По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Ранее мы рассмотрели, какие бывают базы данных пользователей. Теперь разберем, как работать с этими базами добавлять, редактировать и удалять пользователей. Рассмотрим следующие 3 утилиты: Useradd - создание пользователей Usermod – изменение свойств пользователей Userdel – удаление пользователей Первое, что нам потребуется это описание команды - man useradd. У данной команды огромное количество ключей. В частности, популярные такие ключи: -d — это указание домашней директории пользователя. Без этого ключа операционная система создает одноименную папку пользователя в папке /home, но с помощью данного ключа мы можем указать какую-нибудь другую. -g – можно указать id группы в которую мы хотим включить пользователя. Есть аналог этого ключа -G (помним, что регистр в Linux имеет значение) – при этом ключе мы можем использовать не id группы, а ее название. -m создание домашней директории по умолчанию, в момент создания пользователя. При данном ключе домашняя директория создается сразу, а не при первом входе пользователя в систему, по умолчанию. Он важен т.к. при автоматизации данная папка может потребоваться. -p – мы можем указать данный ключ и при создании пользователя сразу система потребует задать создаваемому пользователю пароль. -s – данный ключ позволяет задать оболочку по умолчанию для этого пользователя. Общий вид команды: useradd [опции] [имя_пользователя]. Рассмотрим небольшой пример: sudo useradd -m -G sudo buh Все работы с пользователями выполняются с повышенными привилегиями. Создаем нового пользователя buh, сразу создаем домашнюю папку и помещаем в группу sudo, т.е в группу пользователей которая может повышать привилегии. Убедимся, что пользователь был создан - sudo cat /etc/shadow В конце файла мы можем увидеть, что пользователь создан. Обратим внимание, что после логина, стоит не символ звездочки или x, а знак ! – это означает, что пароль скрыт, но может быть с помощью утилиты изменен. Утилита для изменения пароля - passwd. Синтаксис ее достаточно простой - passwd [имя_пользователя]. При использовании ее попросит ввести новый пароль и второй раз ввести для подтверждения. После этого операционная система его зашифрует и заменит в файле на набор букв-цифр-символов. Еще мы командой passwd можем поменять пароль себе. Делается это достаточно просто - passwd и нажимаем клавишу ввода. Система понимает, что пользователь хочет сменить пароль себе и попросит ввести текущий пароль и 2 раза новый пароль. Теперь мы можем посмотреть в какие группы входит пользователь - cat /etc/group Как видно пользователь согласно ключу G был добавлен в группу sudo. Ну и, конечно, для пользователя buh была создана одноименная группа buh. И посмотрим создалась ли домашняя папка пользователя с помощью команды ll /home. Папка создалась. Рассмотрим следующую команду - usermod. Синтаксис данной команды: usermod [опции] [имя_пользователя] У данной утилиты есть все те же ключи, что и у useradd, но есть и свои ключи. -L – данный ключ позволяет заблокировать пользователя. Если мы посмотрим файл /etc/shadow то мы увидим ! знак перед паролем. Что означает, что пользователь не может войти в систему. -U - ключ мы можем использовать для разблокировки пользователя. Теперь мы можем, например, заменить оболочку и подписать учетную запись. sudo usermod -s /bin/bash -c “best buh” buh Как мы видим, изменилась оболочка по умолчанию и добавился комментарий. Последняя утилита userdel исходя из названия мы понимаем, что она используется для удаления пользователей. Синтаксис: userdel [ключ] [имя_пользователя] Обычно эту команду используют примерно так: sudo userdel buh, но если добавить ключик -r то будет удалена и домашняя директория пользователя, а также будет удалена запись о пользователе во всех базах данных пользователей в операционной системе.
img
Приходишь ты такой в офис, уже налил чашечку кофе, поболтал у кулера, садишься за рабочее место и начинаешь писать: “уважаемые коллеги, бла бла бла”, и тут, после того, как все коллеги уважены в твоем обращении, ты вдруг задумываешься - а как это работает? Почему моя почта доходит до уважаемых коллег? Очень просто - сейчас расскажем как. Для начала разделим работу электронной почты на две части - отправка и получение. Отправка Начнём с отправки. Как только ты дописал своё письмо и нажал на кнопку “Отправить”, твой почтовый клиент (Outlook, Thunderbird, Gmail или Yandex Mail) отправит его на сервер по протоколу SMTP - Simple Mail Transfer Protocol, что переводится как простой протокол передачи почты. И тут начинаются первые проблемы. Дело в том, что этот протокол действительно “простой”. Он увидел свет аж в 1982 году, а как ты помнишь, тогда на безопасность было вообще пофиг, поэтому все письма отправлялись в открытом виде, пользователи никак не аутентифицировались, а хакеры успешно применяли его для рассылки спама. Поэтому, в 2008 году ему решили добавить фич в виде поддержки шифрования, авторизации, 8-битных наборов символов и ещё много всего полезного и назвали это все ESMTP, где Е означает extended, то есть расширенный. Но даже после этого протокол называют просто - SMTP. Короче, SMTP работает по клиент серверной модели. Он передает на почтовый сервер команды и получает от него ответы с результатами их обработки. Ответы от сервера - это кодовые значения, которые делятся на 5 типов. Те у которых код 200, означают что всё ок, а те что с кодом 500 - не ок. Ничего не напоминает? Да, очень похоже на HTTP При стандартной отправке письма происходит следующее: Твой клиент подключается к серверу Сервер выдаёт ему список доступных команд Твой клиент отправляет команды, которые содержат адрес отправителя, получателя и собственно само сообщение Сервер помещает твоё сообщение в очередь на отправку и если всё ок - отправляет его. А в случае если ты сын маминой подруги и позаботился о безопасности, клиент также пройдёт процедуру аутентификации и шифрования, прежде чем отправить письмо. Кстати, ты можешь указать в адресе отправителя что угодно и тебе за это ничего не будет. Дело в том, что в SMTP нет встроенных проверок подлинности отправителя, для этого используются внешние механизмы. Самый простой - это сопоставление домена и IP-адреса отправителя через DNS-запрос. Так что если ты решишь прикинуться Илоном Маском и написать кому нибудь письмо с просьбой отсыпать немножко биткоинов, то скорее всего оно попадёт в спам. SMTP используется не только для отправки писем от клиента к серверу, но и для передачи твоего письма между почтовыми серверами. Допустим, если ты напишешь Илону, то сначала твоё письмо попадёт на твой локальный сервер, который скорее всего не находится в домене spacex.com, поэтому твой сервер будет по тому же DNS искать в Интернетах почтовый сервер, отвечающий за маршрутизацию электронной почты домена Space X. Это кстати называется MX-запись. Когда эта информация будет найдена, то сервер пульнёт туда твоё письмо по протоколу SMTP. Для работы SMTP был зарезервирован TCP порт 25, но есть ещё 2 порта - это 465 и 587, оба они предназначены для связи клиента с сервером по защищенным механизмам, а 25 предназначался только для связи между собой почтовых серверов. Отлично, теперь твоё письмо, пройдя все системы антиспама и проверки лежит на почтовом сервере получателя и дожидается когда же его прочитают, а мы переходим ко второму действию - получение. Получение Тут возможны 2 варианта. Либо твой клиент будет получать почту по протоколу IMAP - Internet Message Access Protocol, либо по протоколу с не очень приличным названием POP3 - Post Office Protocol 3. Для POP3 почтовый сервак выступает в роли временного хранилища писем. Клиент, настроенный на работу с POP3, будет периодически обращаться на сервак и спрашивать: - “Есть чё по письмам?”, Сервер ответит ему: - “Ага есть”, тогда клиент ответит: - “Зашибись, а ну гони всё сюда и удали все копии, чтоб письма были только у меня” Именно так, в случае POP3 клиент будет хранить все письма только у себя, но в этом есть плюс - даже если у тебя пропадёт Интернет, ты всё равно сможешь получить доступ к своим письмам. Надо сказать, что с помощью самого клиента (но не POP3), можно попросить сервер всё таки хранить копии писем. А вот тебе ещё несколько неприятных фактов про POP3: Он работает только на одном клиенте, то есть если ты открыл клиент с POP3 на компе, то с мобильного телефона уже не сможешь посмотреть свою почту. А ещё нельзя разнести письма по папкам, настроить фильтры, пометить важность и т.д. А? Ну как тебе, удобно? Ладно, давай посмотрим какие ещё есть варианты. Ты можешь настроить свой клиент на работу с протоколом IMAP, тогда всем движем будет управлять почтовый сервак. В этом случае, твой почтовый клиент будет нужен только как интерфейс для работы с почтой. Зато ты сможешь получить доступ к своему почтовому ящику откуда угодно и с чего угодно. Сидишь за рабочим местом - читаешь почту с компа, отошёл в уборную - с мобилки, можно использовать веб-клиент и заходить через Интернет. Ах да, приятным бонусом будет то, что с помощью IMAP ты можешь настроить под себя папки, помечать письма как важные, запрашивать статус о прочтении письма, выполнять сложные поиски по письмам и многое другое. Но в этом есть и недостатки. Из-за того, что с IMAP всё слишком сложно, обработка писем серваком происходит гораздо дольше и “вообще то место на нём не резиновое”. Если постоянно хранить все письма без ротации, то рано или поздно почтовый ящик забьётся.
img
Привет! Сегодня мы расскажем про то как настроить Site-To-Site IPSec VPN туннель между роутерами Cisco. Такие VPN туннели используются обеспечения безопасной передачи данных, голоса и видео между двумя площадками (например, офисами или филиалами). Туннель VPN создается через общедоступную сеть интернет и шифруется с использованием ряда продвинутых алгоритмов шифрования, чтобы обеспечить конфиденциальность данных, передаваемых между двумя площадками. В этой статье будет показано, как настроить и настроить два маршрутизатора Cisco для создания постоянного безопасного туннеля VPN типа «сеть-сеть» через Интернет с использованием протокола IP Security (IPSec) . В рамках статьи мы предполагаем, что оба маршрутизатора Cisco имеют статический публичный IP-адрес. ISAKMP (Internet Security Association and and Key Management Protocol) и IPSec необходимы для построения и шифрования VPN-туннеля. ISAKMP, также называемый IKE (Internet Key Exchange) , является протоколом согласования (negotiation protocol), который позволяет двум хостам договариваться о том, как создать сопоставление безопасности IPsec. Согласование ISAKMP состоит из двух этапов: фаза 1 и фаза 2. Во время фазы 1 создается первый туннель, который защищает последующие сообщения согласования ISAKMP. Во время фазы 2 создается туннель, который защищает данные. Затем в игру вступает IPSec для шифрования данных с использованием алгоритмов шифрования и предоставляющий аутентификацию, шифрование и защиту от повторного воспроизведения. Требования к IPSec VPN Чтобы упростить понимание настройки разделим его на две части: Настройка ISAKMP (Фаза 1 ISAKMP) Настройка IPSec (Фаза 2 ISAKMP, ACL, Crypto MAP) Делать будем на примере, который показан на схеме – два филиала, оба маршрутизатора филиалов подключаются к Интернету и имеют статический IP-адрес, назначенный их провайдером. Площадка №1 имеет внутреннею подсеть 10.10.10.0/24, а площадка №2 имеет подсеть 20.20.20.0/24. Цель состоит в том, чтобы безопасно соединить обе сети LAN и обеспечить полную связь между ними без каких-либо ограничений. Настройка ISAKMP (IKE) - ISAKMP Phase 1 IKE нужен только для установления SA (Security Association) для IPsec. Прежде чем он сможет это сделать, IKE должен согласовать отношение SA (ISAKMP SA) с одноранговым узлом (peer). Начнем с настройки маршрутизатора R1 первой площадки. Первым шагом является настройка политики ISAKMP Phase 1: R1(config)# crypto isakmp policy 1 R1(config-isakmp)# encr 3des R1(config-isakmp)# hash md5 R1(config-isakmp)# authentication pre-share R1(config-isakmp)# group 2 R1(config-isakmp)# lifetime 86400 Приведенные выше команды означают следующее: 3DES - метод шифрования, который будет использоваться на этапе 1 MD5 - алгоритм хеширования Pre-Share - использование предварительного общего ключа (PSK) в качестве метода проверки подлинности Group 2 - группа Диффи-Хеллмана, которая будет использоваться 86400 - время жизни ключа сеанса. Выражается либо в килобайтах (сколько трафика должно пройти до смены ключа), либо в секундах. Значение установлено по умолчанию. Мы должны отметить, что политика ISAKMP Phase 1 определяется глобально. Это означает, что если у нас есть пять разных удаленных площадок и настроено пять разных политик ISAKMP Phase 1 (по одной для каждого удаленного маршрутизатора), то, когда наш маршрутизатор пытается согласовать VPN-туннель с каждой площадкой, он отправит все пять политик и будет использовать первое совпадение, которое принято обоими сторонами. Далее мы собираемся определить Pre-Shared ключ для аутентификации с нашим партнером (маршрутизатором R2) с помощью следующей команды: R1(config)# crypto isakmp key merionet address 1.1.1.2 Pre-Shared ключ партнера установлен на merionet, а его публичный IP-адрес - 1.1.1.2. Каждый раз, когда R1 пытается установить VPN-туннель с R2 (1.1.1.2), будет использоваться этот ключ. Настройка IPSec – 4 простых шага Для настройки IPSec нам нужно сделать следующее: Создать расширенный ACL Создать IPSec Transform Создать криптографическую карту (Crypto Map) Применить криптографическую карту к общедоступному (public) интерфейсу Давайте рассмотрим каждый из вышеперечисленных шагов. Шаг 1: Создаем расширенный ACL Нам нужно создать расширенный access-list (про настройку Extended ACL можно прочесть в этой статье) и в нем определить какой траффик мы хотим пропускать через VPN-туннель. В этом примере это будет трафик из одной сети в другую с 10.10.10.0/24 по 20.20.20.0/24. Иногда такие списки называют crypto access-list или interesting traffic access-list. R1(config)# ip access-list extended VPN-TRAFFIC R1(config-ext-nacl)# permit ip 10.10.10.0 0.0.0.255 20.20.20.0 0.0.0.255 Шаг 2: Создаем IPSec Transform Следующим шагом является создание набора преобразования (Transform Set), используемого для защиты наших данных. Мы назвали его TS. R1(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac Приведенная выше команда определяет следующее: ESP-3DES - метод шифрования MD5 - алгоритм хеширования Шаг 3: Создаем Crypto Map Crypto Map является последнем этапом нашей настройки и объединяет ранее заданные конфигурации ISAKMP и IPSec: R1(config)# crypto map CMAP 10 ipsec-isakmp R1(config-crypto-map)# set peer 1.1.1.2 R1(config-crypto-map)# set transform-set TS R1(config-crypto-map)# match address VPN-TRAFFIC Мы назвали нашу криптографическую карту CMAP. Тег ipsec-isakmp сообщает маршрутизатору, что эта криптографическая карта является криптографической картой IPsec. Хотя в этой карте (1.1.1.2) объявлен только один пир, существует возможность иметь несколько пиров. Шаг 4: Применяем криптографическую карту к общедоступному интерфейсу Последний шаг - применить криптографическую карту к интерфейсу маршрутизатора, через который выходит траффик. Здесь исходящим интерфейсом является FastEthernet 0/1. R1(config)# interface FastEthernet0/1 R1(config- if)# crypto map CMAP Обратите внимание, что интерфейсу можно назначить только одну криптокарту. Как только мы применим криптографическую карту к интерфейсу, мы получаем сообщение от маршрутизатора, подтверждающее, что isakmp включен: “ISAKMP is ON”. На этом этапе мы завершили настройку IPSec VPN на маршрутизаторе Площадки 1. Теперь перейдем к маршрутизатору Площадки 2 для завершения настройки VPN. Настройки для R2 идентичны, с отличиями лишь в IP-адресах пиров и ACL. R2(config)# crypto isakmp policy 1 R2(config-isakmp)# encr 3des R2(config-isakmp)# hash md5 R2(config-isakmp)# authentication pre-share R2(config-isakmp)# group 2 R2(config-isakmp)# lifetime 86400 R2(config)# crypto isakmp key merionet address 1.1.1.1 R2(config)# ip access-list extended VPN-TRAFFIC R2(config-ext-nacl)# permit ip 20.20.20.0 0.0.0.255 10.10.10.0 0.0.0.255 R2(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac R2(config)# crypto map CMAP 10 ipsec-isakmp R2(config-crypto-map)# set peer 1.1.1.1 R2(config-crypto-map)# set transform-set TS R2(config-crypto-map)# match address VPN-TRAFFIC R2(config)# interface FastEthernet0/1 R2(config- if)# crypto map CMAP Трансляция сетевых адресов (NAT) и VPN-туннели IPSec В реальной схеме трансляция сетевых адресов (NAT), скорее всего, будет настроена для предоставления доступа в интернет внутренним хостам. При настройке VPN-туннеля типа «Site-To-Site» обязательно нужно указать маршрутизатору не выполнять NAT (deny NAT) для пакетов, предназначенных для удаленной сети VPN. Это легко сделать, вставив оператор deny в начало списков доступа NAT, как показано ниже: Для первого маршрутизатора: R1(config)# ip nat inside source list 100 interface fastethernet0/1 overload R1(config)# access-list 100 deny ip 10.10.10.0 0.0.0.255 20.20.20.0 0.0.0.255 R1(config)# access-list 100 permit ip 10.10.10.0 0.0.0.255 any Для второго маршрутизатора: R2(config)# ip nat inside source list 100 interface fastethernet0/1 overload R2(config)# access-list 100 deny ip 20.20.20.0 0.0.0.255 10.10.10.0 0.0.0.255 R2(config)# access-list 100 permit ip 20.20.20.0 0.0.0.255 any Инициализация и проверка VPN-туннеля IPSec К этому моменту мы завершили нашу настройку, и VPN-туннель готов к запуску. Чтобы инициировать VPN-туннель, нам нужно заставить один пакет пройти через VPN, и этого можно достичь, отправив эхо-запрос от одного маршрутизатора к другому: R1# ping 20.20.20.1 source fastethernet0/0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 20.20.20.1, timeout is 2 seconds: Packet sent with a source address of 10.10.10.1 .!!!! Success rate is 80 percent (4/5), round-trip min/avg/max = 44/47/48 ms Первое эхо-сообщение icmp (ping) получило тайм-аут, но остальные получили ответ, как и ожидалось. Время, необходимое для запуска VPN-туннеля, иногда превышает 2 секунды, что приводит к истечению времени ожидания первого пинга. Чтобы проверить VPN-туннель, используйте команду show crypto session: R1# show crypto session Crypto session current status Interface: FastEthernet0/1 Session status: UP-ACTIVE Peer: 1.1.1.2 port 500 IKE SA: local 1.1.1.1/500 remote 1.1.1.2/500 Active IPSEC FLOW: permit ip 10.10.10.0/255.255.255.0 20.20.20.0/255.255.255.0 Active SAs: 2, origin: crypto map Готово! Мы только что успешно подняли Site-To-Site IPSEC VPN туннель между двумя маршрутизаторами Cisco!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59