По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Стало недостаточно просто локального админа и нужно создать новую учетку на Windows Server 2016? А еще и снабдить УЗ правами на RDP (Remote Desktop Protocol)? Легко – займет 3 минуты твоего времени. Переходим к делу. Что у вас должно быть Собственно, сам сервер с Windows Server 2016. Куда же без него; Вы должны быть подключены к серверу под администратором (локально или через RDP – не важно). Шаг 1. Создаем пользователя Нажмите правой кнопкой мыши на стартовое меню и найдите Computer Management. Кликните на него: В меню навигации раскройте список Local Users and Groups и нажмите на Users: Нажмите правой кнопкой мыши и выберите New User. Осталось только заполнить данные о новом пользователе: юзернейм, полное имя, описание и пароль. Особое внимание к галочкам User must change password at next logon (смена пароля после первого входа) и Password never expires (пароль никогда не устаревает – его не нужно менять регулярно): По окончанию настройки нажмите Create. Готово! Шаг 2. Даем права на RDP Нажимаем на Groups и выбираем Remote Desktop Users/ - мы добавим созданного в шаге №1 пользователя в эту группу тем самым, дадим ему права на RDP подключение: Дважды кликните на Remote Desktop Users и нажмите кнопку Add: В поле Enter the object names to select начните вводить имя созданного ранее пользователя и нажмите Check Names: Имя пользователя заполнится автоматически до нужного формата. Нажмите OK в двух местах чтобы завершить настройку: Шаг 3. Проверяем пользователя Отключитесь от учетной записи администратора и подключитесь под новым пользователем. Работает!
img
Процесс анализа программного кода должен быть максимально автоматизирован. Когда вы создаете запрос на включение изменений, как минимум, вам нужно запустить модульные тесты и статический анализ программного кода в функциональной ветке. Средства автоматизации могут многое рассказать о качестве кода: метрики, покрытие кода модульными тестами, обнаружение дублированных строк и т.д. Однако есть как минимум 50 вещей, которые нельзя проверить автоматически. Они нуждаются во внимательном взгляде опытного проверяющего (это дает нам хоть какую-то надежду на то, что роботы не заменят разработчиков в ближайшем будущем). Требования Программный код реализует все функциональные требования, которые необходимы заказчику? Программный код удовлетворяет всем нефункциональным требованиям, таким как производительность и безопасность? Если нефункциональные требования не были упомянуты заказчиком, то этот вопрос необходимо уточнить у проектировщика или у самого заказчика.  Условия сопровождения Помещены ли все интерфейсы, классы и т.д. на соответствующий прикладной уровень в соответствии с архитектурой  Onion/Clean ? Не изобретаете ли вы колесо, когда пишете программный код? Можно ли его заменить чем-то, что уже существует и что предоставляет какая-либо сторонняя библиотека?  Есть ли уже реализованная логика или какие-то ее фрагменты в кодовой базе? Правильно ли была выбрана область жизненного цикла для интерфейса и реализации в контейнере внедрения зависимостей? Являются ли реализованные функции детерминированными (то есть всегда ли они выдают один и тот же результат для одних и тех же входных данных)? Все ли зависимости явно внедряются через конструктор типов? Есть ли сильная связанность между классами, которая может затруднить повторное использование кода? Используются ли  объекты-значения вместо элементарных типов данных для того, чтобы избежать проблемы одержимости элементарными типами? Соответствуют ли реализованные компоненты, такие как функции, классы, интерфейсы и модули,  принципу единственной обязанностей ? Расширяются ли существующие функциональные возможности при помощи декораторов, технологий аспектно-ориентированного программирования (принципа открытия-закрытия) или они модифицируются на месте? Правильно ли реализованы механизмы синхронизации потоков при доступе к объектам-одиночкам в веб-приложениях? Используются ли по возможности  неизменяемые типы данных вместо изменяемых для того, чтобы избежать побочных эффектов? Добавлена ли функция ведения журнала с верными  уровнями ведения протокола в основные места кода, которые требуют отслеживания? Производительность Правильно ли были выбраны  структуры данных ? Например, используется ли структура Hashtable вместо массива, когда нужно часто искать значения, для того, чтобы избежать линейного поиска? Распараллелены ли длительные операции между всеми доступными ядрами для того, чтобы использовать ресурсы компьютера максимально эффективного? Выполняет ли программный код большое количестве  операций по выделению памяти для объектов в куче, оказывая тем самым дополнительную нагрузку на программу сборки мусора? Кэшируются ли данные, которые были считаны из базы данных, локально или в удаленном кэше? Сколько раз текущий код обращается к базе данных? Возможно стоит получить все данные за одно или несколько обращений? Выполняет ли код все обращения к базе данных, ввод-вывод и другие блокирующие вызовы асинхронно? Использует ли код  пул потоков по максимуму вместо того, чтобы создавать новые потоки? Правильно ли выбран баланс между  нормализацией и  денормализацией при создании дополнительных таблиц базы данных? Правильно ли добавляются или исправляются индексы, если запрос на включение изменений содержит новые SQL-запросы? Возникает ли  проблема с N+1 запросами при извлечении данных из базы данных при помощи фреймворка ORM? Установлен ли правильный уровень изоляции транзакций в хранимых процедурах? Возвращают ли SQL-запросы избыточные данные из базы данных, которые не требуются для кода приложения? Используется ли что-то вроде  SELECT * или что-то подобное? Модульное и интеграционное тестирование Полностью ли модульные тесты покрывают дополнительную логику? При появлении исправлений в логике, появляются ли изменения в соответствующем модульном тесте? Всегда ли все реализованные модульные или другие виды тестов ведут себя детерминировано? Например, приостанавливают ли они выполнение потока на какой-то определенный период времени перед утверждением (что по своей сути является ошибочным шаблоном)?  Все ли модульные тесты реализованы в соответствии с принципами  F.I.R.S.T. ? Есть ли какие-либо признаки проблем в модульном тестировании, такие как проблемы с  логикой проверки условий ,  рулеткой с утверждениями ,  дублированием утверждений и другие? Добавлен ли интеграционный тест, как минимум, для happy-path-сценария (сценария счастливого пути) реализованной функции? Все ли зависимости тестируемого объекта имитируются для того, чтобы модульный тест случайно не превратился в интеграционный и не выполнился быстрее положенного? Изолированы ли модульные и интеграционные тесты друг от друга? Конечные точки API Выбираются ли HTTP-команды, такие как  GET, POST, PUT, DELETE и другие, в соответствии с действием их конечной точки? Отвечает ли каждая конечная точка API за выполнение лишь одной бизнес-операции? Или все же нескольких? Возвращает ли конечная точка API правильный код состояния? Например, не возвращает ли она код 401 вместо 500 при несанкционированном запросе? Сжимаются ли объемные ответы перед их отправкой вызывающей стороне? Защищены ли конечные точки API политиками аутентификации и авторизации? Позволяет ли API, который возвращает большой список объектов, фильтровать его и разбивать на страницы? Является ли конечная точка API GET идемпотентной? Используются ли имена существительные вместо глаголов в именах конечных точек API? Критические изменения Имеются ли в конечной точке API такие критические изменения, как переименование API, удаление или переименование его параметров? Имеются ли критические изменения в полезных данных сообщения (в случае, если используется брокер сообщений), например, удаление или переименование его свойств? Повлияют ли такие изменения в схеме базы данных, как удаление столбцов или таблиц, на другие службы системы? Системная среда Насколько загружен ЦП и сколько оперативной памяти потребляет код при выполнении запроса на включение изменений? Будет ли в средах, в которых будет развернут код (среда тестирования, среда приёмочного пользовательского тестирования, производственная среда), достаточно мощный процессор и достаточный объем оперативной памяти для эффективного выполнения кода? Будет ли реализованная логика, алгоритмы, структуры данных и т.д. работать достаточно быстро на большом наборе данных, который может быть в производственной среде? Документация Была ли изменена документация для того, чтобы отразить новые изменения программного кода (документация API, документация по структуре, проектная документация)? Создается ли тикет  технических недоработок , если запрос на внесение изменений содержит неэффективный или «грязный» код, который сейчас невозможно перестроить из-за недостаточного количества времени? Заключение Количество пунктов, на которых проверяющий должен заострить свое внимание, зависит от конкретного проекта и даже от конкретного запроса на внесение изменений. Ваш с коллегами мозговой штурм (если вы примите во внимание вышеприведенные пункты) может значительно снизить риск того, что вы забудете о чем-то важно при анализе программного кода.   
img
В этой статье вы познакомитесь с основами BGP и узнаете о его различных типах сообщений и состояниях. Все статьи из цикла про BGP: Построение маршрута протоколом BGP Формирование соседства в BGP Оповещения NLRI и политики маршрутизации BGP Масштабируемость протокола BGP Работа протокола BGP с IPv6 Полное руководство по BGP в PDF Ох как мы любим PDF 🙃 Для вашего удобства, весь цикл статей по BGP (Border Gateway Protocol) мы "упаковали" в документ формата PDF. Книга по BGP в PDF | 2.07 MB Видео: Основы BGP за 7 минут Обзор BGP Давайте посмотрим правде в глаза - Border Gateway Protocol невероятно уникален, особенно когда мы сравниваем его с другими протоколами маршрутизации. Самое первое, что делает BGP таким уникальным, - это то, что он наш единственный внешний шлюзовой протокол (EGP), широко используемый сегодня. Мы знаем, что у нас есть Interior Gateway Protocols (IGPs), и похожий на OSPF, работающий внутри автономной системы. Но BGP - это EGP, а это означает, что он (как правило) будет принимать префиксы, которые находятся внутри автономной системы, и отправлять их в другие автономные системы. На рисунке 1 показан пример топологии BGP. Именно поэтому протокол BGP является протоколом, который обеспечивает функционирование сети. Интернет-провайдеры (ISP) могут использовать BGP для перемещения префиксной информации между другими Интернет-провайдерами. Однако уникальные характеристики BGP на этом не заканчиваются. Одна из вещей, которая очень уникальна в протоколе, заключается в том, что он формирует пиринги (*равноправный информационный обмен) точка-точка с другими спикерами BGP, и вы должны создавать эти пиринги вручную. С протоколом пограничного шлюза (BGP) нет такой вещи, как автоматическое формирование соседства с целой кучей устройств на одном сегменте. Для каждого из устройств, с которыми BGP должен пиринговать, он делает это с помощью одного однорангового отношения, которое мы предпочитаем называть пирингом BGP. Еще одно очень уникальное свойство заключается в том, что BGP - это протокол прикладного уровня. По общему признанию, большинство сетевых инженеров поспорили бы, что это протокол сетевого уровня – и они проиграли бы этот спор! Как компонент прикладного уровня, BGP делает что-то блестящее. Он использует протокол управления передачей (TCP) для своих операций. Если мы рассмотрим EIGRP в качестве примера, то создателям пришлось приложить большие усилия, чтобы встроить надежность в сам протокол. Например, спикер EIGRP будет передавать многоадресные передачи, и, если это не сработает, он вернется к одноадресным передачам, чтобы попытаться обеспечить надежность. С помощью Border Gateway Protocol разработчики решили не включать в протокол все эти типы контроля надежности. Они просто полагаются на чудесную надежность коммуникаций TCP. В частности, BGP использует TCP- порт 179. Когда мы думаем о наших протоколах маршрутизации, мы знаем, что будет некоторое значение, которое будет служить метрическим значением для измерения расстояния. Например, в случае OSPF мы знаем, что метрикой является стоимость, а стоимость напрямую зависит от пропускной способности. BGP не работает таким образом. Протокол BGP использует атрибуты, а не только одного показателя. Одним из главных атрибутов протокола BGP называется атрибута AS_PATH. Это список всех автономных систем (AS), которые префикс должен был передать на своем пути, скажем, в вашу автономную систему. AS_PATH - это фактически запись всей информации о пути AS. Путь AS настолько важен для функции BGP, что протокол часто называют протоколом маршрутизации вектора пути. Обратите внимание, что это не протокол вектора расстояния (Distance Vector), а вектор пути (Path Vector). AS_PATH используется не только для определения наилучшего пути к месту назначения (т.е. более короткого пути AS), но и в качестве механизма предотвращения петель. Когда автономная система видит свой собственный номер AS в AS_PATH, она очень обеспокоена тем, что в коммуникациях может быть петля. Что- то еще, что делает BGP невероятно уникальным, - это тот факт, что, когда мы формируем пиринги внутри автономной системы, они называются внутренними пирингами BGP, а правила, которым следуют, являются внутренними правилами BGP (IBGP). Когда мы формируем пиринг между автономными системами, это называется протоколом внешнего пограничного шлюза (EBGP). (Примечание: в некоторых литературных источниках EBGP пишется как eBGP.) Помните, что причина, по которой BGP различает пиринг IBGP и пиринг EBGP, заключается в том, что эксплуатационные характеристики должны изменяться в зависимости от того, как выполняется пиринг. Например, мы заявили, что существует путь AS, который записывает автономные системы, которые передаются. Очевидно, что при пиринге EBGP, когда префикс передается от одного AS к другому AS, отправляющий AS должен поместить свою автономную систему в путь. Но с IBGP, префикс остается в AS, поэтому протокол BGP не обновляет значение AS. Вы можете вернуться к рисунку 1, чтобы увидеть эти различные типы пиринга в действии. Таким образом, правила меняются, когда мы говорим о IBGP против EBGP, чтобы быть последовательным и безошибочными. И уникальные свойства BGP просто не заканчиваются на этом. Типы сообщений BGP, форматы и соседние типы сообщений состояния соседства BGP Многие люди описывают протокол пограничного шлюза (BGP) как чрезвычайно сложный протокол, но я не согласна с этим. Видите ли, установка политик BGP и контроль распространения префиксов внутри BGP-это может быть довольно сложно. Но сам протокол, хотя и уникален, в основном прост в своей работе. В этом части статьи мы рассмотрим типы сообщений BGP. На рисунке 2 показаны различные типы сообщений BGP. Запомните первый шаг. Когда два спикера BGP хотят сформировать пиринг, они будут полагаться на протокол управления передачей (TCP). И, конечно, мы знаем, что будет three-way handshake (трехстороннее рукопожатие) с TCP, чтобы начать этот надежный сеанс связи. Что же происходит дальше? Так это то, что эти устройства будут обмениваться открытыми сообщениями. Открытое сообщение содержит очень важную информацию, основным компонентом которой является номер автономной системы однорангового узла. Это будет определять, является ли это пиринг IBGP или пиринг EBGP. Когда происходит обмен открытыми сообщениями, то спикеры BGP далее начинают обмениваться сообщениями Keepalive. Это, простой механизм, чтобы убедиться, что другой прибор жив, счастлив и здоров, и что пиринг в состоянии up. После этого спикеры BGP получают обновления для совместного использования, называемое сообщением Update. Если в какой-то момент времени что-то пойдет не так, спикеры BGP могут использовать простое сообщение Notification. Данное сообщение прерывает пиринг в результате ошибки, которая может произойти с BGP. Одним из очень интересных типов сообщений BGP является тип сообщения Route Refresh (обновления маршрута). Хотя этот тип сообщений не был включен в исходный стандарт BGP, большинство наших основных сетевых вендоров поддерживают Route Refresh. Route Refresh позволяют соседям обновлять, скажем, информацию о маршруте BGP или даже обновлять вещи после довольно серьезной реконфигурации политики, не разрушая пиринг и не влияя на пиринг каким- либо большим негативным образом. Рисунок 3 показывает эти типы сообщений в действии благодаря захвату Wireshark’ом обмена сообщениями BGP в нашем примере топологии из рисунка 1. Форматы сообщений BGP В этом части статьи мы еще больше узнаем об эксплуатационных характеристиках Border Gateway Protocol, более подробно рассмотрев типы сообщений BGP. Каждый тип сообщения имеет заголовок BGP. Этот заголовок показан на рисунке 4. Вы видите, что заголовок BGP имеет большое поле маркера. Можно подумать, что это чрезвычайно важно. Он имеет размер 16 октетов. Как оказалось, это поле будет заполнено у всех. Это связано с тем, что использование этого поля маркера было прописано в устаревшем стандарте. Первоначальная идея этого поля состояла в том, что его можно было бы использовать для обнаружения таких событий, как потеря синхронизации между двумя одноранговыми узлами, и также считалось, что это будет область, в которой может храниться аутентификационная информация. Почему это поле вообще имеется в BGP? Иногда, в очень редком случае, когда необходимо иметь обратную поддержку с каким-то действительно старым устройством BGP, которое ожидает эту информацию из поля маркера. Важными полями в заголовке, будут длина (Length) (то есть длина всего сообщения) и поля типа (Type). Поле Тип указывает, с каким типом сообщения BGP мы имеем дело. Если, например, в этом поле 1, вы имеете дело с открытым (Open) сообщением BGP. Значение 2 указывает на сообщение об обновлении (Update). А 3 означает уведомление (Notification). Значение 4 будет иметь сообщение Keepalive. 5 указывает на необязательное Route Refresh. То, что следует за информацией заголовка, конечно же, является данными, за одним важным исключением- это сообщение Keepalive. По определению, в сообщении Keepalive нет никаких данных. Теперь я надеюсь вы понимаете, что, когда ваша система хочет сформировать BGP-пиринг с другим устройством, она собирается отправить открытое сообщение. На рисунке 5 показан формат этих сообщений. Когда мы смотрим на формат открытого (Open) сообщения, мы замечаем, что там есть номер версии. Именно так BGP указывает на версию BGP, которую вы используете. Ваша система также отправит свой номер AS в открытом сообщении. Это очень важно для такого поведения IBGP по сравнению с EBGP. Существует значение Hold Time. Что же такое Hold Time? Когда маршрутизатор, с которым вы хотите свериться, получает Open сообщение, он смотрит время удержания (Hold Time), смотрит на свое собственное настроенное Hold Time, а затем использует меньшее из двух значений. Hold Time должно быть либо нулевым, либо не менее трех секунд. Есть поле BGP Identifier. Это Ваш BGP Router ID, и это уникальное значение, которое будет однозначно отличать вашу систему в пирингах BGP. Наконец, у нас есть дополнительные параметры (Optional Parameter), которые можно задать с помощью открытого сообщения. Там есть необязательная длина параметра (Optional Parameter Length), а затем сами параметры, дающие дополнительную гибкость работы с протоколом. Еще одно действительно важное сообщение, которое у нас есть, - это сообщение об обновлении (Update) BGP. На рисунке 6 показана эта структура сообщения. Сообщение об обновлении BGP содержит индикатор длины отозванных маршрутов (Withdrawn Routes Length). Это гарантирует, что сообщение обновления является средством для маршрутов, которые будут удалены из таблицы BGP соседа. Примечание: затем в сообщение об обновлении вставляется список изъятых маршрутов. Сообщение об обновлении содержит поля, которые используются для обмена информацией о префиксах сети с соседями и включают в себя очень важную атрибутивную информацию, связанную с префиксами. Помните, что эти атрибуты позволяют Вам принимать важные решения о том, как BGP будет фактически маршрутизировать информацию в сети. Хорошо известный атрибут, о котором мы уже упоминали, - это путь. Вы помните, что это список автономных систем, которые префикс передал на своем пути по всей инфраструктуре BGP. AS Path будет примером атрибута, который должен быть в сообщении об обновлении, когда он используется для отправки префиксов. Там может быть много атрибутов, которые мы используем, и это является причиной для Total Path Attribute Length в сообщении об обновлении. Сама информация о префиксе сети находится в поле NLRI. Это означает информацию о достижимости сетевого уровня (Network Layer Reachability Information). Вы можете вернуться к рисунку 3 и увидеть эти поля в реальном пакете, а также их содержимое. Создатели BGP сделали гениальную вещь. Они создали протокол для передачи NLRI таким образом, чтобы он был гибким по мере изменения сетей и необходимости передачи новой информации. BGP создан для того, чтобы сразу же запускать для нас такие вещи, как IPv6. Он также может легко переносить префиксы VPN IPv4 внутри чего-то вроде MPLS VPN. На рисунке 7 показаны поля сообщения уведомления (Notification). Самое первое поле - это код ошибки (Error Code). Затем поле Подкод ошибки (Error Subcode). Эти поля дают нам общий тип ошибки, а затем еще больше информации. Например, если в Error Code у нас есть значение 3, а затем в Error Subcode у нас есть значение 3, это указывает на то, что существует сообщение об ошибке обновления. Соседство BGP Точно так же, как мы можем многое узнать о работе BGP, изучая сообщения BGP и их форматы, мы также можем многое узнать о BGP, изучая различные состояния, через которые проходит пиринг BGP. На самом деле, они имеют решающее значение при устранении неполадок. Когда вы проанализируете протокол BGP, вы не удивитесь, узнав, что существует множество встроенных механизмов для обеспечения стабильности. Многие IGP спроектированы так, чтобы быть максимально быстро сходящимися. Это происходит потому, что в момент, когда происходит изменение внутри сети вашей организации, мы хотим sub-second сходимости других устройств, чтобы мы знали об этом изменении. BGP спроектирован по-другому. Таймеры имеют гораздо большую продолжительность, чем мы привыкли бы с нашим IGP, потому что мы хотим стабильности, жертвуя скоростью сходимости. В конце концов, BGP имеет дело с общедоступными таблицами маршрутизации интернета в развертываниях поставщиков услуг. Эти таблицы маршрутизации очень массивны. Нестабильность в этой среде приведет к катастрофе всего публичного Интернета. Когда вы изучите состояние соседства BGP, вы поймете для чего это. Относительно большое число состояний соседства BGP, показанных на рисунке 8, свидетельствует о тщательных усилиях по обеспечению стабильности протокола маршрутизации. Обратите внимание, что есть состояние простоя, когда устройство не инициирует ни одно из других состояний, и есть установленное состояние, когда оно полностью установлено со своим узлом. Что несколько удивительно, так это то, что есть все эти “промежуточные” состояния подключения, активного, открытого подтверждения (OpenConfirm) и активного. Состояние — подключения-это состояние, в котором устройство BGP ожидает завершения TCP- соединения с соседним устройством. В активном состоянии он пытается инициировать TCP - соединение со своим соседом. В состоянии OpenSent, как вы можете догадаться, он отправляет свое открытое сообщение и ждет ответа от своего соседа с его открытым сообщением. В режиме OpenConfirm, спикер BGP на самом деле ждет, Keepalive на основе успешного обмена открытыми сообщениями. Будем надеяться, что устройство BGP получит Keepalive. Если будет ошибка, он получит уведомление. Используя в Cisco CLI специальные команды, можно узнать все о состоянии BGP. Пример 1 показывает использование команды show ip bgp summary для проверки соседнего состояния. TPA1#show ip bgp summary BGP router identifier 10.10.10.1, local AS number 100 BGP table version is 3, main routing table version 3 Neighbor V AS MsgRcvd MsgSent TblVer InQ QutQ Up/down State/PfxRcd 10.10.10.2 4 200 0 0 1 0 0 00:00:00 Idle Обратите внимание на пример 1. Этот пиринг BGP находится в состоянии ожидания (параметр State/PfxRcd в состоянии Idle). Как только произойдет соединение значение IDLE заменится на 1 (Если ATL использует только один префикс с TPA 1).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59