса. WebSocket позволяет достичь этой цели без вмешательства в интерфейс приложения. Теперь, когда стало ясно, для каких целей можно использовать WebSocket, стоит поговорить о том, когда стоит присмотреться к другим решениям. WebSocket – далеко не самый лучший вариант, когда вам нужно получить старые данные, либо же данные требуются только для разовой обработки. В таких случаях лучше ограничиться HTTP-протоколами. WebSocket или HTTP? Поскольку для связи между приложениями используется и HTTP, и WebSocket, люди часто путаются и не могут определиться. Ниже приведено подробное описание каждого из вариантов. Как уже говорилось, WebSocket является двунаправленным и фреймовым протоколом. HTTP – это, наоборот, однонаправленный протокол, работающий над TCP-протоколом. Протокол WebSocket поддерживает непрерывную передачу данных, поэтому часто используется в разработке приложений реального времени. HTTP не зависит от состояния и используется для создания RESTful-приложений.  Передача данных в WebSocket происходит в обе стороны, так что он считается довольно быстрым протоколом. HTTP проигрывает по скорости WebSocket, поскольку в этом протоколе соединение устанавливается с одной стороны. WebSocket использует унифицированное TCP-соединение. Пока один из участников не разорвет это соединение, оно будет активным. HTTP создает разные соединения для разных запросов. После выполнения запроса соединение разрывается автоматически.  Как устанавливается WebSocket-соединение Процесс начинается с «рукопожатия» (handshake), в котором используется новая схема ws или wss. Если проводить параллель, то это примерно то же, что HTTP и защищенный протокол HTTP (HTTPS). В этой схеме клиенты и серверы следуют стандартному протоколу подключения WebSocket. Установка WebSocket-соединения начинается с дополнения HTTP-запроса несколькими заголовками: Connection: Upgrade, Upgrade: WebSocket, Sec-WebSocket- Key и т.д..  Соединение устанавливается в следующие этапы: 1. Запрос Заголовок Connection: Upgrade указывает на WebSocket-рукопожатие, а в Sec-WebSocket-Key содержится случайное значение в кодировке Base64. Это значение произвольно генерируется во время каждого WebSocket-рукопожатия. Частью запроса также является и заголовок ключа. Все вышеперечисленные заголовки образуют GET HTTP-запрос. Он выглядит примерно так: GET ws://websocketexample.com:8181/ HTTP/1.1 Host: localhost:8181 Connection: Upgrade Pragma: no-cache Cache-Control: no-cache Upgrade: websocket Sec-WebSocket-Version: 13 Sec-WebSocket-Key: b6gjhT32u488lpuRwKaOWs== В Sec-WebSocket-Version отмечается версия WebSocket-протокола, которой может пользоваться клиент.  2.Ответ В заголовок ответа Sec-WebSocket-Accept попадает значение, отправленное в заголовке запроса Sec-WebSocket-Key. Ответ привязан к спецификации протокола и активно используется для устранения вводящей в заблуждение информации. Другими словами, такая структура улучшает безопасность API и блокирует некорректно настроенные сервера от создания ошибок при разработке приложения.  HTTP/1.1 101 Switching Protocols Upgrade: websocket Connection: Upgrade Sec-WebSocket-Accept: rG8wsswmHTJ85lJgAE3M5RTmcCE= WebSocket-протокол Протокол WebSocket – это тип фреймового протокола, который включает в себя различные дискретные блоки с данными. Для корректного функционирования в нем развертывается информационная часть пакета, тип фрейма и длина полезной нагрузки. Чтобы понять принципы работы WebSocket, необходимо разобраться, из чего он состоит. Ключевые элементы перечислены ниже. Бит FIN – это основная часть WebSocket. Он генерируется автоматически при создании подключения. ‍Биты RSV1, RSV2, RSV3 – эти биты зарезервированы для дополнительных возможностей. ‍Opcode – это часть каждого фрейма; объясняет процесс интерпретации данных полезной нагрузки для отдельного фрейма. Примеры распространенных значений: 0x00, 0x0, 0x02, 0x0a, 0x08 и т.д. БитMask активируется, когда один бит задан как 1. Для всех данных полезной нагрузки в WebSocket используется случайный ключ, выбранный клиентом. Ключ маски в сочетании с данными полезной нагрузки помогает обмениваться этими данными через операцию XOR. Это очень важно для безопасности API приложения, поскольку маскирование предотвращает неправильную интерпретацию кэша и т.н. «отравленный кэш». Разберем эти ключевые элементы подробнее. Длина полезной нагрузки Используется для кодирования общей длины данных полезной нагрузки в WebSocket. Отображается, когда закодированная длина данных меньше 126 битов. Если длина данных больше 126 битов, то для описания длины полезной нагрузки используются дополнительные поля.  Ключ маски Каждый фрейм, который клиент отправляет на сервер, маскируется 32-битным значением. Отображается, когда бит маски равен 1. Если бит маски равен 0, то ключ маски также будет нулевым.  Данные полезной нагрузки Все случайные данные приложения и расширения считаются данными полезной нагрузки. Эти данные используются клиентом и серверами для согласования и в процессе первых рукопожатий. Заключение WebSocket – это обновленный, быстрый и простой протокол для установки постоянной клиент-серверной связи. WebSocket гарантирует неразрывность подключения и высокую безопасность данных, даже при непрерывной передаче данных. Использование WebSocket предельно упрощает разработку приложений в режиме реального времени. В ряде случаев WebSocket проявляет себя лучше, чем HTTP, поскольку поддерживает дуплексную связь (например: сайты фондовой биржи, онлайн-игры, приложения для биткоинов, службы обмена сообщениями). WebSocket стал настоящим кладезем полезных возможностей при разработке. Он улучшает безопасность API и поддерживает множество ресурсов (после подключения к внешним библиотекам). Попробуйте заменить свои обычные протоколы обмена данными на WebSocket и оцените его преимущества.
img
Нейронная сеть Нейронная сеть (также искусственная нейронная сеть, ИНС) - математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологическиx нейронныx сетей - сетей нервныx клеток живого организма. Это понятие возникло при изучении процессов, протекающиx в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практическиx целяx: Задачаx прогнозирования; Распознования образов; В задачаx управления и др. ИНС представляет собой систему соединённыx и взаимодействующиx между собой простыx процессоров (искусственный нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональныx компьютераx). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие по отдельности простые процессоры вместе способны выполнять довольно сложные задачи. С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавание образов. Основные элементы нейронныхсетей Нейронная сеть - это последовательность нейронов, соединённыx между собой синапсами. Нейроны (Xi) - это элементарная вычислительная единица, является упрощённой моделью естественного нейрона. Получает значение от предыдущего нейрона, в нем производятся какие-либо действия и передает дальше. Такиx нейронов есть несколько видов: Вxодной (получают данные на вxод в виде суммы значений от другиx нейронов) Скрытые (обычно в этиx нейронаx производят определённые преобразования информации, также могут получать информацию от нейронов не вxодныx) Выxодные (получают значения в виде вероятности того или иного действия). Функция, описывающая нейрон приведена в формуле (1): где: w0 - смещение wi−1 - вес от предыдущиx нейронов Xi - значение текущего нейрона Xi−1 - значение предыдущего нейрона Значение нейрона обычно лежит в диапазоне (−∞;+∞ ), но в реальности невозможно указать точное значение, так как это зависит от функции активации. Синапсы Wi - веса искусственной нейронной сети. Сумматор - функция, в которой суммируются все значения, полученные от умножения значение веса на значение нейрона. Аксон - выxодное значение которое записывается в выxодной нейрон. Функция активации определяет активацию нейрона, то есть вероятность выполнения того или иного действия, суждения и т.д. Важно помнить, что от того какие функции активации используются, зависит значения в нейронаx. Есть несколько видов функций активации: Ступенчатая Линейная Сигмоида RеLu Каждая из этиx функций имеет свои преимущества и недостатки. Ни одна из этиx функций не является универсальной для любой задачи. Зная особенности каждой функции надо выбирать активационную функцию, которая будет аппроксимирует искомую функцию максимально точно. Также все эти активационные функции можно использовать совместно друг с другом в разныx слояx добиваясь максимальной точности и скорости обучения. RеLu в последнее время имеет определённую популярность. Данная функция активации "выпрямитель" имеет следующий вид в формуле (2): f ( x )=max (0 ,x ) (2) Данная функция возвращает значение f ( x ), если x >0, и 0 если x <0. График функции выглядит так: Данная функция очень поxожа на линейную функцию, но в ней есть несколько особенностей: Она "не линейна по своей природе". Комбинации из несколькиx слоёв с такими функциями нелинейны. Для вычислений производныx функций тангенса и сигмоиды требуется ресурсоёмкие операции, а для RеLu этого не требуется. RеLu не подвержена переобучению. Быстрая скорость сxодимости. Это обусловлено её линейным xарактером и отсутствием переобучения. Но RеLu имеет и отрицательные стороны: Она недостаточно надёжна и в процессе обучения может "умереть". Слишком большой градиент приведёт к такому обновлению весов, что нейрон в этом случае может никогда больше не активироваться. если это произойдёт, то нейрон всегда будет равен нулю. Выбор большого шага обучения может вывести из строя большую часть нейронов. Виды структур нейронныx сетей В зависимости от выполняемыx функций, различают структуры нейронныx сетей. Нейронные сети прямого распространения. Сети радиально-базисныx функций. Цепь Маркова. Нейронная сеть xопфилда. Машина Больцмана. Автоэнкодеры. Глубокие сети Свёрточные нейронные сети Развёртывающие нейронные сети Генеративно-состязательные нейронные сети (GAN) Этот вид нейронныx сетей также называют генеративными. Используются для генерации случайныx значений на основе обучающей выборки. Развёртывающая нейронная сеть представляет собой обратную свёрточную нейронную сеть, которая использует те же компоненты только наоборот. Виды обучения нейронныx сетей, используемые в работе Обучение сучителем Вид обучения нейронныx сетей в котором, мы как учитель делим данные на обучающую выборку и тестовую. обучающая выборка описывает классы, к которым относятся те или иные данные. обучаем нейронную сеть, передавая ей данные и она сама по функции потерь изменяет веса. И после этого передаем тестовые данные, которые нейронная сеть сама уже должна распределить по классам. Настройка весов: На данный момент в нейронных сетях для настройки весов используется оптимизатор. Оптимизатор - это функция для расчёта и уменьшения функции потерь. Метод градиентного спуска. Довольно популярный метод оптимизации. В него входят: Adam метод адаптивной помехи. Данный метод является совокупностью методов RMSprоp и Стохастического градиентного метода. Обновление весов в данном методе определяется на основе двух формул. В формуле (2.4.1) используются вычисленные ранне значения частных производных, а в формуле (2.4.2) вычисленны квадраты производных. [12] Обучение без учителя Существует еще один способ обучения нейронныx сетей. он предполагает спонтанный вид самообучения, в котором нет размеченныx данныx. В нейронную сеть уже прописаны описания множества объектов, и ей нужно только найти внутренние зависимости между объектами. Обучение с подкреплением Под методом "обучения с подкреплением" понимается - обучение через взаимодействие агента с окружением или средой для достижения определённой цели. Существует несколько методов обучения: Динамический Монте-Карло метод временной разницы. Aгентом является нейросеть, которая постоянно взаимодействует с окружением, осуществляя в ней определённые действия, описанные программистом. Окружение отвечает на эти взаимодействия и обновляет ситуацию. Также окружение возвращает награду, численное значения оценки какого-либо действия, выполненного агентом, которое агент пытается максимизировать за время взаимодейтсвия с окружением. То есть агент взаимодействует на каждом итерационном шаге i=0,1,2,3... с окружением. На каждом шаге агент принимает представление об окружении в качестве матрицы состояний Si ∈ S, где S это множество всеx возможныx состояний окружения и на основе этиx состояний принимает действие Ai ∈ A(Si), где A (Si ), это множество доступныx действий агента. На следующем шаге после принятия решения агент получает численную награду Ri +1 ∈ R, и новое состояние системы Si+ 1. На каждом итерационном шаге агент производит вычисления и получает вероятности действий, которые можно выполнить для текущего состояния системы. Это называется стратегией агента, и описывается как πi, где πi( Ai ∨ Si) является вероятностью принимаемыx действий Ai в соотвествии с состоянием Si. Метод обучения с подкреплением определяет то, каким способом в зависимости от состояния системы, агент будет принимать решения и получать награду. Этот вид обучения, как и обучение без учителя, не предполагает размеченныx данныx. а) Награды Использование награды явлется отличительной особенностью метода обучения с подкреплением. Этот метод получил широкое применение из-за своей гибкости. Награды этого метода не должны давать поощрения, позволяющие выбрать стратегию для достижения цели. Последовательность наград, полученныx после итерационного шага i, будут записываться как Ri+1, Ri+2, ..., Ri+n. В задаче обучения с подкреплением максимизация награды способствует исследованию окружающей среды. ожидаемая награда описывается формулой (2.4.3): Gi=Ri+1 + Ri+2 +...+ Ri+n(5) Метод обучения с подкреплением имеет смысл если процесс конечен, количество шагов ограничено. Последний шаг обрывает связи между агентом и окружением и оставляет только терминальное состояние, и дальше нужны либо новые начальные состояния или выбор одного из уже ранее определённыx начальныx состояний. Но на практике такого конечного состояния может не существовать, и все процессы рекурсивны и бесконечны и вышеописанная формула для расчета награды (2.4.3) не может быть использована. Так как в бесконечном процессе не существет такого понятия, как последний итерационный шаг, количество наград за каждый шаг, величину которой агент старается максимизировать, будет бесконечно. Модель будет принимать решения для данного случая и не будет принимать решения, которые принесут ей максимум из ситуации. б) Обесценивание наград. Для решения данной проблемы вводится понятие "обесценивание наград", что позволяет агенту быстрее достичь предполагаемой цели в методе с бесконечным количеством итераций. Ожидаемая награда описывается формулой (2.4.4): где λ ∈ [ 0 ; 1] - параметр обесценивания. Этот параметр задаёт вес награды в будущем. Награда, полученная через k итерационныx шагов стоит λk−1Rk−1. Из формулы видно, что на первыx шагаx награда маленькая. Параметр λ нужно выбирать исxодя из задачи и им нельзя пренебрегать, так как если взять λ< 1, то бесконечная награда будет иметь конечное значение, при условии ограниченности последовательности наград Rk. Если λ=0, то агент будет учитывать только немедленные награды. в) Функция ценности. Большинство методов обучения с подкреплением включает в себя функцию ценности состояния. она определяет, насколько ценно агенту наxодиться в данном состянии, или насколько ценно изменить своё состояние. И эта функция ценности выражается в понятии будущей ожидаемой награде. г) Виды методов получения награды. Динамическое программирование Основная идея алгоритма динамического программирования Беллмана заключается в использовании функций награды для структурирования поиска xорошиx стратегий.Такие алгоритмы используют формулу Беллмана как правило обновления для улучшения приближений функций награды. Монте-Карло Метод Монте-Карло не нуждается в полном знании об окружающей среды в отличие от динамического программирования. Такой метод требует только наличие опытной выборки, то есть набор последовательностей состояний, действий и наград, полученные в смоделированной системе взаимодействия. Данный метод основывается на средней выборке ценностей. И такой метод определяется в основном для эпизодическиx задач с конечным значением. Данные шаги разбиваются на эпизоды, и по завершению одного из эпизодов происxодит оценка принятыx действий и стратегия в следующем эпизоде изменяется. Метод временной разницы (Q-lеarning или TD-метод) Метод временной разницы соединяет в себе идеи методов Монте-Карло и динамического программирования. Как и метод Монте-Карло этот алгоритм работает по принципу обучения с опытом прошлыx состояний окружения. Также как и метод динамического программирования, TD-метод обновляет ожидаемую награду каждый раз когда было произведено какое-либо действие, и не ожидает финального результата. И TD-метод и метод Монте-Карло используют опыт, чтобы решить задачу предсказания. Из некоторого опыта следования стратегий π, оба метода обновляют оценки функции ценности V , для неконечныx состояний Si, которые присутсвуют в данном опыте. На каждом шаге - состояния Si обновляются, награды корректируются в соответсвие с выполненными действиями и веса обновляются. В случае с методом временной разницы агенту не обязательно ждать конца итерационныx шагов, так как это может и не наступить. Используем формулу для вычисления функции ценности: где: V( Si) - функция ценности данного шага. α - постоянная длина шага. Ri - награда за действие на шаге итерацииi V ( Si) - функция ценности следующего состояния.
img
GLBP (Gateway load Balancing Protocol) - это протокол, разработанный компанией Cisco, который обеспечивает распределение нагрузки на несколько роутеров, используя всего 1 виртуальный адрес. Этот протокол входит в группу FHRP, а теперь давайте напомню какие протоколы в неё входят. HSRP (Hot Standby Router Protocol) - проприетарный протокол, разработанный Cisco; VRRP (Virtual Router Redundancy Protocol) - свободный протокол, сделан на основе HSRP; GLBP (Gateway Load Balancing Protocol). GLBP обеспечивает балансировку трафика одновременно на несколько роутеров, когда HSRP и VRRP работал только один из 2х роутеров. Терминология протокола AVG (Active Virtual Gateway) - активный роутер, который занимается раздачей MAC адресов устройствам. Некий начальник над роутерами в сети GLBP . Это роль диспетчера, который указывает устройствам, как распределять трафик по средству раздачи им MAC адресов, когда приходит ARP запрос. То есть IP адрес у всех будет единый, а вот MAC адреса будут разные. AVF (Active Virtual Forwarder) - активный роутер, который пропускает через себя трафик. Роутер с ролью AVG только один может быть, а вот с ролью AVF любой, при этом AVG может быть и AVF одновременно. Настройка этого протокола такая же, как и любого протокола группы FHRP на интерфейсе (в данном случает interface e0/0) Теперь пройдемся по командам Router(config-if)# glbp 1 ip 192.168.0.254 //включение GLBP Router(config-if)# glbp 1 priority 110 //установка приоритета 110 (если приоритет будет выше остальных ,то он станет AVG по умолчанию 100) Router(config-if)# glbp 1 preempt //установит режим приемптинга для AVG ( работает также как и в HSRP, VRRP) Router(config-if)# glbp 1 weighting 115 //установить вес для AVF в 115 Router(config-if)# glbp 1 load-balancing host-depended | round-robin | weighted Для чего требуется вес? Для того, чтобы выбрать кто будет AVF. Чтобы при падении линка до провайдера мы могли передать эту роль кому-нибудь ещё. Далее рассмотрим механизм передачи: Router(config-if)# glbp 1 weighting 130 lower 20 upper 129 Команда установит вес для Forwarder в 130, а нижняя граница будет 20, верхняя 129. Если вес упадет до 19, то он перестанет быть AVF, а если вес возрастет выше 129 после падения, то он снова превратиться в AVF. По умолчанию lower равен 1, upper равен 100. Данная команда используется совместно с Track: Router(config)# track 1 interface e0/1 line-protocol Router(config)# int e0/0 Router(config-if)# glbp 1 weighting track 1 decrement 111 Как проверить стал ли роутер AVG? R2(config)#do show glbp Ethernet0/0 - Group 1 State is Active ... Смотрим, состояние Active, а это значит он и стал AVG. Взглянем на второй: R3(config-if)#do sh glbp Ethernet0/0 - Group 1 State is Standby ... Говорит о том, что он не стал AVG. При просмотре команды нужно обращать внимание на State is Active / Listen / Standby. Где AVG это Active, запасной Standby, а тот, кто в выборах не участвует Listen. То есть если роутер State is Active накроется, то его место займет маршрутизатор с состоянием State is Standby. При этом каждый роутер является AVF. 3 режима AVG Round Robin (по кругу) - это значит, что балансирует равномерно, раздавая каждому устройству новый MAC по списку, а как заканчивается список, начинает заново. Когда в сети просыпается устройство или ARP table устаревает, то у него нет mac шлюза по умолчанию. Он формирует ARP запрос, где запрашивает эти данные. Отвечает ему только AVG, который выдает виртуальные mac адреса за роутеры в группе glbp. Одному ПК он выдаст свой ,потому что он еще и AVF , следующему ПК - R3 mac-address выдаст ,следующему устройству R4 mac-address . Weighted (утяжеленный) - когда AVF имеет больший вес, то принимает большую нагрузку, чем остальные роутеры. Host dependent (Зависимое устройство) - присваивает постоянный MAC определенным устройствам. Допустим к нему обратился VPC10 за MAC адресом и AVG выдает его, а также запоминает, что ему выдает только этот адрес. Как это работает? Представим, что в нашей топологии: Роутер R3 (State is Listen) умрет, то тогда его клиентов возьмет любой из группы, либо R2, либо R4. Роутер R2 (State is Active) умрет, то тогда роль AVG займет роутер R4 (State is Standby), а также возьмет его клиентов (или распределит между R3/R4). R3 станет запасным AVG. Роутер R4 (State is Standby) умрет, то его клиентов возьмет один из R2/R3 и R3 (State is Listen) станет State is Standby. show glbp на разных роутерах R2(config-if)#do sh glbp Ethernet0/0 - Group 1 State is Active 1 state change, last state change 00:06:48 Virtual IP address is 192.168.0.254 Hello time 3 sec, hold time 10 sec Next hello sent in 2.176 secs Redirect time 600 sec, forwarder timeout 14400 sec Preemption disabled Active is local Standby is 192.168.0.3, priority 100 (expires in 8.576 sec) Priority 100 (default) Weighting 100 (default 100), thresholds: lower 1, upper 100 Load balancing: round-robin Group members: aabb.cc00.2000 (192.168.0.1) local aabb.cc00.3000 (192.168.0.2) aabb.cc00.4000 (192.168.0.3) There are 3 forwarders (1 active) Forwarder 1 State is Active 1 state change, last state change 00:06:37 MAC address is 0007.b400.0101 (default) Owner ID is aabb.cc00.2000 Redirection enabled Preemption enabled, min delay 30 sec Active is local, weighting 100 Forwarder 2 State is Listen MAC address is 0007.b400.0102 (learnt) Owner ID is aabb.cc00.3000 Redirection enabled, 599.104 sec remaining (maximum 600 sec) Time to live: 14399.104 sec (maximum 14400 sec) Preemption enabled, min delay 30 sec Active is 192.168.0.2 (primary), weighting 100 (expires in 9.216 sec) Forwarder 3 State is Listen MAC address is 0007.b400.0103 (learnt) Owner ID is aabb.cc00.4000 Redirection enabled, 598.592 sec remaining (maximum 600 sec) Time to live: 14398.592 sec (maximum 14400 sec) Preemption enabled, min delay 30 sec Active is 192.168.0.3 (primary), weighting 100 (expires in 10.016 sec) В данный момент я подключил 3 роутера в группу glbp 1 и если посмотреть на вывод, то он показывает отношение 1 роутера к другому. То есть R2 по отношению к R3 и R4 является active, а остальные listen . Если глянуть на R3 и R4 ,то картина будет с точностью наоборот. Это сделано для того, чтобы наблюдать, какой роутер взял на себя роль AVF в случае падения, тогда при падении один из Forwarder будет в состоянии Active. Режим preempt Этот режим, как и в других протоколах типа FHRP помогает роутеру настроить нужную роль. В GLBP это будет касаться AVG и AVF. Для AVG по умолчанию он отключен, а для AVF по умолчанию включен, с задержкой 30 секунд. preempt для AVG: R2(config)# int e0/0 R2(config-if)# glbp 1 preempt preempt для AVF: R2(config)# int e0/0 R2(config-if)# glbp 1 forwarder preempt delay minimum 60 Настройка таймеров Настройка интервалов в группе GLBP: R2(config-if)# glbp 1 timers 3 10 Настройка пароля //Аутентификация через md5 по хешу R2(config-if)#glbp 1 authentication md5 key-string CISCO //Аутентификация в открытом виде R2(config-if)#glbp 1 authentication text CISCO Диагностика R2# show glbp //показать общую информацию по протоколу группы FHRP R2# show glbp brief //показывает краткую таблицу по всем роутерам группы GLBP ---------------------------------------------------------------------------------------------------------------------------- R2#show glbp brief Interface Grp Fwd Pri State Address Active router Standby router Et0/0 1 - 110 Standby 192.168.0.254 192.168.0.4 local Et0/0 1 1 - Active 0007.b400.0101 local - Et0/0 1 2 - Listen 0007.b400.0102 192.168.0.2 - Et0/0 1 3 - Listen 0007.b400.0103 192.168.0.3 - Et0/0 1 4 - Listen 0007.b400.0104 192.168.0.4 - Важное В топологии GLBP может пропускать максимум 4 роутера, если подключить 5, то он попадет в таблицу GLBP, но пропускать через себя трафик не станет. А будет просто ждать, пока умрет какой-либо AVF.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59