По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Очень важно знать номера портов, используемых устройствами, с которыми мы работаем. Мы уже рассказывали про то, какие порты используются в Asterisk, a сегодня мы расскажем какие порты использует АТС и ее компоненты от компании Cisco. Если вам известны номера портов, устранение неполадок становится немного проще. Номера портов используются для определения того, на какой протокол должен быть направлен входящий трафик. Порты назначаются при установлении сеанса и освобождаются по окончании сеанса. Список портов Cisco Unified Communications Manager, Voice Gateway и Gatekeeper Итак, давайте посмотрим, какие основные порты используются между голосовыми устройствами, такими как Cisco Unified Communications Manager, Voice Gateway и Gatekeeper SIP сообщенияTCP/UDP 5060SIP сообщенияTLS(TCP) 5061Real-Time Protocol (RTP)UDP 16384 – 32767Secure Real-Time Protocol (SRTP)UDP 16384 – 32767Skinny Client Protocol (SCCP)TCP 2000Secure Skinny Client Protocol (SCCPS)TCP 2443Media Gateway Control Protocol (MGCP) управление шлюзомUDP 2427Media Gateway Control Protocol (MGCP) соединение со шлюзамTCP 2428MGCP GatewayUDP 2427, 2428 H.225 Signalling Services ICT и H323 GatekeeperTCP 1720Gatekeeper (H.225) DiscoveryTCP 1718Gatekeeper (H.225) RASUDP 1719H.245TCP 5555-5574Gatekeeper Discovery (RAS)UDP 1719Q.931 signaling от Voice GatewayTCP 2727Q.931 call SetupTCP 1720SyslogTCP 514
img
Привет! В сегодняшней статье хотим рассказать о том, как настроить DHCP сервер для организации офисной IP-телефонии. Этой темы мы уже косвенно касались в нашей прошлой статье, а сегодня покажем всё на практике. Мы будем использовать роутер MikroTik RB951Ui-2HnD с операционной системой MikroTik RouterOS 6.35.4, но для этих целей подойдёт абсолютно любое устройство, поддерживающее данный сервис. /p> Настройка DHCP Итак, открываем WinBox и подключаемся к нашему роутеру, далее переходим во вкладку IP → Pool → +: Открывается следующее окно: Обозначим диапазон IP адресов, которые будем раздавать подключаемым телефонам, например, 192.168.1.10 – 192.168.1.100. Теперь настроим непосредственно DHCP-сервер, который будет раздавать адреса из созданного пула телефонам, для этого переходим по пути IP → DHCP Server → DHCP → +: Открывается следующее окно: В данном окне необходимо указать интерфейс, с которого наш сервер будет раздавать адреса (в нашем случае – ether1), Lease Time - время, на которое будет выдан адрес (в нашем случае – 1 день) и, собственно, пул адресов (Address Pool), которые могут быть выданы (в нашем случае – dhcp, который мы создали ранее) Option 66 А теперь самое важное, для чего, всё это затевалось - Опция 66. Опция 66 (option 66) – это аналог проприетарной опции 150 (option 150), разработанной компанией Cisco для автоматического обновления прошивок и конфигурации (Auto Provisioning) телефонов Cisco IP Phone. Данная опция содержит в себе адрес TFTP сервера, на который должен обратиться телефон, чтобы скачать прошивку и файл с конфигурацией, как только подключается к сети. Единственным различием между опцией 150 и 66, является то, что благодаря опции 150 можно указывать IP адреса для нескольких TFTP серверов, а в опции 66 можно указать только один адрес. Опция 66 является открытым стандартом IEEE, который поддерживается большинством производителей роутеров и VoIP-оборудования. Описывается в RFC 2132. Давайте её настроим, для этого переходим на вкладку Options → + и видим следующее окно: Важно! Прежде чем вводить IP адрес TFTP сервера в поле Value, проверьте версию RouterOS, от этого будет зависеть синтаксис данной настройки. Для версий с 6.0 -6.7, значение IP адреса нужно вводить, используя одинарные ковычки - ’192.168.1.1’ Для версий от 6.8, значение IP адреса нужно вводить, используя следующий синтаксис - s’192.168.1.1’ Здесь: Name - Название новой опции Code - Код опции по RFC 2132 Value - IP адрес TFTP сервера, на котором лежат прошивки для телефонов Raw Value - 16-ричная интерпретация IP адреса TFTP сервера, рассчитывается автоматически после нажатия кнопки Apply Готово, теперь переходим на вкладку Network и указываем только что настроенную опцию 66 как показано ниже: Итак, теперь, как только мы подключим новый телефон в сеть, он получит по DHCP адрес из пула 192.168.1.10- 100, а также адрес TFTP сервера в опции 66, на котором для него лежит конфигурационный файл и актуальная версия прошивки.
img
Если вы начинающий веб-разработчик, возможно вы уже знаете, как работает всемирная сеть, по крайней мере, на базовом уровне. Но когда начинаете кому-то объяснять принцип работы веб-сайта, то терпите неудачу. Что такое IP-адрес? Как работает модель «клиент-сервер» на самом деле? В наши дни есть достаточно мощные фреймворки, которые можно использовать в своих проектах. Настолько мощные, что начинающие разработчики легко могут запутаться в принципах работы веб. Базовый веб-поиск Начнем с того места, где мы все были раньше: введите «www.github.com» в адресную строку браузера и просмотрите загрузку страницы. С первого взгляда может показаться, что тут происходит какая-то магия. Но давайте заглянем глубже. Определение частей web Из-за обилия жаргонных слов, понимание работы интернета поначалу пугает. Но к сожалению, для дальнейшего погружения в тему, придется разобраться с ними. Клиент: Приложение, например, Chrome или Firefox, которое запущено на компьютере и подключено к Интернету. Его основная роль состоит в том, чтобы принимать пользовательские команды и преобразовывать их в запросы к другому компьютеру, называемому веб-сервером. Хотя мы обычно используем браузер для доступа к Интернету, вы можете считать весь ваш компьютер «клиентом» модели клиент-сервер. Каждый клиентский компьютер имеет уникальный адрес, называемый IP-адресом, который другие компьютеры могут использовать для идентификации. Сервер: Компьютер, который подключен к Интернету и также имеет IP-адрес. Сервер ожидает запросов от других машин (например, клиента) и отвечает на них. В отличие от вашего компьютера (т.е. клиента), который также имеет IP-адрес, на сервере установлено и работает специальное серверное программное обеспечение, которое подсказывает ему, как реагировать на входящие запросы от вашего браузера. Основной функцией веб-сервера является хранение, обработка и доставка веб-страниц клиентам. Существует множество типов серверов, включая веб-серверы, серверы баз данных, файловые серверы, серверы приложений и многое другое. Подробнее про сервера можно прочитать тут IP-адрес: Internet Protocol Address. Числовой идентификатор устройства (компьютера, сервера, принтера, маршрутизатора и т.д.) в сети TCP/IP. Каждый компьютер в Интернете имеет IP-адрес, который он использует для идентификации и связи с другими компьютерами. IP-адреса имеют четыре набора чисел, разделенных десятичными точками (например, 244.155.65.2). Это называется «логический адрес». Для определения местоположения устройства в сети логический IP-адрес преобразуется в физический адрес программным обеспечением протокола TCP/IP. Этот физический адрес (т.е. MAC-адрес) встроен в оборудование. Подробнее про IP-адрес можно прочитать тут Интернет-провайдер: Интернет-провайдер. Интернет-провайдер - посредник между клиентом и серверами. Для типичного домовладельца ИП обычно является «кабельной компанией». Когда браузер получает от вас запрос на переход к www.github.com, он не знает, где искать www.github.com. Это задание поставщика услуг Интернета - выполнить поиск DNS (системы доменных имен), чтобы спросить, на какой IP-адрес настроен сайт, который вы пытаетесь посетить. DNS: система доменных имен. Распределенная база данных, которая хранит соответствие доменных имен компьютеров и их IP-адресов в Интернете. Не беспокойтесь о том, как сейчас работает «распределенная база данных»: просто знайте, что DNS существует, чтобы пользователи могли вводить www.github.com вместо IP-адреса. Подробнее про DNS можно прочитать тут Имя домена: используется для идентификации одного или нескольких IP-адресов. Пользователи используют доменное имя (например, www.github.com) для доступа к веб-сайту в Интернете. При вводе имени домена в обозреватель DNS использует его для поиска соответствующего IP-адреса данного веб-сайта. TCP/IP: Наиболее широко используется протокол связи. «Протокол» - это просто стандартный набор правил для чего-либо. TCP/IP используется в качестве стандарта для передачи данных по сетям. Подробнее про TCP/IP можно прочитать тут Номер порта: 16-разрядное целое число, которое идентифицирует определенный порт на сервере и всегда связано с IP-адресом. Он служит способом идентификации конкретного процесса на сервере, на который могут пересылаться сетевые запросы. Хост: Компьютер, подключенный к сети - это может быть клиент, сервер или любой другой тип устройства. Каждый хост имеет уникальный IP-адрес. Для веб-сайта, как www.google.com, хост может быть веб-сервером, который обслуживает страницы для веб-сайта. Часто между хостом и сервером происходит какая-то путаница, но заметьте, что это две разные вещи. Серверы - это тип хоста - это конкретная машина. С другой стороны, хост может ссылаться на всю организацию, которая предоставляет службу хостинга для обслуживания нескольких веб-серверов. В этом смысле можно запустить сервер с хоста. HTTP: протокол передачи гипертекста. Протокол, используемый веб-браузерами и веб-серверами для взаимодействия друг с другом через Интернет. URL: URL-адреса идентифицируют конкретный веб-ресурс. Простой пример https://github.com/someone. URL указывает протокол («https»), имя хоста (github.com) и имя файла (чья-то страница профиля). Пользователь может получить веб-ресурс, идентифицированный по этому URL-адресу, через HTTP от сетевого хоста, доменное имя которого github.com. Подробнее про URL можно прочитать тут Переход от кода к веб-странице Теперь у нас есть необходимая база, чтобы разобраться, что происходит за кулисами, когда мы вводим в строку поиска адрес Github: 1) Введите URL-адрес в браузере 2) Браузер анализирует информацию, содержащуюся в URL. Сюда входят протокол («https»), доменное имя («github.com») и ресурс («/»). В этом случае после «.com» нет ничего, что указывало бы на конкретный ресурс, поэтому браузер знает, как получить только главную (индексную) страницу. 3) Браузер связывается с поставщиком услуг Интернета, чтобы выполнить DNS-поиск IP-адреса для веб-сервера, на котором размещен веб-сервер www.github.com. Служба DNS сначала свяжется с корневым сервером имен, который просматривает https://www.github.com и отвечает IP-адресом сервера имен для домена верхнего уровня .com. Получив этот адрес служба DNS выполняет еще один запрос на сервер имен, который отвечает за домен .com и запрашивает адрес https://www.github.com. 4) Получив IP-адрес сервера назначения, Интернет-провайдер отправляет его в веб-браузер. 5) Ваш браузер берет IP-адрес и заданный номер порта из URL (протокол HTTP по умолчанию - порт 80, а HTTPS - порт 443) и открывает TCP-сокет. На этом этапе связь между веб-браузером и веб-сервер наконец-то установлена. 6) Ваш веб-браузер отправляет HTTP-запрос на веб-сервер главной HTML-страницы www.github.com. 7) Веб-сервер получает запрос и ищет эту HTML-страницу. Если страница существует, веб-сервер подготавливает ответ и отправляет его обратно в браузер. Если сервер не может найти запрошенную страницу, он отправляет сообщение об ошибке HTTP 404 (тот самый Error 404 Not Found), которое означает «Страница не найдена». 8) Ваш веб-браузер берет HTML-страницу, которую он получает, а затем анализирует ее, делая полный обзор, чтобы найти другие ресурсы, которые перечислены в ней: это адреса изображений, CSS файлов, JavaScript файлов и т.д. 9) Для каждого перечисленного ресурса браузер повторяет весь указанный выше процесс, делая дополнительные HTTP-запросы на сервер для каждого ресурса. 10) После того, как браузер закончит загрузку всех других ресурсов, перечисленных на странице HTML, страница будет загружена в окно браузера и соединение будет закрыто. Пересечение Интернет-пропасти Стоит отметить, как информация передается при запросе информации. Когда вы делаете запрос, эта информация разбивается на множество крошечных порций, называемых пакетами. Каждый пакет маркируется заголовком TCP, который включает в себя номера портов источника и назначения, и заголовком IP, который включает в себя IP-адреса источника и назначения. Затем пакет передается через сеть Ethernet, WiFi или сотовую сеть. Пакет может перемещаться по любому маршруту и проходить столько транзитных участков, сколько необходимо для того, чтобы добраться до конечного пункта назначения. И пакеты передаются отнюдь не в том, порядке, в котором они сформировались. Например, первый пакет может прийти третьим, а последний первым. Нам на самом деле все равно, как пакеты туда попадут - важно только то, что они доберутся до места назначения в целости и сохранности! Как только пакеты достигают места назначения, они снова собираются и доставляются как единое целое. Так как же все пакеты знают, как добраться до места назначения без потери? Ответ: TCP/IP. TCP/IP - это двухкомпонентная система, функционирующая как фундаментальная «система управления» Интернета. IP означает Интернет-протокол; его задачей является отправка и маршрутизация пакетов на другие компьютеры с использованием заголовков IP (т.е. IP-адресов) каждого пакета. Вторая часть, протокол управления передачей (TCP), отвечает за разбиение сообщения или файла на меньшие пакеты, маршрутизацию пакетов к соответствующему приложению на целевом компьютере с использованием заголовков TCP, повторную отправку пакетов, если они теряются в пути, и повторную сборку пакетов в правильном порядке, как только они достигают другого конца. Получение финальной картины Но подождите - работа еще не закончена! Теперь, когда ваш браузер имеет ресурсы, составляющие веб-сайт (HTML, CSS, JavaScript, изображения и т.д.), он должен пройти несколько шагов, чтобы представить вам ресурсы в виде читабельной для нас с вами веб-страницы. В браузере имеется механизм визуализации, отвечающий за отображение содержимого. Обработчик рендеринга получает содержимое ресурсов в небольших фрагментах. Затем существует алгоритм синтаксического анализа HTML, который сообщает браузеру, как анализировать ресурсы. После анализа создается древовидная структура элементов DOM. DOM (Document Object Model) обозначает объектную модель документа и является условным обозначением для представления объектов, расположенных в HTML-документе. Этими объектами - или «узлами» - каждого документа можно управлять с помощью таких языков сценариев, как JavaScript. После построения дерева DOM анализируются таблицы стилей, чтобы понять, как определить стиль каждого узла. Используя эту информацию, браузер проходит вниз по узлам DOM и вычисляет стиль CSS, положение, координаты и т.д. для каждого узла. После того как в браузере появятся узлы DOM и их стили, он наконец готов соответствующим образом нарисовать страницу на экране. Результат – все, что вы когда-либо просматривали в интернете. Итог Интернет - это комплексная вещь, но вы только что закончили сложную часть! О структуре веб-приложений мы расскажем в нашей следующей статье.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59