По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Первая часть статьи доступна по ссылке: Базовая настройка коммутатора Cisco - часть 1 Защита доступа в пользовательском режиме с помощью локальных имен пользователей и паролей Коммутаторы Cisco поддерживают два других метода безопасного входа, которые используют пары имя пользователя / пароль вместо общего пароля без ввода имени пользователя. Первый метод, использует ввод локального имени пользователя и пароля. Происходит настройка пары имя пользователя / пароль локально-то есть в конфигурации коммутатора. Коммутаторы поддерживают режим локального имени пользователя / пароля для входа по консоли, по Telnet и даже по SSH, но не изменяют пароль от привилегированного режима (enable), используемый для входа в режим enable. Настройки для перехода от использования простых общих паролей к использованию локальных имен пользователей/паролей требует лишь небольших изменений конфигурации, как показано на рис.3. На рисунке показаны два ПК, пытающиеся получить доступ к пользовательскому режиму. Один из ПК подключен по консольному кабелю в пользовательский режим через линию console 0, а другой ПК по Telnet, соединяющийся через терминальные линии vty 0 15. Оба ПК не имеют паролей для входа, и задано имя пользователя для обоих ПК - " local." На рисунке в Пользовательском режиме используется две команды: 1- username ulanbaby secret box 2- username landy secret box Глядя на настройки на рисунке, видно, во-первых, коммутатору, необходимо задать пару имя пользователя/пароль. Для их создания, в режиме глобальной конфигурации, введите команду создания имени пользователя и зашифрованного пароля -username <имя пользователя> secret <пароль>. Затем, чтобы включить тип безопасности входа с проверкой логина (имени пользователя ) по консоли или Telnet, просто добавьте команду login local. По сути, эта команда означает " использовать локальный список имен пользователей для входа в систему." Вы также можете использовать команду no password, чтобы очистить все оставшиеся команды паролей из консоли или режима vty, потому что эти команды не нужны при использовании локальных имен пользователей и паролей. Ниже подробно описаны шаги для настройки доступа к к коммутатору с использованием логина и пароля: Шаг 1. В режиме глобальной конфигурации используйте команду username <имя пользователя > secret <пароль>, чтобы создать одну или несколько пар имя пользователя/пароль в локальной базе коммутатора. Шаг 2. Настройте консоль на использование пар имя пользователя / пароль из локальной базы коммутатора: используйте команду line con 0 для входа в режим конфигурации консоли. используйте подкоманду login local, чтобы разрешить коммутатору запрашивать имя пользователя и пароль, совпадающие со списком локальных имен пользователей/паролей. (необязательно) используйте подкоманду no password для удаления всех существующих простых общих паролей, просто для оптимизации конфигурации. Шаг 3. Настройте Telnet (vty) для использования пар имя пользователя / пароль из локальной базы коммутатора: 1. используйте команду line vty 0 15 для входа в режим конфигурации vty для всех 16 терминальных линий vty (пронумерованных от 0 до 15). 2. используйте подкоманду login local, чтобы разрешить коммутатору запрашивать имя пользователя и пароль для всех входящих пользователей Telnet, со списком локальных имен пользователей/паролей. 3. (необязательно) используйте подкоманду no password для удаления всех существующих простых общих паролей, просто для оптимизации конфигурации. При попытке подключиться по Telnet к коммутатору, настроенному как показано на рисунке, пользователю будет предложено сначала ввести имя пользователя, а затем пароль, как показано в Примере 4. Пара имя пользователя / пароль должна быть в локальной базе коммутатора.В противном случае вход в систему будет отклонен. В примере 4 коммутаторы Cisco не отображает символы при вводе пароля по соображениям безопасности. Защита доступа в пользовательском режиме с помощью внешних серверов аутентификации В конце примера 4 показано одно из многочисленных улучшений безопасности, когда требуется, чтобы каждый пользователь входил под своим собственным именем пользователя. Также в конце примера показано, как пользователь входит в режим конфигурации (configure terminal), а затем сразу же покидает его (end). Обратите внимание, что при выходе пользователя из режима конфигурации коммутатор генерирует сообщение журнала (log). Если пользователь вошел в систему с именем пользователя, сообщение журнала (log) идентифицирует это имя пользователя; В примере сгенерировано сообщение журнала по имени "ulanbaby". Однако использование имени пользователя / пароля, настроенного непосредственно на коммутаторе, не всегда удобно при администрировании. Например, каждому коммутатору и маршрутизатору требуется настройка для всех пользователей, которым может потребоваться войти на устройства. Затем, когда возникнет необходимость внесения изменений в настройки, например, изменение паролей для усиления безопасности, настройки всех устройств должны быть изменены. Лучшим вариантом было бы использовать инструменты, подобные тем, которые используются для многих других функций входа в ИТ. Эти инструменты обеспечивают центральное место для безопасного хранения всех пар имя пользователя / пароль, с инструментами, чтобы заставить пользователей регулярно менять свои пароли, инструменты, чтобы отключать пользователей, когда они завершают сеанс работы, и так далее. Коммутаторы Cisco позволяют именно этот вариант, используя внешний сервер, называемый сервером аутентификации, авторизации и учета (authentication, authorization, and accounting)(AAA). Эти серверы содержат имена пользователей / пароли. Сегодня многие существующие сети используют AAA-серверы для входа на коммутаторы и маршрутизаторы. Да для настройки данного входа по паре имя пользователя / пароль необходимо произвести дополнительные настройки коммутатора. При использовании AAA-сервера для аутентификации коммутатор (или маршрутизатор) просто отправляет сообщение на AAA-сервер, спрашивая, разрешены ли имя пользователя и пароль, и AAA-сервер отвечает. На рисунке показано, что пользователь сначала вводит имя пользователя / пароль, коммутатор запрашивает AAA-сервер, а сервер отвечает коммутатору, заявляя, что имя пользователя/пароль действительны. На рисунке процесс начинается с того, что ПК " А " отправляет регистрационную информацию через Telnet или SSH на коммутатор SW1. Коммутатор передает полученную информацию на сервер "AAA" через RADIUS или TACACS+. Сервер отправляет подтверждение коммутатору, который, в свою очередь, отправляет приглашение (разрешение) на ввод команды в пользовательскую систему. Хотя на рисунке показана общая идея, обратите внимание, что информация поступает с помощью нескольких различных протоколов. Слева, соединение между Пользователем и коммутатором или маршрутизатором использует Telnet или SSH. Справа коммутатор и AAA-сервер обычно используют протокол RADIUS или TACACS+, оба из которых шифруют пароли, при передаче данных по сети. Настройка защищенного удаленного доступа по SSHl До сих пор мы рассматривали доступ к коммутатору по консоли и Telnet, в основном игнорируя SSH. У Telnet есть один серьезный недостаток: все данные в сеансе Telnet передаются в открытом виде, включая обмен паролями. Таким образом, любой, кто может перехватывать сообщения между Пользователем и коммутатором (man-in-the-middle attack), может видеть пароли. SSH шифрует все данные, передаваемые между SSH-клиентом и сервером, защищая данные и пароли. SSH может использовать тот же метод аутентификации локального входа, что и Telnet, с настроенными именем пользователя и паролем в локальной базе коммутатора. (SSH не работает с методами аутентификации, которые не используют имя пользователя, например только общие пароли.) Итак, в настройке доступа для локальных пользователей по Telnet, как показано ранее на рисунке, также включена локальная аутентификация по имени пользователя для входящих соединений SSH. На рисунке показан один пример настройки того, что требуется для поддержки SSH. Рисунок повторяет конфигурацию создания локального пользователя, (см. рисунок) для подключения по Telnet. На скриншоте показаны три дополнительные команды, необходимые для завершения настройки SSH на коммутаторе. На рисунке показаны три дополнительные команды, необходимые для завершения настройки SSH на коммутаторе. На рисунке показан листинг настройки SSH. Для настройки SSH на рисунке, отображаются команды: hostname sw-1 (задает имя коммутатору) ip domain-name testing.com (команда использует полное доменное имя sw-1.testing.com) crypto key generate rsa. Для локальной конфигурации имени пользователя (например, Telnet) отображаются следующие команд: username ulanbaby secret box username landy secret man line vty 0 15 login local IOS использует три команды: две для конфигурации SSH, а также одну команду для создания ключей шифрования SSH. Сервер SSH использует полное доменное имя коммутатора в качестве входных данных для создания этого ключа. Коммутатор создает полное доменное имя из имени хоста и доменного имени коммутатора. Рисунок 5 начинается с установки обоих значений (на тот случай, если они еще не настроены). Затем третья команда, команда crypto key generate rsa, генерирует ключи шифрования SSH. IOS по умолчанию использует SSH-сервер. Кроме того, IOS по умолчанию разрешает SSH-соединения по vty. Просмотр настроек в режиме конфигурации, шаг за шагом, может быть особенно полезен при настройке SSH. Обратите внимание, в частности, что в этом примере команда crypto key запрашивает у пользователя модуль ключа; вы также можете добавить параметр modulus modulus-value в конец команды crypto key, чтобы добавить этот параметр в команду. В примере 5 показан порядок настройки ssh ( такие же команды, что и на рис. 5) Ключ шифрования является последним шагом. Ранее упоминалось, что одним полезным значением по умолчанию было то, что коммутатор по умолчанию поддерживает как SSH, так и Telnet на линиях vty. Однако, поскольку Telnet не безопасный протокол передачи данных, то вы можете отключить Telnet, чтобы обеспечить более жесткую политику безопасности. Для управления тем, какие протоколы коммутатор поддерживает на своих линиях vty, используйте подкоманду transport input {all | none / telnet / ssh} vty в режиме vty со следующими опциями: transport input all or transport input telnet ssh поддержка как Telnet, так и SSH transport input none: не поддерживается ни один протокол transport input telnet: поддержка только Telnet transport input ssh: поддержка только SSH В завершении этой части статьи о SSH, расписана пошаговая инструкция настройки коммутатора Cisco для поддержки SSH с использованием локальных имен пользователей. (Поддержка SSH в IOS может быть настроена несколькими способами; эта пошаговая инструкция показывает один простой способ ее настройки.) Процесс, показанный здесь, заканчивается инструкцией настройки локального имени пользователя на линиях vty, как было обсуждено ранее в первой части данной серии статей. Шаг 1. Настройте коммутатор так, чтобы он генерировал совпадающую пару открытых и закрытых ключей для шифрования: если еще не настроено, задайте командой hostnamename имя для этого коммутатора в режиме глобальной конфигурации. Если еще не настроено, задайте командой ip domain-namename доменное имя для коммутатора в режиме глобальной конфигурации. Используйте команду crypto key generate rsa в режиме глобальной конфигурации (или команду crypto key generate RSA modulus modulus-value, чтобы избежать запроса модуля ключа) для генерации ключей. (Используйте по крайней мере 768-битный ключ для поддержки SSH версии 2.) Шаг 2. (Необязательно) используйте команду ip ssh version 2 в режиме глобальной конфигурации, чтобы переопределить значение по умолчанию для поддержки обеих версий протокола удаленного доступа SSH 1 и 2, так что бы разрешены были только соединения SSHv2. Шаг 3. (Необязательно) если вы еще не настроили нужный параметр, задайте на линии vty для работы по SSH и Telnet.: используйте команду transport input ssh в режиме конфигурации линий vty, чтобы разрешить только SSH. используйте команду transport input all (по умолчанию) или команду transport input telnet ssh в режиме конфигурации линий vty, чтобы разрешить как SSH, так и Telnet. Шаг 4. Используйте различные команды в режиме конфигурации линий vty для настройки локальной аутентификации имени пользователя, как описано ранее в этой статье. На маршрутизаторах Cisco часто по умолчанию настроен параметр transport input none. Поэтому необходимо добавить подкоманду transport input line для включения Telnet и / или SSH в маршрутизаторе. Для просмотра информации о состояния SSH на коммутаторе используются две команды. Во-первых, команда show ip ssh выводит информацию о состоянии самого SSH-сервера. Затем команда show ssh выводит информацию о каждом клиенте SSH, подключенном в данный момент к коммутатору. В пример 6 показаны примеры работы каждой из команд, причем пользователь ULANBABY в данный момент подключен к коммутатору.
img
Группы вызовов (звонящие группы) – это объединенные под едиными правилами телефонные аппараты. Такой функционал очень удобен, когда вызов необходимо распределить между определенным пулом телефонов по заранее настроенным правилам. Например, вы хотите чтобы 2 телефона звонили одновременно при входящем звонке, или звонили поочередно – эта настройка реализуется с помощью ринг – групп. На номер группы можно позвонить с офисного IP – телефона, что делает ее функционал еще более удобным. Необходимые настройки Для создания ринг-группы в Elastix необходимо открыть следующую вкладку: PBX → PBX Configuration → Ring Groups. Вы автоматически попадёте в окно создания новой ринг-группы (скриншот ниже). Производим настройку следующих параметров: Ring-Group Number - Название ринг-группы Group description – описание, например «sales» Ring Strategy – важный пункт, так как он определяет алгоритм обзвона ринг-группы, их описания в конце статьи; Ring Time – количественная характеристика в секундах, определяет сколько по времени будет идти вызов на данную группу Extension list – список экстеншенов, на которые будет маршрутизироваться вызов. Важный момент – кроме непосредственно экстеншенов сюда можно добавить любые номера, которые настроены в исходящих маршрутах, но если номер не является экстеншеном, после него необходимо поставить # (решётку) – к примеру, 89162998979#. Так же рассмотрим остальные поля: Extension Quick Pick – инструмент для добавления экстеншенов в список, экстеншен добавится в конец списка. Announcement – голосовое или музыкальное приветствие в случае попадания вызова в данную группу Play Music on Hold – включение или выключение MoH (мелодия на удержании вызова) CID Name Prefix - описательный префикс, который будет высвечиваться при звонке на внутренние телефоны, к примеру: Sales:Igor Zamochnikov Ignore CF Settings – экстеншены, которые будут совершать попытку перевести поступающий вызов будут проигнорированы, включается галочкой. Skip Busy Agent – вызов будет пропускать экстеншен, который в данный момент участвует в разговоре Enable Call Pickup – возможность «поднять» вызов с использованием номера ринг-группы Одним из достаточно интересных параметров так же является Confirm Calls – подтверждение вызовов удаленной стороной по нажатию единицы – до момента нажатия разговор не начнется. Опция доступна только для стратегии ringall. Remote Announce – сообщение, которое будет проигрываться принимающей стороне если включена опция Confirm Calls Too-Late Announce – сообщение, которое будет проигрываться принимающей стороне, если она взяла трубку до нажатия на 1. Так же используется только вместе с включенной опцией подтверждения вызова. Call Recording - Включение записи разговоров в данной ринг-группе Destination if no answer – в данном примере по истечению таймаута вызов будет сброшен. Ниже приведен пример настроенной ринг-группы: После этого необходимо нажать Submit Changes и Apply Config. Нужно иметь в виду – номер ринг-группы становится практически тем же номером экстеншена, но с некоторым ограничениями. То есть на этот номер можно будет позвонить с телефона, указать его как цель в IVR и так далее. Теперь давайте разберемся с параметрами распределения вызовов внутри самой группы: ringall: Вызов поступает на все номера, указанные в настройках ринг-группы одновременно (настройка по умолчанию) hunt: Вызов поочередно проходит через каждый номер memoryhunt: Вызов начинается с первого номера в списке, затем звонит 1й и 2й, затем 1й, 2й и 3й, и так далее. *-prim: Режимы с данной припиской работают, как и описанные выше, с одним отличием – если первый номер в списке занят, вызов прекратится firstavailable: вызов поступает на первый незанятый канал firstnotonphone: вызов поступает на первый телефон, на котором не снята трубка random: Вызов поступает на указанные номера с определенным приоритетом так, чтобы вызовы распределялись относительно равномерно. Имитирует очередь (Queue) в те моменты, когда очередь не может быть использована.
img
Public Key Infrastructure (PKI) - это набор различных технологий, которые используются для обеспечения аутентификации источника, целостности данных и конфиденциальности для пользователя в сети. PKI использует преимущества асимметричного шифрования и использует пары открытого и закрытого ключей для шифрования данных. В PKI открытый ключ обычно связан с цифровой подписью, чтобы добавить доверие и проверить сведения о владельце сертификата. Ниже приведен ключевой жизненный цикл в PKI: Генерация ключа: Этот процесс определяет шифр и размер ключа. Генерация сертификата: Этот процесс создает цифровой сертификат и назначает его человеку или устройству. Распространение: Процесс распространения отвечает за безопасное распространение ключа пользователю или устройству. Хранение: Этот процесс отвечает за безопасное хранение ключа, чтобы предотвратить любой несанкционированный доступ к нему. Отзыв: Сертификат или ключ могут быть отозваны, если они скомпрометированы субъектом угрозы. Срок действия: Каждый сертификат имеет срок службы. Каждый день мы посещаем различные веб-сайты, такие как социальные сети, стрим, новости, спорт, блоги и другие платформы. Однако задумывались ли вы когда-нибудь о проверке подлинности веб-сайтов, которые вы посещаете? Вы, наверное, думаете, что всему, что находится в Интернете, нельзя доверять. Хотя это отчасти правда, мы можем доверять только ограниченному числу веб-сайтов, например, доверять веб-сайту вашего банка. Главный вопрос заключается в том, как мы можем проверить подлинность веб-сайтов, которые мы посещаем? Именно здесь как PKI, так и цифровые сертификаты помогают установить доверие между хостом в Интернете и нашим компьютером. Центр сертификации PKI играет жизненно важную роль в Интернете, поскольку многим пользователям и устройствам требуется метод установления доверия в самой ненадежной сети в мире – Интернете. Понимание компонентов, которые помогают PKI обеспечить доверие, необходимую как пользователям, так и устройствам, имеет важное значение для любого специалиста по кибербезопасности. Вы можете рассматривать PKI как набор процедур, правил, аппаратного и программного обеспечения, а также людей, которые работают вместе для управления цифровыми сертификатами. Цифровой сертификат-это официальная форма идентификации объекта, которая проверяется доверенной стороной. Эти цифровые сертификаты выдаются доверенной стороной в сети или Интернете. Они известны как Центр сертификации (Certificate Authority - CA). В каждой стране существует государственное учреждение, которое обычно отвечает за проверку личности своих граждан и выдачу удостоверений личности, такой как паспорт. Этот паспорт будет содержать важную информацию о владельце и сроке действия, например, дату окончания срока действия. В сети и в Интернете центр сертификации выполняет похожую роль и функции. В Интернете есть множество поставщиков, которые являются доверенными центрами сертификации, которые позволяют вам приобретать цифровой сертификат для личного использования. Примеры доверенных центров сертификации включают GoDaddy, DigiCert, Let's Encrypt, Comodo, Cloudflare и многие другие. Важное примечание! Цифровой сертификат создается при объединении ключа и цифровой подписи. Сертификат будет содержать сведения о владельце сертификата, например, об организации. ЦС выдаст объекту цифровой сертификат только после того, как его личность будет проверена. После того, как ЦС создает цифровой сертификат, он сохраняется в базе данных сертификатов, которая используется для безопасного хранения всех утвержденных ЦС цифровых сертификатов. Важное примечание! По истечении срока действия цифрового сертификата он возвращается в ЦС, который затем помещается в список отзыва сертификатов (Certificate Revocation List - CRL), который поддерживается ЦС. Цифровой сертификат форматируется с использованием стандарта X.509, который содержит следующие сведения: Номер версии Серийный номер Идентификатор алгоритма подписи Название эмитента Срок годности Не раньше, чем Не после Имя субъекта Информация об открытом ключе субъекта Алгоритм открытого ключа Открытый ключ субъекта Уникальный идентификатор эмитента (необязательно) Уникальный идентификатор субъекта (необязательно) Расширения (необязательно) Алгоритм подписи сертификата Подпись сертификата Регистрирующий орган (RA) Следующий рисунок - это цифровой сертификат, который используется для проверки веб-сайта Cisco: Как показано на предыдущем рисунке, видно, что CA - это HydrantID SSH ICA G2, который выдает сертификат на www.cisco.com на срок действия с 20 сентября 2019 года по 20 сентября 2021 года. Как показано на следующем рисунке, цифровой сертификат содержит дополнительную информацию, которая хранится с использованием стандарта X.509: Далее давайте рассмотрим, как создается цифровая подпись и ее роль в PKI. Цифровая подпись При совершении деловых операций на документах требуется подпись, чтобы гарантировать, что сделка санкционирована соответствующим лицом. Такая же концепция требуется в сети, так что цифровая подпись отправляется вместе с сообщением на конечный хост. Затем узел назначения может использовать цифровую подпись для проверки подлинности сообщения. При использовании PKI используются следующие алгоритмы для создания и проверки цифровых подписей: DSA RSA Elliptic Curve Digital Signature Algorithm (ECDSA) Чтобы создать цифровую подпись, между Алисой (отправителем) и Сергеем Алексеевичем (получателем) происходит следующий процесс: 1) Алиса будет использовать алгоритм хеширования для создания хэша (дайджеста) сообщения: 2) Затем Алиса будет использовать свой закрытый ключ для шифрования хэша (дайджеста) сообщения: Цифровая подпись используется в качестве доказательства того, что Алиса подписала сообщение. Чтобы лучше понять, как используются цифровые подписи в реальной жизни, давайте представим, что в сети есть два пользователя. Алиса хочет отправить Сергею Алексеевичу сообщение. Алиса может использовать цифровую подпись с сообщением, чтобы заверить Сергея Алексеевича в том, что сообщение исходило именно от нее. Это шаги, которые Алиса будет использовать для обеспечения подлинности, целостности и неотрицания: Алиса создаст пару открытых и закрытых ключей для шифрования данных. Алиса даст Сергею Алексеевичу только открытый ключ. Таким образом, закрытый ключ хранится у Алисы. Алиса создаст сообщение для Сергея Алексеевича и создаст хэш (дайджест) сообщения. Затем Алиса будет использовать закрытый ключ для шифрования хэша (дайджеста) сообщения для создания цифровой подписи. Алиса отправит сообщение и цифровую подпись Сергею Алексеевичу. Сергей Алексеевич будет использовать открытый ключ Алисы для расшифровки цифровой подписи, чтобы получить хэш сообщения. Сергей Алексеевич также сгенерирует хэш сообщения и сравнит его с хэшем, полученным из цифровой подписи Алисы. Как только два значения хэша (дайджеста) совпадают, это просто означает, что сообщение подписано и отправлено Алисой. Цифровые подписи используются не только для проверки подлинности сообщений. Они также используются в следующих случаях: Цифровые подписи для цифровых сертификатов: это позволяет отправителю вставить цифровую подпись в цифровой сертификат. Цифровые подписи для подписи кода: это позволяет разработчику приложения вставить свою цифровую подпись в исходник приложения, чтобы помочь пользователям проверить подлинность программного обеспечения или приложения. На следующем рисунке показан пример приложения, содержащего цифровой сертификат: На следующем рисунке показана дополнительная проверка цифровой подписи подписавшего: Система доверия PKI Ранее мы узнали, что организация может получить цифровой сертификат от доверенного центра сертификации в Интернете. Однако во многих крупных организациях вы обычно найдете корневой ЦС и множество промежуточных ЦС. Корневой ЦС отвечает за создание первичного цифрового сертификата, который затем делегируется каждому подчиненному ЦС или промежуточному ЦС. Промежуточный ЦС будет использовать цифровой сертификат корневого сервера для создания новых цифровых сертификатов для конечных устройств, таких как внутренние серверы. На следующем рисунке показана иерархия корневого и промежуточного ЦС: Использование этого типа иерархической структуры снимает нагрузку с корневого центра сертификации по управлению всеми цифровыми сертификатами в организации. Некоторые из этих обязанностей делегированы промежуточным серверам ЦС в сети. Представьте, что в вашем головном офисе вы развернули корневой ЦС, а в каждом удаленном филиале развернули промежуточные ЦС. Следовательно, каждый промежуточный ЦС отвечает за управление сертификатами своего собственного домена или филиала. Это также снижает риски взлома корневого ЦС злоумышленником, так что в случае взлома промежуточного ЦС корневой ЦС может быть отключен от сети, не затрагивая другие конечные устройства или промежуточные ЦС. В небольших сетях можно развернуть один корневой ЦС для предоставления цифровых сертификатов каждому конечному устройству, как показано на следующем рисунке: Как показано на предыдущем рисунке, одним ЦС легко управлять. Однако по мере роста сети наличие единственного центра сертификации в сети не позволит легко масштабироваться, поэтому необходимо использовать иерархическую структуру с корневым центром сертификации и промежуточными (подчиненными) центрами сертификации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59