По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Классический стандарт связующего дерева работает нормально, но в настоящее время для современных сетей он слишком медленный 🐌 В настоящее время мы наблюдаем в наших сетях все больше и больше маршрутизации. Протоколы маршрутизации, такие как OSPF и EIGRP, намного быстрее адаптируются к изменениям в сети, чем spanning-tree. Чтобы не отставать от скорости этих протоколов маршрутизации, была создана еще одна разновидность связующего дерева... (rapid spanning tree) быстрое связующее дерево. Rapid spanning tree - это не революция spanning tree, а его эволюция. Некоторые вещи были изменены для того, что бы ускорить процесс, но с точки зрения конфигурации - это то же самое, что классический spanning tree . Я называю оригинальное spanning tree "классическим spanning tree". Азы Rapid spanning tree Помните состояние портов spanning tree? У нас есть блокирующее, прослушивающее, обучающее и пересылающее состояние порта. Это первое различие между spanning tree и rapid spanning tree. Rapid spanning tree имеет только три состояния портов: Отбрасывание; Обучение; Пересылка. Вы уже знакомы с состоянием порта в режиме обучения и пересылки, но отбрасывание - это новое состояние порта. В основном он объединяет в себе блокировку и прослушивание состояния порта. Вот хороший обзор с различными состояниями портов для spanning tree и rapid spanning tree. В таблице отображено состояние портов: активны ли они и узнают ли они MAC-адреса или нет. Помните ли вы все остальные роли портов, которые есть у spanning tree? Давайте сделаем небольшой обзор, и будет показано отличие от rapid spanning tree. Коммутатор с лучшим ID моста (priority + MAC -адрес) становится корневым мостом. Другие коммутаторы (non-root) должны найти кратчайший путь стоимости к корневому мосту. Это корневой порт. Здесь нет ничего нового, все это работает аналогично и в rapid spanning tree. На каждом сегменте может быть только один назначенный порт, иначе мы получим петлю. Порт станет назначенным портом, если он сможет отправить лучший BPDU. Коммутатор А, как корневой мост, всегда будет иметь лучшие порты, поэтому все интерфейсы будут назначены. Интерфейс fa0/16 на коммутаторе B будет назначенным портом в моем примере, потому что он имеет лучший идентификатор моста, чем коммутатор C. Здесь все еще нет ничего нового по сравнению с классическим связующим деревом. Коммутатор C получает лучшие BPDU на своем интерфейсе fa0/16 от коммутатора B, и таким образом он будет заблокирован. Это альтернативный порт, и это все еще то же самое, что и для rapid spanning tree. Вот вам новый порт, взгляните на интерфейс fa0/17 коммутатора B. Он называется резервным портом и является новым для rapid spanning tree. Однако вы вряд ли увидите этот порт в производственной сети. Между коммутатором B и коммутатором C был добавлен хаб. Обычно (без промежуточного концентратора) оба fa0/16 и fa0/17 будут назначены портами. Из-за хаба интерфейсы fa0/16 и fa0/17 коммутатора B теперь находятся в одном домене коллизий. Fa0/16 будет выбран в качестве назначенного порта, а fa0/17 станет резервным портом для интерфейса fa0/16. Причина, по которой коммутатор B видит интерфейс fa0/17 в качестве резервного порта, заключается в том, что он получает свои собственные BPDU на интерфейсах fa0/16 и fa0/17 и понимает, что у него есть два соединения с одним и тем же сегментом. Если вы удалите хаб, то fa0/16 и fa0/17 будут назначены портами точно так же, как classic spanning tree. BPDU отличается для rapid spanning tree. В classic spanning tree поле flags использовало только два бита: Topology change.; Topology change acknowledgment.; Теперь используются все биты поля flags. Роль порта, который создает BPDU, будет добавлена с помощью поля port role, оно имеет следующие параметры: Unknown; Alternate / Backup port; Root port; Designated port. Эта BPDU называется BPDUv2. Коммутаторы, работающие со старой версией spanning tree, проигнорируют эту новую версию BPDU. Если вам интересно ... rapid spanning tree и старое spanning tree совместимы! Rapid spanning tree способно работать с коммутаторами, работающими под управлением более старой версии spanning tree. Что поменялось BPDU теперь отправляются каждый hello time. Только корневой мост генерирует BPDU в classic spanning tree, и они ретранслировались non-root, если они получали его на свой корневой порт. Rapid spanning tree работает по-разному...все коммутаторы генерируют BPDU каждые две секунды (hello time). Это hello timeпо умолчанию, но вы можете его изменить. classic spanning tree использует максимального время жизни (20 секунд) для BPDU, прежде чем они будут отброшены. Rapid spanning работает по-другому! BPDU теперь используются в качестве механизма поддержания активности, аналогичного тому, что используют протоколы маршрутизации, такие как OSPF или EIGRP. Если коммутатор пропускает три BPDU от соседнего коммутатора, он будет считать, что подключение к этому коммутатору было потеряно, и он немедленно удалит все MAC-адреса. Rapid spanning tree будет принимать низшие BPDU. Classic spanning tree игнорирует их. Скорость перехода (время сходимости) является наиболее важной характеристикой rapid spanning tree. Classic spanning tree должно было пройти через состояние прослушивания и обучения, прежде чем оно переведет интерфейс в forwarding состояние, это занимает 30 секунд (таймер по умолчанию). Classic spanning было основано на таймерах. Rapid spanning не использует таймеры, чтобы решить, может ли интерфейс перейти в forwarding состояние или нет. Для этого он будет использовать переговорный (negotiation) механизм. Чуть позже я покажу вам, как это работает. Помните ли вы понятие portfast? Если мы включим portfast во время запуска classic spanning tree, оно пропустит состояние прослушивания и обучения и сразу же переведет интерфейс в forwarding состояние. Помимо перевода интерфейса в forwarding состояние, он также не будет генерировать изменения топологии, когда интерфейс переходит в состояние UP или DOWN. Мы все еще используем portfast для rapid spanning tree, но теперь он называется пограничным портом (edge port). Rapid spanning tree может только очень быстро переводить интерфейсы в forwarding состояние на edge ports (portfast) или интерфейсы типа point-to-point. Он будет смотреть на link type, и есть только два ink types: Point-to-point (full duplex); Shared (half duplex). Обычно мы используем коммутаторы, и все наши интерфейсы настроены как full duplex, rapid spanning tree видит эти интерфейсы как point-to-point. Если мы введем концентратор в нашу сеть, то у нас будет half duplex, который рассматривается как shared interface к rapid spanning-tree. Позвольте мне описать механизм быстрой синхронизации spanning tree, используя рисунок выше. Коммутатор А сверху - это корневой мост. Коммутатор B, C и D- некорневые мосты (non-root). Как только появится связь между коммутатором А и коммутатором B, их интерфейсы будут находиться в режиме блокировки. Коммутатор B получит BPDU от коммутатора A, и теперь будет происходить согласование, называемое синхронизацией. После того, как коммутатор B получил BPDU от корневого моста, он немедленно блокирует все свои порты, не обозначенные в списке non-edge. Non-edge порты - это интерфейсы для подключения к другим коммутаторам, пока edge порты- интерфейсы, настроены как portfast. Как только коммутатор B блокирует свои non-edge порты, связь между коммутатором A и коммутатором B переходит в forwarding состояние. Коммутатор B также выполнит операцию синхронизации как с коммутатором C, так и с коммутатором D, чтобы они могли быстро перейти в forwarding состояние. Главное, что следует усвоить здесь, заключается в том, что rapid spanning tree использует этот механизм синхронизации вместо механизма "таймера", который использует classic spanning tree (прослушивание → обучение → forwarding). Давайте увеличим масштаб механизма синхронизации rapid spanning tree, подробно рассмотрев коммутатор A и коммутатор B. Сначала интерфейсы будут заблокированы до тех пор, пока они не получат BPDU друг от друга. В этот момент коммутатор B поймет, что коммутатор A является корневым мостом, потому что он имеет лучшую информацию BPDU. Механизм синхронизации начнется, потому что коммутатор А установит proposal bit в поле flag BPDU. Коммутатор B получает предложение от коммутатора A и понимает, что он должен что-то сделать. Он заблокирует все свои non-edge интерфейсы и запустит синхронизацию в направлении коммутатора C и коммутатора D. Как только коммутатор B перевед свои интерфейсы в режим синхронизации, это позволит коммутатору А узнать об этом, отправив соответствующее соглашение. Это соглашение является копией proposal BPDU, где proposal bit, был switched off, а agreement bit - switched on. Интерфейс fa0/14 на коммутаторе B теперь перейдет в режим forwarding. Как только коммутатор A получит соглашение от коммутатора B, он немедленно переведет свой интерфейс fa0/14 в режим пересылки. А как насчет интерфейса fa0 / 16 и fa0 / 19 на коммутаторе B? Точно такой же механизм синхронизации будет иметь место и сейчас на этих интерфейсах. Коммутатор B направит предложение по своим интерфейсам fa0/16 и fa0/19 в сторону коммутатора C и коммутатора D. Коммутатор C и коммутатор D не имеют никаких других интерфейсов, поэтому они отправят соглашение обратно на коммутатор B. Коммутатор B переведет свои интерфейсы fa0/16 и fa0/19 в режим forwarding, и на этом мы закончим. Этот механизм синхронизации - всего лишь пара сообщений, летающих туда-сюда, и очень быстро, это намного быстрее, чем механизм на основе таймера classic spanning tree! Что еще нового в rapid spanning tree? Есть еще три вещи: UplinkFast; Механизм изменения топологии; Совместимость с классическим связующим деревом. Когда вы настраиваете classic spanning tree, вы должны включить UplinkFast самостоятельно. Rapid spanning tree использует UpLinkFast по умолчанию, вам не нужно настраивать его самостоятельно. Когда коммутатор теряет свой корневой порт, он немедленно переводит свой альтернативный порт в forwarding. Разница заключается в том, что classic spanning tree нуждалось в multicast кадрах для обновления таблиц MAC-адресов всех коммутаторов. Нам это больше не нужно, потому что механизм изменения топологии для rapid spanning tree отличается. Так что же изменилось в механизме изменения топологии? С classic spanning tree сбой связи вызвал бы изменение топологии. При использовании rapid spanning tree сбой связи не влияет на изменение топологии. Только non-edge интерфейсы (ведущие к другим коммутаторам), которые переходят в forwarding состояние, рассматриваются как изменение топологии. Как только коммутатор обнаружит изменение топологии это произойдет: Он начнет изменение топологии при значении таймера, которое в два раза превышает hello time. Это будет сделано для всех назначенных non-edge и корневых портов.; Он будет очищать MAC-адреса, которые изучаются на этих портах.; До тех пор, пока происходит изменение топологии, во время активности таймера, он будет устанавливать бит изменения топологии в BPDU, которые отправляются из этих портов. BPDU также будет отправлен из своего корневого порта.; Когда соседний коммутатор получит этот BPDU с установленным битом изменения топологии, произойдет следующее: Он очистит все свои MAC-адреса на всех интерфейсах, кроме того, на котором он получил BPDU с включенным изменением топологии.; Он запустит изменение топологии во время самого таймера и отправит BPDU на все назначенные порты и корневой порт, установив бит изменения топологии.; Вместо того, чтобы отправлять изменения топологии вплоть до корневого моста, как это делает classic spanning tree, изменение топологии теперь быстро распространяется по всей сети. И последнее, но не менее важное, давайте поговорим о совместимости. Rapid spanning tree и classic spanning tree совместимы. Однако, когда коммутатор, на котором работает Rapid spanning tree, связывается с коммутатором, на котором работает classic spanning tree, все функции скоростной передачи данных не будут работать! В приведенном выше примере у меня есть три коммутатора. Между коммутатором A и коммутатором B мы запустим rapid spanning tree. Между коммутатором B и коммутатором C мы вернемся к classic spanning tree.
img
В данной статье будет произведено краткое описание софтфона Zoiper. Zoiper – это IP-софтфон, который можно скачать и установить на следующие платформы: Windows, Linux, Mac и мобильные IOS и Android. Мы рассмотрим установку на самую распространенную ОС – Windows 7. Ниже приведены ключевые функции и особенности: Опция Zoiper программный телефон SIP + IAX протоколы + IAX2 протоколы + Доступные кодеки GSM, ulaw, alaw, speex, ilbc, Zoiper BIZ (коммерческая версия) поддерживает G.729 STUN сервер для каждого аккаунта + Изменяемое количество линий + Компенсация эхо + Шифрование паролей + Адресная книга + Поддержка DTMF тонов + Специальные кнопки Кнопка удержания вызова, кнопка перевода вызова, кнопка быстрого набора, цифровые клавиши, «ползунки» для управления громкостью микрофона и динамика, кнопка «История» Установка Далее перейдем к установке данного софтфона: для этого кликните на ссылку ниже, она ведёт на официальный сайт вендора, на страницу загрузки https://www.zoiper.com/en/voip-softphone/download/zoiper3 После клика на иконку вашей платформы, появится предложение купить коммерческую версию – можно смело отказываться и выбирать «Free» Скачается установочный файл, и появится всем хорошо знакомое диалоговое окно установки. Для проформы опишу установочные шаги: Нужно кликнуть Next Принять лицензионное соглашение Выбрать опции установки (добавление ярлыка на рабочий стол, в поле быстрого запуска, автозапуск вместе с загрузкой системы) Выбрать директорию установки – можно оставить директорию по умолчанию Нажать Next Выбрать пользователя, для которого устанавливается софтфон (All Users или Current User) Нажать Next Далее начнется процесс установки, после чего нужно нажать Finish и запустить софтфон Ниже указан интерфейс софтфона сразу после установки: Далее необходимо начать настройку софтфона с регистрации аккаунта – нажимаем на вкладку Settings и выбираем Create a new account . В соответствии со скриншотом ниже выбираем тип аккаунта – SIP и нажимаем NEXT. Далее заполняем требуемую информацию – логин, пароль и адрес вашей АТС и снова нажимаем NEXT. Ниже указан пример заполнения Далее Zoiper автоматически укажет имя аккаунта в соответствии с введёнными данными, нажимаем NEXT и пройдет некоторое время, прежде чем аккаунт станет активным (естественно, если все поля были заполнены верно) В конце появится следующее окно: Если всё будет в порядке – в интерфейсе программы будет гореть надпись Online и Registered. Для набора номера необходимо перейти во вкладку Dialpad и набрать требуемый номер.
img
Любое крупное приложение должно сопровождаться несколькими наборами тестов, с помощью которых можно проверить его стабильность и производительность.  Существует большое количество различных тестов, каждый из которых имеет свое назначение и охватывает определенные аспекты приложения. Именно поэтому, когда вы тестируете свое приложение, вы должны убедиться, что ваш набор тестов сбалансирован и охватывает все аспекты.  Однако есть один тип тестов, который разработчики часто предпочитают другим, и поэтому им часто злоупотребляют. Этот «сквозное тестирование» (E2E - end-to-end testing).  Что такое сквозное тестирование? Для тех, кто только начал штурмовать мир тестирования программного обеспечения, E2E-тестирование - это проверка вашего приложения от начала до конца вместе со всеми его зависимостями. При проведении E2E-тестировании вы создаете среду, которая будет идентична той, которую будут использовать реальные пользователи приложения. А затем вы тестируете все действия, которые могут выполнять пользователи в вашем приложении. С помощью сквозного тестирования вы проверяете весь рабочий поток целиком, например, вход на веб-сайт или покупку товара в интернет-магазине.   Если вы будете злоупотреблять E2Е-тестирование, то вы перевернете пирамиду тестирования. Я в такой ситуации был. В одном из своих проектов я планировал охватить большую часть приложения Е2Е-тестами или, что еще хуже, воспользоваться лишь один Е2Е-тест. К счастью, я передумал. Так вот, теперь я хочу поделиться с вами тем, что заставило меня передумать.  Почему не нужно пренебрегать пирамидой тестирования? Хаотично написанные тесты сначала могут показаться вполне пригодными, но в конце концов они таковыми не окажутся.  Мы пишем тесты для того, чтобы выиграть больше времени, и мы делаем это с помощью методы и средства автоматизации тестирования. Конечно, можно было бы самостоятельно открывать приложения и тестировать их вручную. Если бы это нужно было сделать однократно, то проблем не было бы. Но так бывает крайне редко.  Программное обеспечение постоянно обновляется. Поэтому необходимо проводить регулярные тестирования для того, чтобы оставаться в курсе последних событий. Вы, конечно, можете ежедневно запускать все тесты вручную при каждом обновлении приложения. Но если вы один раз напишите набор тестов, а затем будете его запускать каждый раз, когда нужно будет протестировать какой-то из аспектов приложения, то вы сэкономите много времени.  У каждого теста есть свое назначение. Если вы будете использовать их не по назначению, то они могут вам больше навредить, чем помочь. Это связано с тем, что в итоге вы потратите больше времени на то, чтобы написать эти тесты, и на их сопровождение, чем на разработку самого приложения. Иными словами, вы останетесь без одного из самых больших преимуществ автоматизированного тестирования.  Хорошее начало – придерживаться пирамиды тестирования. Она поможет вам определить правильный баланс в тестированиях. Эта пирамида является отраслевым стандартом и используется с середины 2000-х годов по сей день, так как все еще считается эффективной.  Значит ли это, что разработчики никогда не пренебрегают этой пирамидой? Не совсем. Иногда пирамида бывает перевернутой, где большую часть тестов составляют Е2Е, а иногда она бывает похожа на песочные часы, где очень много юнит- и Е2Е-тестов, но с очень мало интеграционных тестов.  Три уровня пирамиды тестирования Как правило, пирамида тестирования имеет три уровня: юнит-тесты, интеграционные тесты и сквозные тесты.  Юнит-тесты Юнит-тесты, или модульные тесты, делают акцент на самых маленьких единицах кода, таких как функции и классы.  Они короткие и не зависят ни от каких-либо внешних пакетов, библиотек и классов. В противном случае, в ход идет имитированная реализация.  Если юнит-тест дает сбой, то найти причину проблемы не так сложно. Они также имеют небольшой диапазон тестирования, что делает их простыми в написании, быстрыми в работе и легкими в сопровождении.  Интеграционные тесты Интеграционные тесты делают акцент на взаимодействии между двумя отдельными объектами. Как правило, они работают медленнее, потому что они требуют более серьезной настройки.  Если интеграционные тесты проваливаются, то найти проблему немного сложнее, так как диапазон ошибок больше. Они также более сложные в написании и сопровождении, в основном потому, что они требуют более продвинутое имитирование и расширенную область тестирования.  Сквозные тесты И наконец, сквозные тесты, или E2E-тесты. Они делают акцент на рабочих потоках, от самых простых до самых сложных. Эти тесты можно рассматривать как многоэтапные интеграционные тесты.  Они самые медленные, потому что они подразумевают сборку, развертывание, запуск браузера и выполнение действий внутри приложения.  Если сквозные тесты проваливаются, то найти проблему часто бывает очень сложно, потому что диапазон ошибок увеличивается до всего приложения. В принципе, по пути могло сломаться все что угодно. Это, безоговорочно, самый сложный тип тестов для написания и сопровождения (из трех типов, которые рассмотрели здесь) из-за огромного диапазона тестирования и из-за того, что они охватывают все приложение.  Надеюсь, теперь вы понимаете, почему пирамида тестирования была спроектирована именно таким образом. Снизу-вверх каждый уровень тестирования говорит о снижении скорости и увеличении диапазона и сложности и усложнении сопровождения.  Именно поэтому важно не забывать о том, что E2E-тестирование не может полностью заменить другие методы – оно лишь предназначено для расширения их возможностей. Назначение Е2Е-тестирования четко определено, и тесты не должны выходить за его границы.  В идеале тесты должны выявлять ошибки настолько близко к корню пирамиды, насколько возможно. Е2Е-тест предназначен для проверки кнопок, форм, изменений, ссылок, внешних процессов и вообще всех функций рабочего потока. Тестирование с кодом VS codeless-тестирование В целом, существует два типа тестирования: ручное и автоматизированное тестирование. Это значит, что мы можем проводить тестирования либо вручную, либо с помощью сценариев.  Чаще используют именно второй метод. Но и автоматизированное тестирование можно разделить на две части: тестирование с кодом и codeless-тестирование.  Тестирование с кодом Когда вы проводите тестирование с кодом, вы используете фреймворки, которые могут автоматизировать браузеры. Один из самых популярных инструментов – это Selenium, но я больше предпочитаю использовать в своих проектах Cypress (только для JavaScript). И тем не менее, работают они практически одинаково.  По сути, с помощью таких инструментов вы моделируете веб-браузеры и даете им указания для выполнения различные действия в вашем целевом приложении. После чего вы проверяете, отреагировало ли ваше приложение на соответствующие действия. Это простой пример имитации, взятый из документации Cypress. Я привел его, чтобы вы могли лучше понять, как работает этот инструмент: Давайте посмотрим, что тут происходит: Допустим, пользователь посещает сайт  https://example.cypress.io   Когда она нажимает на ссылку с пометкой type, URL-адрес должен добавить /commands/actions Если он вводит «fake@email.com» в поле ввода .action-email, тогда ввод .action-email принимает значение «fake@email.com». Codeless-тестирование В ситуации с codeless-тестированием вы используете фреймворки на базе искусственного интеллекта, которые запоминают ваши действия. И основываясь на некоторой дополнительной информации, они проверяют, отвечает ли ваше целевое приложение на действия должным образом.  Эти инструменты часто выглядят как малокодовые платформы для разработки, где вы перемещаете различные панели. Один из таких инструментов – TestCraft, codeless-решение, разработанное на платформе Selenium. Как правило, эти инструменты стоят дороже из-за того, то такие функции, как создание, сопровождение и запуск тестов выполняются с помощью простого перемещения панелей, а также из-за того, что для проведения тесто не нужно уметь писать программный код. Но я упомянул здесь про TestCraft, потому что у них есть бесплатная версия, которая включает в себя практически все.  Конечно, если речь идет о скорости и деньгах, то codeless-решение может оказаться вам больше по душе, но они все еще достаточно новые. Поэтому они пока не могут иметь ту сложность наборов тестов, которой можно достичь, написав код самостоятельно.  Если в целевом приложении есть очень сложные рабочие потоки, которые включают в себя несколько подвижных частей, то вам больше подойдет классический вариант тестирования. Но если сложных потоков нет, то вы можете воспользоваться codeless-решением.  Подведение итогов Написание тестов – обязательное требование для любого приложения. Если вы будете следовать всем правилам и писать наборы тестов исходя из их типов, то они только улучшат ваше приложение, а также их будет довольно просто написать и сопровождать.  Использовать сквозные тесты, как и любые другие, следует только для того, для чего они предназначены. Они предназначены для тестирования рабочего потока приложения от начала и до конца путем воспроизведения реальных пользовательских сценариев. Но помните, что большинство ошибок следует выявлять как можно ближе к корню.   
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59