По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Третья часть тут Поскольку трафик в реальном времени начал передаваться по сетям с коммутацией пакетов, QoS стал серьезной проблемой. Передача голоса и видео полагается на то, что сеть способна быстро переносить трафик между хостами (с низкой задержкой) и с небольшими колебаниями межпакетного разнесения (jitter). Дискуссии вокруг QoS фактически начались в первые дни сети с коммутацией пакетов, но достигли высшей точки примерно в то время, когда рассматривался ATM. На самом деле, одним из главных преимуществ ATM была возможность тщательно контролировать способ, которым обрабатывались пакеты, когда они передавались по сети с коммутацией пакетов. С провалом ATM на рынке, появились два направления идей о приложениях, которые требуют сильного контроля над jitter и delay: Эти приложения никогда не будут работать в сетях с коммутацией пакетов. Такого рода приложения всегда должны запускаться в отдельной сети. Это просто поиск правильного набора элементов управления QoS, чтобы позволить таким приложениям работать в сетях с коммутацией пакетов. Основное, что больше всего волновало большинство провайдеров и инженеров, была голосовая связь, и основной вопрос сводился к следующему: можно ли обеспечить приличную голосовую связь по сети, также передающей большие файлы и другой "nonreal - time" трафик? Были изобретены сложные схемы, позволяющие классифицировать и маркировать пакеты (называемые QoS-маркировкой), чтобы сетевые устройства знали, как правильно их обрабатывать. Картографические системы были разработаны для переноса этих маркировок QoS из одного типа сети в другой, и много времени и усилий было вложено в исследование механизмов массового обслуживания-порядка, в котором пакеты отправляются по интерфейсу. На рис. 1 показана примерная диаграмма одной системы QoS, и сопоставления между приложениями и маркировками QoS будет достаточно, чтобы проиллюстрировать сложность этих систем. Увеличение скорости связи оказывают двойной эффект на обсуждение QoS: Более быстрые каналы связи будут (это очевидно) нести больше данных. Поскольку любой отдельный голосовой и видеопоток становится сокращающейся частью общего использования полосы пропускания, необходимость строго сбалансировать использование полосы пропускания между различными приложениями стала менее важной. Время, необходимое для перемещения пакета из памяти в провод через микросхему, уменьшается с каждым увеличением пропускной способности. По мере того, как доступная пропускная способность увеличивалась, потребность в сложных стратегиях массового обслуживания для противодействия jitter становилась все менее значимой. Это увеличение скорости было дополнено новыми системами массового обслуживания, которые гораздо эффективнее управляют различными видами трафика, уменьшая необходимость маркировки и обработки трафика детализированным способом. Такое увеличение пропускной способности часто обеспечивалось переходом от медного волокна к стекловолокну. Оптоволокно не только обеспечивает большую полосу пропускания, но и более надежную передачу данных. Способ построения физических связей также эволюционировал, делая их более устойчивыми к поломкам и другим материальным проблемам. Вторым фактором, увеличивающим доступность полосы пропускания, стал рост Интернета. По мере того, как сети становились все более распространенными и более связанными, отказ одного канала оказывал меньшее влияние на объем доступной полосы пропускания и на потоки трафика по сети. Поскольку процессоры стали быстрее, появилась возможность разрабатывать системы, в которых отброшенные и задержанные пакеты будут иметь меньшее влияние на качество потока в реальном времени. Увеличение скорости процессора также позволило использовать очень эффективные алгоритмы сжатия, уменьшая размер каждого потока. На стороне сети более быстрые процессоры означали, что control plane могла быстрее вычислять набор loop-free путей через сеть, уменьшая как прямые, так и косвенные последствия сбоев связи и устройств. В конечном счете, хотя QoS все еще важен, его можно значительно упростить. Четырех-шести очередей часто бывает достаточно для поддержки даже самых сложных приложений. Если требуется больше, некоторые системы теперь могут либо проектировать потоки трафика через сеть, либо активно управлять очередями, чтобы сбалансировать сложность управления очередями и поддержки приложений. Централизованный Control Plane - есть ли смысл? В 1990-х годах, чтобы решить многие из предполагаемых проблем с сетями с коммутацией пакетов, таких как сложные плоскости управления и управление QoS, исследователи начали работать над концепцией, называемой активной сетью. Общая идея состояла в том, что плоскость управления для сети с коммутацией пакетов может и должна быть отделена от устройств пересылки, чтобы позволить сети взаимодействовать с приложениями, запущенными поверх нее. Базовая концепция более четкого разделения плоскостей управления и данных в сетях с коммутацией пакетов была вновь рассмотрена при формировании рабочей группы по переадресации и разделению элементов управления (ForCES) в IETF. Эта рабочая группа в основном занималась созданием интерфейса, который приложения могли бы использовать для установки пересылки информации на сетевые устройства. Рабочая группа была в конечном итоге закрыта в 2015 году, и ее стандарты никогда не применялись широко. В 2006 году исследователи начали эксперимент с плоскостями управления в сетях с коммутацией пакетов без необходимости кодирования модификаций на самих устройствах- особая проблема, поскольку большинство этих устройств продавались поставщиками как неизменяемые устройства (или black boxes). Конечным результатом стал OpenFlow, стандартный интерфейс, который позволяет приложениям устанавливать записи непосредственно в таблицу пересылки (а не в таблицу маршрутизации). Исследовательский проект был выбран в качестве основной функции несколькими поставщиками, и широкий спектр контроллеров был создан поставщиками и проектами с открытым исходным кодом. Многие инженеры считали, что технология OpenFlow позволила бы реконструировать инженерные сети за счет централизации управления. В реальности, все будет по-иному-то, что, скорее всего, произойдет в мире сетей передачи данных: лучшие части централизованной control plane будут поглощены существующими системами, а полностью централизованная модель будет выброшена на обочину, оставив на своем пути измененные представления о том, как control plane взаимодействует с приложениями и сетью в целом.
img
Активное сетевое оборудование, должно обеспечивать долгосрочное и бесперебойное функционирование корпоративной сети. Своевременное выявление и устранение неисправностей является залогом успешной и эффективной работы компании. Именно поэтому очень важно уделить особое внимание системе мониторинга, которая бы отслеживала состояние активного оборудования и уведомляла об отклонении от нормальных показателей системного администратора по SMS, e-mail или другим средствам оповещения. Система мониторинга – это совокупность технических средств, осуществляющих постоянное наблюдение и сбор информации в локальной вычислительной сети на основе анализа статистических данных с целью выявления неисправных или некорректно работающих узлов и оповещения ответственных лиц. Функционал современных систем мониторинга позволяет отслеживать состояние таких сервисов как например: 1) Доступность хоста Путем периодической отправки запросов ICMP Echo-Request на адрес сетевого устройства 2) Доступность веб-сервера Путем отправки HTTP запроса на получение страницы 3) Доступность почтовых сервисов Путем периодической отправки диагностических SMTP сообщений Кроме того, можно производить замер времени отклика данных сервисов. Периодические проверки такого рода позволяют быстро определить на каком уровне возникла проблема и незамедлительно приступить к её устранению. Система мониторинга сети На приведенном выше рисунке показан простейший пример реализации системы мониторинга, контролирующей всего четыре устройства. В реальных же условиях парк активного оборудования может иметь куда больше узлов. Для осуществления грамотного мониторинга проводят объединение разных типов узлов в группы, например группа веб-серверов или группа маршрутизаторов. Такого рода разделение помогает систематизировать статистическую информацию и облегчает процесс наблюдения. Большинство систем мониторинга позволяют автоматизировать проверку устройств по SNMP и осуществлять диагностику с помощью различных плагинов (в том числе созданных вручную). Протокол SNMP (Simple Network Management Protocol) - был создан специально для нужд мониторинга сетевого оборудования. Все активные устройства L2 и L3 содержат так называемую Базу информации управления MIB (Management Information Base), в которой находятся основные параметры состояния оборудования. Например, загрузка CPU, статус интерфейсов, объем свободного места и др. Каждой такой записи соответствует уникальный идентификатор OID(Oject IDentifier). Имея нужный идентификатор, можно получить информацию об интересующем параметре по протоколу SNMP. Современные системы мониторинга позволяют автоматизировать данный процесс. Система, по протоколу SNMP, подключается к устройству, опрашивает его по интересующему OID, получает значение параметра и сравнивает его с заданным. Если обнаруживается несоответствие двух данных значений, то системы мониторинга реагирует и запускает процесс оповещения. Перед непосредственным внедрением системы мониторинга, необходимо провести обследование ЛВС, результатом которого должен стать перечень наблюдаемого оборудования, параметров и утвержденный алгоритм эскалации событий мониторинга. На основе анализа сетевой инфраструктуры заказчика формируются первые решения определяющие архитектуру будущей системы мониторинга. На следующем этапе осуществляется составление спецификаций и пакета проектной документации, с учетом пожеланий заказчика. Далее обычно следует внедрение разработанного решения на отдельном сегменте сети с ограниченным числом наблюдаемых узлов, с целью тестирования и отладки функционала предложенного решения. Заключительным этапом является масштабирование системы мониторинга, то есть расширение объема наблюдаемой ИТ-инфраструктуры до необходимого заказчику. Внедрение системы мониторинга – это важный шаг на пути к полной автоматизации ИТ-инфраструктуры, который ведет к повышению эффективности ее использования. Специалисты нашей компании не раз разрабатывали решения, которые оправдывают ожидания заказчиков и надёжно работают вот уже несколько лет.
img
Почитать лекцию №16 про модель сети Министерства обороны США (DoD) можно тут. В 1960-х годах, вплоть до 1980-х годов, основной формой связи была коммутируемая схема; отправитель просил сетевой элемент (коммутатор) подключить его к определенному приемнику, коммутатор завершал соединение (если приемник не был занят), и трафик передавался по результирующей схеме. Если это звучит как традиционная телефонная система, то это потому, что на самом деле она основана на традиционной сетевой системе (теперь называемой обычной старой телефонной службой [POTS]). Крупные телефонные и компьютерные компании были глубоко инвестированы в эту модель и получали большой доход от систем, разработанных вокруг методов коммутации цепей. По мере того, как модель DoD (и ее набор сопутствующих протоколов и концепций) начали завоевывать популярность у исследователей, эти сотрудники решили создать новую организацию по стандартизации, которая, в свою очередь, построит альтернативную систему, обеспечивающую "лучшее из обоих миров". Они будут включать в себя лучшие элементы коммутации пакетов, сохраняя при этом лучшие элементы коммутации каналов, создавая новый стандарт, который удовлетворит всех. В 1977 году эта новая организация по стандартизации была предложена и принята в качестве International Organization for Standardizatio (ISO). Основная цель состояла в том, чтобы обеспечить взаимодействие между крупными системами баз данных, доминировавшими в конце 1970-х гг. Комитет был разделен между инженерами связи и контингентом баз данных, что усложнило стандарты. Разработанные протоколы должны были обеспечить как ориентированное на соединение, так и бесконтактное управление сеансами, а также изобрести весь набор приложений для создания электронной почты, передачи файлов и многих других приложений (помните, что приложения являются частью стека). Например, необходимо было кодифицировать различные виды транспорта для транспортировки широкого спектра услуг. В 1989 году-целых десять лет спустя-спецификации еще не были полностью выполнены. Протокол не получил широкого распространения, хотя многие правительства, крупные производители компьютеров и телекоммуникационные компании поддерживали его через стек и модель протокола DoD. Но в течение десяти лет стек DoD продолжал развиваться; была сформирована Инженерная рабочая группа по разработке Интернету (Engineering Task Force -IETF) для поддержки стека протоколов TCP/IP, главным образом для исследователей и университетов (Интернет, как тогда было известно, не допускал коммерческого трафика и не будет до 1992 года). С отказом протоколов OSI материализоваться многие коммерческие сети и сетевое оборудование обратились к пакету протоколов TCP/IP для решения реальных проблем "прямо сейчас". Кроме того, поскольку разработка стека протоколов TCP/IP оплачивалась по грантам правительства США, спецификации были бесплатными. На самом деле существовали реализации TCP/IP, написанные для широкого спектра систем, доступных благодаря работе университетов и аспирантов, которые нуждались в реализации для своих исследовательских усилий. Однако спецификации OSI могли быть приобретены только в бумажном виде у самой ISO и только членами ISO. ISO был разработан, чтобы быть клубом "только для членов", предназначенным для того, чтобы держать должностных лиц под контролем развития технологии коммутации пакетов. Однако принцип "только члены" организации работал против должностных лиц, что в конечном счете сыграло свою роль в их упадке. Однако модель OSI внесла большой вклад в развитие сетей; например, пристальное внимание, уделяемое качеству обслуживания (QoS) и вопросам маршрутизации, принесло дивиденды в последующие годы. Одним из важных вкладов стала концепция четкой модульности; сложность соединения многих различных систем с множеством различных требований побудила сообщество OSI призвать к четким линиям ответственности и четко определенным интерфейсам между слоями. Второй - это концепция межмашинного взаимодействия. Средние блоки, называемые затем шлюзами, теперь называемые маршрутизаторами и коммутаторами, явно рассматривались как часть сетевой модели, как показано на рисунке 3. Гениальность моделирования сети таким образом заключается в том, что она делает взаимодействие между различными частями намного легче для понимания. Каждая пара слоев, перемещаясь вертикально по модели, взаимодействует через сокет или приложение. Programming Interface (API). Таким образом, чтобы подключиться к определенному физическому порту, часть кода на канальном уровне будет подключаться к сокету для этого порта. Это позволяет абстрагировать и стандартизировать взаимодействие между различными уровнями. Компонент программного обеспечения на сетевом уровне не должен знать, как обращаться с различными видами физических интерфейсов, только как получить данные для программного обеспечения канального уровня в той же системе. Каждый уровень имеет определенный набор функций для выполнения. Физический уровень, также называемый уровнем 1, отвечает за модулирование или сериализацию 0 и 1 на физическом канале. Каждый тип связи будет иметь различный формат для передачи сигналов 0 или 1; физический уровень отвечает за преобразование "0" и "1" в эти физические сигналы. Канальный уровень, также называемый уровнем 2, отвечает за то, чтобы некоторая передаваемая информация фактически отправлялась на нужный компьютер, подключенный к той же линии. Каждое устройство имеет свой адрес канала передачи данных (уровень 2), который можно использовать для отправки трафика на конкретное устройство. Уровень канала передачи данных предполагает, что каждый кадр в потоке информации отделен от всех других кадров в том же потоке, и обеспечивает связь только для устройств, подключенных через один физический канал. Сетевой уровень, также называемый уровнем 3, отвечает за передачу данных между системами, не связанными через единую физическую линию связи. Сетевой уровень, таким образом, предоставляет сетевые адреса (или Уровень 3), а не локальные адреса линий связи, а также предоставляет некоторые средства для обнаружения набора устройств и линий связи, которые должны быть пересечены, чтобы достичь этих пунктов назначения. Транспортный уровень, также называемый уровнем 4, отвечает за прозрачную передачу данных между различными устройствами. Протоколы транспортного уровня могут быть либо "надежными", что означает, что транспортный уровень будет повторно передавать данные, потерянные на каком-либо нижнем уровне, либо "ненадежными", что означает, что данные, потерянные на нижних уровнях, должны быть повторно переданы некоторым приложением более высокого уровня. Сеансовый уровень, также называемый уровнем 5, на самом деле не переносит данные, а скорее управляет соединениями между приложениями, работающими на двух разных компьютерах. Сеансовый уровень гарантирует, что тип данных, форма данных и надежность потока данных все представлены и учтены. Уровень представления, также называемый уровнем 6, фактически форматирует данные таким образом, чтобы приложение, работающее на двух устройствах, могло понимать и обрабатывать данные. Здесь происходит шифрование, управление потоком и любые другие манипуляции с данными, необходимые для обеспечения интерфейса между приложением и сетью. Приложения взаимодействуют с уровнем представления через сокеты. Уровень приложений, также называемый уровнем 7, обеспечивает интерфейс между пользователем и приложением, которое, в свою очередь, взаимодействует с сетью через уровень представления. Не только взаимодействие между слоями может быть точно описано в рамках семислойной модели, но и взаимодействие между параллельными слоями на нескольких компьютерах может быть точно описано. Можно сказать, что физический уровень на первом устройстве взаимодействует с физическим уровнем на втором устройстве, уровень канала передачи данных на первом устройстве с уровнем канала передачи данных на втором устройстве и так далее. Точно так же, как взаимодействие между двумя слоями на устройстве обрабатывается через сокеты, взаимодействие между параллельными слоями на разных устройствах обрабатывается через сетевые протоколы. Ethernet описывает передачу сигналов "0" и "1" на физический провод, формат для запуска и остановки кадра данных и средство адресации одного устройства среди всех устройств, подключенных к одному проводу. Таким образом, Ethernet попадает как в физический, так и в канальный уровни передачи данных (1 и 2) в модели OSI. IP описывает форматирование данных в пакеты, а также адресацию и другие средства, необходимые для отправки пакетов по нескольким каналам канального уровня, чтобы достичь устройства за несколько прыжков. Таким образом, IP попадает в сетевой уровень (3) модели OSI. TCP описывает настройку и обслуживание сеанса, повторную передачу данных и взаимодействие с приложениями. TCP затем попадает в транспортный и сеансовый уровни (4 и 5) модели OSI. Одним из наиболее запутанных моментов для администраторов, которые когда-либо сталкиваются только со стеком протоколов TCP/IP, является другой способ взаимодействия протоколов, разработанных в/для стека OSI, с устройствами. В TCP/IP адреса относятся к интерфейсам (а в мире сетей с большой степенью виртуализации несколько адресов могут относиться к одному интерфейсу, или к услуге anycast, или к multicast и т. д.). Однако в модели OSI каждое устройство имеет один адрес. Это означает, что протоколы в модели OSI часто называются типами устройств, для которых они предназначены. Например, протокол, несущий информацию о достижимости и топологии (или маршрутизации) через сеть, называется протоколом промежуточной системы (IS-IS), поскольку он работает между промежуточными системами. Существует также протокол, разработанный для того, чтобы промежуточные системы могли обнаруживать конечные системы; это называется протоколом End System to Intermediate System (ES-IS).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59