По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы уже писали статьи о том, как зарегистрировать транки от таких провайдеров VoIP услуг как : МТТ, Телфин, SIPNET и другие. А сегодня расскажем как подключиться к SIP-сервису от оператора МегаФон - МультиФон на примере FreePBX 14. Почему то, именно с данным сервисом у многих возникают проблемы. Поэтому, дабы помочь нашим дорогим читателям и снять нагрузку с технической поддержки МегаФона, мы решили написать эту статью :) Предыстория МультиФон – это SIP-сервис от оператора мобильной связи МегаФон, с которым они вышли на рынок в 2010 году. Идея проста – связать сервисы сотовой связи оператора и VoIP. То есть организовать возможность приёма и совершения вызовов не только через сеть GSM, но и через Интернет. При этом средства списываются с мобильного номера. Помимо этого можно также совершать видео-звонки, а также отправлять SMS и MMS сообщения. Подключение и настройка Подключить МультиФон может любой обладатель мегафоновской SIM-карты. Для этого достаточно просто набрать комбинацию *137# и выбрать опцию “Подключить”. Через какое-то время Вам прилетит SMS с именем пользователя и паролем. Имя пользователя будет совпадать с номером мобильного, закреплённого за Вашей SIM-картой. После этого, логинимся во FreePBX и начинаем настраивать транк. Переходим в раздел Connectivity → Trunks. Далее нажимаем Add Trunk → Add Chan_sip trunk. Перед нами откроются параметры добавления нового транка. На вкладке General указываем желаемое название транка (Trunk Name) и Outbound CallerID - номер, который увидят абоненты, вызываемые через этот транк. Далее переходим сразу на вкладку sip Settings и настраиваем вкладку Outgoing, т.е параметры, которые мы будем отправлять на сервера МультиФона. В поле Trunk Name повторно введите название транка. А в поле PEER Details необходимо указать следующее: username=79261234567 type=peer secret=<SUPER_SECURE_PASS.> host=sbc.megafon.ru fromuser=79261234567 fromdomain=multifon.ru port=5060 qualify=yes insecure=invite,port canreinvite=no Где: username- имя пользователя, которые пришло Вам в SMS, которое совпадает с номером телефона; type - тип линии, которая будет обрабатывать входящие и исходящие вызовы, проходящие через Asterisk. Авторизация при входящих будет осуществляться по средствам сопоставления IP и порта; secret - пароль, который Вы получили по SMS; host - адрес сервера регистрации; fromuser - имя пользователя в поле FROM заголовка SIP; fromdomain - адрес домена для поля FROM заголовка SIP; port - порт, на котором сервер регистрации слушает протокол SIP; qualify - параметр, отвечающий за проверку доступности хоста; insecure - отвечает за проверку параметров при аутентификации. port, invite – означает, что аутентификация будет осуществляться без проверки номера порта и входящих сообщений INVITE; canreinvite - параметр, запрещающий повторную отправку сообщений INVITE, когда соединение уже установлено; Далее переходим на вкладку Incoming и прописываем такую строчку в поле Register String: 79261234567@multifon.ru:<SUPER_SECURE_PASS.>:79261234567@193.201.229.35:5060/79261234567 После чего нажимаем Submit и Apply Config. Далее необходимо перейти в модуль Settings → Asterisk SIP Settings → Chan SIP Settings и найди параметр Enable SRV Lookup, его нужно поставить в Yes После всех выполненных действий, Вы должны будете увидеть в Registries две регистрации – одну на multifon.ru, а другую на прокси сервере – sbc.megafon.ru. Можно также убедиться в том, что транк успешно зарегистрирован на вкладке Peers: Кстати, интересная особенность, которую можно увидеть с помощью утилиты sngrep, в том, что МультиФон использует отдельные сервера для сигнализации и RTP-трафика. А также, отправляет пакеты 407 Proxy Authentication Required, сообщающие о том, что для совершения вызова необходима аутентификация на прокси сервере. Вот посмотрите:
img
Почитать лекцию №21 про беспроводную связь по 802.11 можно тут. В предыдущих лекциях мы рассмотрели два примера передачи данных вида point-to-point по физическим носителям. В этих лекциях будут рассмотрены четыре примера передачи данных вида end-to-end. На рисунке 1 показана Recursive Internet Architecture (RINA). Конечно, не каждый транспортный протокол точно сопоставляется с одним функциональным слоем в RINA, но сопоставление достаточно близко, чтобы быть полезным. Главное, что нужно запомнить-для каждого транспортного протокола есть четыре вопроса, которые вы можете задать: Как протокол обеспечивает передачу данных или как он упорядочивает данные? Как протокол предоставляет услуги мультиплексирования или возможность передавать несколько потоков данных на одном общем ресурсе? Как протокол обеспечивает контроль ошибок, который должен включать не только обнаружение ошибок, но и устранение ошибок - либо путем повторной передачи, либо путем предоставления информации, достаточной для восстановления исходной информации? Как протокол обеспечивает управление потоком? Каждый из этих вопросов может включать ряд дополнительных вопросов, таких как определение Maximum Transmission Unit (MTU), обеспечение репликации пакетов для многоадресной рассылки и т. д. В этих лекциях будут рассмотрены четыре протокола: Интернет-протокол (IP), который обеспечивает нижнюю половину второй пары слоев. Основное внимание при рассмотрении IP уделяется схеме адресации для мультиплексирования и способности обеспечивать единый способ передачи данных для множества различных физических транспортных систем. Протокол управления передачей (TCP), который обеспечивает одну версию верхней половины второй пары уровней. TCP обеспечивает управление ошибками и потоками, а также место для переноса информации о мультиплексировании для приложений и других протоколов, которые работают поверх TCP. Протокол Quick User Datagram Protocol Internet Connections (QUIC), который обеспечивает другую версию верхней половины второй пары уровней. QUIC очень похож на TCP по своим функциям, но имеет некоторые существенные отличия от TCP в том, как он работает. Протокол управляющих сообщений Интернета (ICMP). Internet Protocol (IP) Интернет-протокол (IP) был первоначально задокументирован в серии документов спецификации Интернет-протокола, называемых IEN, в середине 1970-х годов, в основном написанных Jonathan B. Postel. В этих документах описан протокол TCP, который при первоначальном развертывании включал в себя функции, содержащиеся в двух протоколах, IP и TCP. Postel отметил, что такое сочетание функциональности в едином протоколе не очень хорошо; Адресное пространство IPv4 представляет собой 32-битное целое число без знака, что означает, что оно может нумеровать или адресовать 232 устройства - около 4,2 миллиарда устройств. Звучит много, но на самом деле все иначе по нескольким причинам: Каждый адрес представляет один интерфейс, а не одно устройство. Фактически, IP-адреса часто используются для представления службы или виртуального хоста (или машины), что означает, что одно устройство часто будет использовать более одного IP-адреса. Большое количество адресов теряется в процессе агрегации. В начале 1990-х стало очевидно, что в Интернете скоро закончатся адреса в адресном пространстве IPv4; диаграммы, изображенные на рисунке 2, показывают изменение свободных и доступных IPv4 с течением времени, начиная с середины 1990-х годов. Простым решением этой ситуации было бы расширение адресного пространства IPv4 для охвата большего количества устройств, но опыт работы с протоколом IPv4 привел к тому, что группа Internet Engineering Task Force (IETF) взяла на себя более крупную задачу: перепроектировать IPv4. Работа по замене началась в 1990 году, а первые проекты получили статус стандарта в 1998 году. Адресное пространство IPv6 содержит 2128 адресов, или примерно 3,4 × 1038. IPv6 предназначен для предоставления услуг для нескольких различных протоколов, таких как TCP и QUIC. Таким образом, IPv6 предоставляет только две службы из четырех, необходимых для передачи данных по сети: транспорт, который включает маршалинг данных, и мультиплексирование. Транспорт и Маршалинг IP обеспечивает "базовый уровень", на котором работает широкий спектр протоколов более высокого уровня по множеству различных типов физических каналов. Для этого IP должен решить две проблемы: Запуск на множестве различных физических протоколов и протоколов нижнего уровня при одновременном представлении согласованного набора сервисов более высоким уровням. Адаптация к большому разнообразию размеров кадра, предоставляемых нижними уровнями Чтобы создать единый протокол, на котором могут работать все протоколы верхнего уровня, IP должен "вписываться" в тип кадра многих различных типов протоколов физического уровня. Ряд проектов описывает, как запустить IP поверх определенного физического уровня, включая сети MPEG-2, асинхронный режим передачи, оптические сети, протокол Point-to-Point (PPP), Vertical Blanking Interval (VBI) в телевидении, Fiber Distributed Data Interface (FDDI), и ряд других протоколов физического уровня. Эти проекты в значительной степени определяют, как переносить IP-дейтаграмму (или пакет) в кадре (или пакете) нижележащего физического уровня, и как включить межуровневое обнаружение, такое как протокол разрешения адресов (ARP), для работы с каждым типом носителя. IP также должен определять, как переносить большие блоки данных через различные MTU, доступные на разных типах физических каналов. В то время как исходная спецификация Ethernet выбирала MTU в 1500 октетов для баланса между большими размерами пакетов и максимальным использованием канала, многие другие физические уровни были разработаны с большими MTU. Кроме того, приложения не склонны отправлять информацию аккуратными блоками размером с MTU. IP решает эти две проблемы, обеспечивая фрагментацию. На рисунке 3 это показано. Если приложение (или протокол более высокого уровня) передает 2000 октетов данных для передачи в IP, реализация IP будет: Определите MTU вдоль пути, по которому должны передаваться данные; обычно это происходит путем считывания настроенного значения или значения по умолчанию, установленного системным программным обеспечением. Разбейте информацию на несколько фрагментов, основываясь на MTU минус прогнозируемый размер заголовков, включая заголовки туннелей и т. д.- метаданные, которые должны передаваться вместе с данными. Отправьте первый фрагмент с дополнительным заголовком IPv6 (что означает, что заголовок фрагмента не должен быть включен в пакеты, которые не являются фрагментами большего блока данных). Установите смещение в заголовке more fragments на первый октет исходного блока данных, который этот пакет представляет собой деление на 8; в Примере на рисунке 3 первый пакет имеет смещение 0, а второй-150 (1200/8). Установите бит more fragments равным 0, если это последний фрагмент блока данных, и 1, если за ним следует больше фрагментов. Этот размер общего блока данных, который IPv6 может переносить через фрагменты, ограничен размером поля смещения, которое составляет 13 бит. Следовательно, IPv6 может нести не более 214 октетов данных в виде последовательности фрагментов или блока данных размером около 65 536 октетов плюс один фрагмент размером с MTU. Все, что больше этого, должно быть каким-то образом разбито протоколом более высокого уровня перед передачей в IPv6 для транспортировки. Наконец, IP должен обеспечивать какой-то способ передачи пакетов по сети, использующей более одного типа физического уровня. Это решается путем перезаписи заголовков нижнего уровня на каждом этапе в сети, где могут быть взаимосвязаны несколько типов мультимедиа. Устройства, которые переписывают заголовки нижнего уровня таким образом, изначально назывались шлюзами, но теперь обычно называются маршрутизаторами, поскольку они направляют трафик на основе информации, содержащейся в заголовке IP. Есть и другие интересные аспекты того, как IPv6 передает данные. На рисунке 4 показан заголовок IPv6, с которым можно работать. На рисунке 4: Версия установлена на 6 для IPv6. traffic class разделен на два поля: 6 бит для передачи типа услуги (или класса услуги), 2 бита для передачи уведомления о перегрузке. flow label предназначена для указания устройствам пересылки, как хранить пакеты в одном потоке на одном и том же пути в наборе путей с многолучевым распространением с равной стоимостью (ECMP). payload length указывает количество данных, переносимых в пакете, в октетах. next header предоставляет информацию о любых дополнительных заголовках, содержащихся в пакете. Заголовок IPv6 может содержать информацию, выходящую за рамки того, что содержится в основном заголовке. hop limit - это количество раз, когда этот пакет может быть "обработан" сетевым устройством, прежде чем он будет отброшен. Любой маршрутизатор (или другое устройство), перезаписывающий заголовки нижнего уровня, должен уменьшить это число на единицу в процессе пересылки; когда предел перехода достигает 0 или 1, пакет следует отбросить. Важно! Счетчик скачков используется для предотвращения постоянного зацикливания пакета в сети. Каждый раз, когда пакет пересылается сетевым устройством, счетчик переходов уменьшается на единицу. Если счетчик переходов достигает 0, пакет отбрасывается. Если пакет зацикливается в сети, счетчик переходов (также называемый временем жизни или TTL) в конечном итоге будет уменьшен до 0, и пакет будет отброшен. Заголовок IPv6 представляет собой смесь переменной (Type Length Value [TLV]) и информации фиксированной длины. Основной заголовок состоит из полей фиксированной длины, но следующее поле заголовка оставляет открытой возможность дополнительных (или расширенных) заголовков, некоторые из которых форматируются как TLV. Это позволяет создавать пользовательские аппаратные средства (например, прикладную интегральную схему [ASIC]) для быстрого переключения пакетов на основе полей фиксированной длины, оставляя открытой возможность переноса данных переменной длины, которые могут быть обработаны только в программном обеспечении. Мультиплексирование IPv6 позволяет мультиплексировать двумя способами: Предоставляя большое адресное пространство для использования при идентификации хостов и сетей (или, в более широком смысле, достижимых пунктов назначения). Предоставляя пространство, в которое протокол верхнего уровня может поместить номер протокола, что позволяет нескольким протоколам работать поверх IPv6. Адресация IPv6 Адрес IPv6 имеет 128 битов, что означает, что может быть до 2128 адресов - огромное количество адресов, которых, возможно, хватит, чтобы сосчитать каждую крупицу пыли на Земле. Адрес IPv6 обычно записывается как последовательность шестнадцатеричных чисел, а не как последовательность из 128 нулей и единиц, как показано на рисунке 5. В формате IPv6 адреса стоит отметить двоеточие: Начальные нули в каждом разделе (выделены двоеточием) опускаются. Одну длинную строку нулей можно заменить двойным двоеточием в адресе только один раз. Почему так много адресов? Потому что многие адреса никогда не используются ни в одной схеме адресации. Во-первых, многие адреса никогда не используются, потому что адреса агрегируются. Агрегация - это использование одного префикса (или сети, или достижимого пункта назначения) для представления большего числа достижимых пунктов назначения. Рисунок 6 иллюстрирует это. На рисунке 6: Хостам A и B даны 101 :: 1 и 101 :: 2 в качестве их адресов IPv6. Однако эти два хоста подключены к одному широковещательному сегменту (например, Ethernet) и, следовательно, используют один и тот же интерфейс в C. Даже если C имеет адрес в этой общей сети, он фактически объявляет саму сеть - некоторые инженеры считают это полезно думать о самом проводе как о достижимом пункте назначения: 101 :: / 64. E получает два достижимых назначения, 101::/64 от C и 102::/64 от D. Уменьшая длину префикса, он может анонсировать одно достижимое назначение, которое включает в себя оба этих более длинных префиксных достижимых назначения. E рекламирует 100:: / 60. G, в свою очередь, получает 100 :: / 60 от E и 110: / 60 от F. Опять же, это же адресное пространство может быть описано с помощью единственного достижимого пункта назначения, 100 :: / 56, так что это то, что G объявляет. Как эта агрегация работает в реальном адресном пространстве? Рисунок 7 объясняет это. Длина префикса, которая представляет собой число после косой черты в reachable destination, сообщает вам количество битов, которые учитываются при определении того, что является частью префикса (и, следовательно, также, что нет). Длина префикса отсчитывается слева направо. Любой набор адресов с одинаковыми значениями чисел в пределах длины префикса считается частью одного и того же reachable destination. В полном адресном пространстве IPv6 128 бит, поэтому / 128 представляет один хост. В адресе с 64-битной длиной префикса (/ 64) только четыре левых раздела IPv6-адреса являются частью префикса или reachable destination; остальные четыре правые части IPv6-адреса считаются адресами хоста или подсети, которые "содержатся" в префиксе. В адресе с длиной префикса 60 бит (/ 60) четыре левых раздела IPv6-адреса минус одна шестнадцатеричная цифра считаются частью reachable destination или префикса. В адресе с длиной префикса 56 бит (/ 56) четыре левых раздела IPv6-адреса минус две шестнадцатеричные цифры считаются частью reachable destination или префикса. Пока вы всегда изменяете длину префикса с шагом 4 (/ 4, / 8, / 12, / 16 и т. Д.), значащие цифры или цифры, которые являются частью префикса, всегда будут перемещать единицу в вправо (при увеличении длины префикса) или влево (при уменьшении длины префикса). Агрегация иногда кажется сложной, но это важная часть IP. Некоторая часть адресного пространства используется при автоконфигурации. Важно учитывать взаимодействие между автоконфигурацией и назначением адреса IPv6. Как правило, необходимо выделить некоторый объем адресного пространства, чтобы гарантировать, что никакие два устройства, подключенные к сети, не будут иметь одинаковый идентификатор. В случае IPv6 половина адресных пространств (все, что больше / 64) в определенных диапазонах адресов выделяется для формирования уникальных идентификаторов для каждого устройства. В-третьих, некоторые адреса зарезервированы для специального использования. Например, в IPv6 следующие адресные пространства предназначены для специального использования: ::ffff / 96 зарезервирован для IPv4-адресов, которые "сопоставляются" с адресным пространством IPv6. fc00 :: / 7 зарезервирован для уникальных локальных адресов (ULA); пакеты с этими адресами не предназначены для маршрутизации в глобальном Интернете, а скорее хранятся в сети одной организации. fe80::/10 выделен для локальных адресов связи; эти адреса автоматически назначаются на каждом интерфейсе и используются только для связи по одному физическому или виртуальному каналу связи. :: / 0 устанавливается в качестве маршрута по умолчанию; если сетевое устройство не знает никакого другого способа добраться до определенного пункта назначения, оно будет перенаправлять трафик по маршруту по умолчанию. В-четвертых, устройствам может быть присвоено несколько адресов. Многие сетевые администраторы склонны думать об адресе так, как если бы он описывал один узел или систему. На самом деле, один адрес может быть использован для описания многих вещей, в том числе: Один хост или система Единый интерфейс на хосте или в системе; хост с несколькими интерфейсами будет иметь несколько адресов Набор доступных сервисов на хосте или системе; например, виртуальной машине или конкретной службе, работающей на хосте, может быть назначен адрес, отличный от любого из адресов, назначенных интерфейсам хоста. Не существует необходимой прямой корреляции между адресом и физическим устройством или между адресом и физическим интерфейсом. Мультиплексирование между процессами Второй механизм мультиплексирования позволяет нескольким протоколам работать на одном и том же базовом уровне. Эта форма мультиплексирования обеспечивается через номера протоколов. Рисунок 8 демонстрирует это. next header заголовка либо указывает на: next header в пакете IPv6, если есть next header Номер протокола, если next header является транспортным протоколом (например, TCP). Эти дополнительные заголовки называются дополнительными или расширенными заголовками; некоторые из них имеют фиксированную длину, а другие основаны на TLV; например: Параметрах Hop-by-hop: набор TLV, описывающих действия, которые должно предпринять каждое устройство пересылки. Маршрутизации: набор типов маршрутов фиксированной длины, используемых для указания пути, по которому пакет должен пройти через сеть. Фрагмент: набор полей фиксированной длины, содержащий информацию о фрагменте пакета. Заголовок аутентификации: набор TLV, содержащих информацию аутентификации и / или шифрования. Jumbogram: необязательное поле длины данных, позволяющее пакету IPv6 нести на один байт менее 4 ГБ данных. next header имеет длину 8 бит, что означает, что оно может содержать число от 0 до 255. Каждое число в этом диапазоне присваивается либо определенному типу заголовка опции, либо конкретному протоколу более высокого уровня. Например: 0: next header -это опция IPv6 hop-by-hop. 1: Полезная нагрузка пакета - это протокол Internet Control Message Protocol (ICMP). 6: Полезная нагрузка пакета-TCP. 17: Полезная нагрузка пакета - это UDP. 41: Полезная нагрузка пакета-IPv6. 43: next header - это routing header IPv6 44: next header -это fragment header IPv6 50: next header -это Encapsulated Security Header (ESH). Номер протокола используется принимающим хостом для отправки содержимого пакета правильному локальному процессу для обработки; обычно это означает удаление заголовков нижнего (физического) уровня из пакета, помещение пакета во входную очередь для правильного процесса (например, TCP), а затем уведомление операционной системы о том, что соответствующий процесс должен быть запущен.
img
Это подробное руководство предоставит вам информацию для эффективного сравнения лицензий Open Source, что должно помочь вам при выборе лицензии Open Source, подходящей для Вашего проекта. Итак, вы уже некоторое время работаете над крутым проектом – и вот вы готовы сделать важный шаг и превратить ваш закрытый код в открытый. Эта задача кажется несложной – просто почистить исходники и историю версий перед тем, как залить свой репозиторий на GitHub или Bitbucket... пока не всплывает вопрос о лицензии. Оказывается, выбор такой широкий. Какую лицензию выбрать? И нужна ли она вам вообще на самом деле? Можно коротко ответить на последний вопрос: да, вам действительно нужна лицензия. А на вопрос о том, какая лицензия вам нужна, мой ответ ещё короче: когда как. Но если вы серьёзно относитесь к своему проекту, вам, вероятно, потребуется немного больше деталей. Что ж, читайте дальше – и помните: вы вступаете на территорию бесконечных споров! Нужна ли мне лицензия? И что вообще такое лицензия? Лицензия – это официальное разрешение, предоставленное автором какой-либо работы («Лицензиаром») сторонним лицам («Лицензиатам») и регулирующее использование лицензиатом работы лицензиара. Она имеет форму договора, с которым должны согласиться обе стороны. В наше время - это согласие бывает неявным: подразумевается, что, просто используя какую-либо работу, вы соглашаетесь с условиями её лицензии на использование. Поясню: выпуская свою собственную работу, лицензиаром являетесь именно вы. А лицензиатом – любое лицо, использующее ваш код. Проще говоря, речь идёт о двух главных категориях: разработчиках и конечных пользователях. И для закрепления ещё некоторых терминов: модифицируя вашу работу, лицензиат создаёт то, что называется производной работой (производным произведением). Не все лицензии одинаково трактуют то, становится ли более масштабный по сравнению с вашей работой проект производным произведением, если она была использована в этом проекте. Как вы увидите ниже, некоторые лицензии отдельно прописывают такие случаи. Какова цель лицензии? В целом, лицензия – это способ договориться о правах и обязанностях сторон для лицензиара и лицензиата. Эти права и обязанности могут быть любыми – в рамках законодательства. К примеру, лицензиар может потребовать обязательного указания имени правообладателя при использовании работы лицензиатом. Или разрешить копирование своей работы, но запретить любую её модификацию. Или даже потребовать, чтобы производная работа выпускалась на тех же условиях, что и оригинальная. С другой стороны, лицензия защищает и лицензиата. Поскольку в ней явно прописаны условия использования работы, ему не угрожает то, что вы внезапно потребуете лицензионные отчисления или любые другие виды компенсации за использование своей работы. Это важно для распространения вашей работы. Итак, лицензия защитит вашу работу. Защитит лицензиата. Но помимо этого она защитит и вас – и я имею в виду вас лично. К примеру, ограничивая ответственность лицензиара за потенциальный вред, причиной которого стала его работа. А что, если я не буду использовать лицензию? При отсутствии лицензии, ассоциированной с работой, «по умолчанию» действуют авторские права в соответствии с юрисдикцией страны автора. Другими словами, никогда не считайте, что «отсутствие лицензии» подразумевает, что другие люди могут делать с вашей работой что угодно. Всё как раз наоборот: без определенной лицензии вы, автор, не отказываетесь ни от каких прав, предоставленных законом. Но всегда помните, что лицензия регулирует права и обязанности. Вы когда-нибудь задумывались, почему в тексте многих лицензий содержится написанное БУКВАМИ В ВЕРХНЕМ РЕГИСТРЕ предупреждение о гарантиях, предоставляемых вместе с продуктом – или, куда чаще, об отсутствии таковых? Это делается для того, чтобы защитить владельца работы от пользовательских ожиданий и того, что подразумевается какая-либо гарантия. Последнее, что вам нужно – это чтобы на ваш открытый код подали в суд! Могу ли я использовать кастомную (собственную) лицензию? Да, можете. Но, вероятно, не стоит этого делать. Являясь договором, лицензия не может иметь приоритет над территориальными законами. Отсюда возникает сложность соблюдения лицензионных прав в глобализированном мире. Скорее всего, будет проще (я имею в виду, менее сложно) защитить в суде «стандартную» лицензию. Собственно, такие дела уже защищались в некоторых юрисдикциях и на них можно ссылаться в качестве прецедента. Очевидно, что нельзя сказать то же про кастомную лицензию. К тому же, кастомные лицензии (прозванные «лицензиями для тщеславных») могут оказаться несовместимыми с другими лицензиями, результатом чего станет плохая совместимость вашей работы. Могу ли я использовать несколько лицензий? Да. Мульти-лицензирование – и в особенности двойное лицензирование – встречается нередко. Это особенно верно, если вы хотите создать бизнес на основе своего бесплатного произведения. В этом случае ваш проект, скорее всего, будет выпушен одновременно и под лицензией FOSS (Free And Open Source Software - Свободное и открытое программное обеспечение), и под коммерческой лицензией. Другое применение мульти-лицензирования – для улучшения совместимости, чтобы ваша работа была сочетаема с работами, опубликованными под другими условиями, или для удовлетворения иных потребностей и запросов пользователей. По этой причине некоторые проекты выпускаются под несколькими лицензиями FOSS. Но предупреждаю: не все лицензии совместимы между собой! Опять же, я рекомендую не переизобретать колесо и использовать лицензии, совместимость которых широко известна, если вы хотите пойти этим путём. Могу ли я поменять лицензию «позже»? Да. Держатель авторских прав отвечает за условия лицензирования. Довольно просто поменять лицензию, если вы – единственный автор. Но если, в качестве яркого примера, Линус Торвальдс захочет выпустить ядро Линукс под другой лицензией, ему, вероятно, сначала потребуется согласие нескольких тысяч других участников этого проекта. Это невозможно в действительности. Для проекта средней величины это реально. И на самом деле делалось, как вы увидите в некоторых примерах ниже. Какую лицензию Open Source мне следует использовать? Хорошо, допустим, мне удалось убедить вас в том, что вам нужна стандартная лицензия. Но какую выбрать? Окончательный выбор за вами. И в сети достаточно хороших компараторов, которые помогут вам в этом выборе. Вот некоторые их них: http://oss.ly/licdif https://choosealicense.com/ или https://choosealicense.com/appendix/ https://opensource.org/licenses https://tldrlegal.com/ Но как всегда в юридических вопросах, надежнее всего будет прочитать – и понять – официальный текст самих лицензий. Для этого может потребоваться помощь профессионального юриста. Рассмотрим некоторые общие сведения о наиболее распространённых лицензий, чтобы помочь вам сделать первые шаги в нужном направлении. Стандартная общественная лицензия GNU (GPL - GNU General Public License) GPL – одна из наиболее популярных лицензий Open Source. У неё есть несколько версий – но для нового проекта вам лучше рассматривать последнюю из них, на момент написания этой статьи ей является GPL 3. Поддерживая сильный копилефт, GPL, пожалуй, защищает больше всех остальных свободных лицензий. Что может быть, как плюсом, так и минусом, в зависимости от вашей точки зрения. Основной концепт GPL – что любые производные работы должны также выпускаться под этой лицензией. Copyleft - это практика предоставления людям права свободно распространять копии и измененные версии произведения с условием сохранения тех же прав в производных работах, созданных позже. Сильный копилефт; Лицензиаты могут модифицировать работу; Лицензиаты могут распространять исходный код вместе с производной работой; Производная работа должна выпускаться на тех же условиях. Популярные проекты GPL – лицензия, наилучшим образом подходящая для проектов Фонда свободного программного обеспечения (Free Software Foundation - FSF), в том числе за счёт инструментов GNU в основе любой системы Linux. Большие проекты – заведомо коммерческие – часто используют GPL вместе с одной или несколькими другими лицензиями. Inkscape (векторный графический редактор): GPLv2 Drupal (система управления веб-контентом): GPLv2 MariaDB (базы данных): GPL v2 MySQL (базы данных): GPL и коммерческая лицензия Qt (кроссплатформенный фреймворк для разработки приложений): LGPL, GPL и коммерческая лицензия— в зависимости от модулей и соглашения об уровне обслуживания (SLA). Меньшая стандартная общественная лицензия GNU (LGPL - GNU Lesser General Public License) GPL – лицензия, очень строгая к тому, чтобы каждая производная работа публиковалась на тех же условиях, что и исходная, и с открытым исходным кодом. Это особенно неудобно в случае с библиотеками, которые служат «кирпичами» для крупных программных продуктов: если библиотека выпущена под GPL, то любое использующее её приложение должно также выпускаться под GPL. Эту сложность адресует LGPL. В отношении библиотек Фонд свободного программного обеспечения (FSF) выделяет три случая: Ваша библиотека реализует стандарт, который конкурирует с несвободным стандартом. В таком случае широкое распространение вашей библиотеки поможет продвижению свободного ПО. В этой ситуации FSF рекомендует использование довольно либеральной (разрешительной) лицензии Apache (она описана в статье далее). Ваша библиотека реализует стандарт, уже реализованный другими библиотеками. В этом случае, полный отказ от копилефта никак не послужит продвижению свободного ПО. Для этого случая FSF рекомендует LGPL. Наконец, если ваша библиотека не конкурирует ни с какими другими библиотеками или стандартами, FSF рекомендует GPL. Рекомендации FSF имеют преимущественно этические и идеологические основания. В жизни у разработчиков могут быть иные заботы. Особенно если они планирует развивать дело на базе своей лицензированной работы. Ещё раз, возможно, в таком случае стоит присмотреться к двойному лицензированию. Слабый копилефт (из-за динамического связывания с библиотеками); Разрешено коммерческое использование работы; Лицензиаты могут модифицировать работу; Лицензиаты могут выпускать исходный код вместе с производной работой; Если вы модифицируете работу, её необходимо выпускать на тех же условиях; Если вы просто используете работу (в качестве библиотеки), нет необходимости выпускать производную работу на тех же условиях. Популярные проекты OpenOffice.org 3 (пакет офисных приложений): LGPLv3 — но Apache OpenOffice 4 перешёл на лицензию Apache 2.0. GTK+, the GIMP Toolkit (библиотека элементов графического интерфейса): LGPLv2.1 CUPS (кроссплатформенная система печати): GPL or LGPLv2, за исключением ОС Apple, — в зависимости от компонентов. WineHQ (слой совместимости с Windows): LGPLv2.1 GNU Aspell (проверка орфографии): LGPLv2.1 Eclipse Public License (EPL 1.0) С более слабым копилефтом, чем в LGPL, лицензия Eclipse больше подходит для бизнеса и допускает сублицензирование и создание программного обеспечения (ПО) на основе кода как под EPL, так и под другими лицензиями (даже проприетарными), с условием, что код под другой лицензией вынесен в отдельный модель программного продукта. Кроме того, EPL предоставляет дополнительную защиту соавторам кода под EPL в случае судебных исков/ущерба, вызванного коммерческой деятельностью, связанной с этой работой. Слабый копилефт (из-за связанных подключаемых в продукт модулей); Разрешено коммерческое использование работы; Лицензиаты могут модифицировать работу; Если вы модифицируете работу, её необходимо выпускать на тех же условиях; Если вы просто используете работу, нет необходимости выпускать производную работу на тех же условиях При коммерческом распространении продукта распространители обязаны защитить или выплатить компенсацию оригинальным авторам (под EPL) в случае судебных исков/ущерба в результате коммерческого использования продукта. Популярные проекты Очевидно, что EPL – наиболее подходящая лицензия для проектов Eclipse Foundation, в том числе Eclipse IDE. Но она прибрела некоторую популярность и за пределами этого – особенно в мире разработки на Java: Clojure (язык программирования) Graphviz (пакет утилит по визуализации графов) Jetty (сервер для приложений): двойная лицензия EPL1.0/Apache 2.0 с версии Jetty 7 JUnit (фреймворк для модульного тестирования ПО на Java) Mozilla Public License (MPL) MPL – лицензия, которая используется для ПО, созданного Mozilla Foundation. Но её применение этим не ограничено. MPL пытается достичь компромисса между строгими лицензиями (такими как GPL) и либеральными лицензиями (такими как лицензия MIT). «Лицензионной единицей» в MPL является исходный файл. Лицензиарам запрещено ограничивать права пользователей и доступ к любому файлу, на который распространяется MPL. Но один и тот же проект может содержать как файлы под MPL, так и файлы под проприетарной лицензией. Полученный в результате проект может быть опубликован под любой лицензией, при условии, что предоставляется доступ к файлам под MPL. Слабый копилефт (в связи с отдельными файлами); Разрешено коммерческое использование работы; Лицензиаты могут модифицировать работу; Лицензиаты должны упоминать соответствующее авторство работы; Лицензиаты могут распространять производную работу на других условиях; Лицензиаты не могут заново лицензировать исходный код под MPL; Лицензиаты обязаны выпускать исходный код под MPL вместе со своей производной работой. Популярные проекты Mozilla Firefox (веб-браузер), Mozilla Thunderbird (почтовый клиент): MPL LibreOffice (пакет офисных приложений): MPL 2.0 H2 Database Engine (база данных): MPL2.0 и Eclipse License 1.0 Cairo (2D графическая библиотека) MPL 1.1 или LGPLv2.1 Apache License 2.0 (ASL 2.0) С ASL мы попадаем в мир либеральных свободных лицензий. Но даже FSF в некоторых случаях рекомендует лицензию Apache. Лицензия Apache считается либеральной, поскольку не требует того, чтобы какие-либо производные работы выпускались на тех же условиях. Другими словами, это «не-копилефт» лицензия. ASL – единственная лицензия, которая используется для проектов Apache Software Foundation. Считающаяся удобной для бизнеса, она получила широкое распространение за пределами этой организации. Можно нередко увидеть проекты корпоративного уровня, выпущенные под этой лицензией. Не-копилефт; Разрешено коммерческое использование работы; Лицензиаты могут модифицировать работу; Лицензиаты должны упоминать соответствующее авторство работы; Лицензиаты могут распространять производную работу на других условиях; Лицензиаты не обязаны выпускать исходный код вместе со своей производной работой. Популярные проекты Android (операционная система): ASL 2.0 с некоторыми исключениями (особенно касательно ядра Linux) Apache httpd (веб-сервер): ASL 2.0 Apache Spark (кластерная вычислительная система): ASL 2.0 Spring Framework (фреймворк для создания корпоративных приложений на Java): ASL 2.0 MIT License Ещё одна очень популярная лицензия. Возможно, даже самая популярная. Устанавливая совсем немного ограничений на повторное использование, лицензия MIT может быть легко связана с другими лицензиями, будь то GPL или проприетарные лицензии. Не-копилефт; Разрешено коммерческое использование работы; Лицензиаты могут модифицировать работу; Лицензиаты должны упоминать соответствующее авторство работы; Лицензиаты могут распространять производную работу на других условиях; Лицензиаты не обязаны выпускать исходный код вместе со своей производной работой. Популярные проекты node.js (среда выполнения для JavaScript): MIT License jQuery (клиентская библиотека JavaScript): MIT License (до 2012, двойная лицензия MIT/GPL) Atom (текстовый редактор): MIT License AngularJS (JavaScript- фреймворк): MIT License SQLAlchemy (инструментарий SQL и объектно-реляционное отображение для Python): MIT License Лицензии BSD Лицензии BSD бывают трёх видов. Оригинальная лицензия «4-х пунктов», «пересмотренная» лицензия, состоящая из 3-х пунктов и «упрощённая» лицензия из 2-х пунктов. По духу все три очень близки к лицензии MIT. И действительно, между упрощенной лицензией BSD и лицензией MIT нет существенных различий. Лицензии BSD, состоящие из 3-х и 4-х пунктов, содержат больше требований в отношении повторного использования наименований и рекламы. Это полезно учесть, если вы хотите защитить название вашего продукта или марки. Не-копилефт; Разрешено коммерческое использование работы; Лицензиаты могут модифицировать работу; Лицензиаты должны упоминать соответствующее авторство работы; Лицензиаты могут распространять производную работу на других условиях; Лицензиаты не обязаны выпускать исходный код вместе со своей производной работой; Лицензиаты не могут использовать название продукта или торговую марку оригинального автора для продвижения своей производной работы (лицензии BSD из 3-х и 4-х пунктов); Лицензиаты обязаны упоминать оригинального автора работы во всех рекламных материалах, ссылающихся на функции или использование этой работы (лицензия BSD из 4-х пунктов). Популярные проекты Django (фреймворк для веб-приложений): лицензия BSD из 3-х пунктов Redis (хранилище данных): лицензия BSD из 3-х пунктов Ruby (язык программирования): лицензия BSD из 2-х пунктов и кастомная лицензия Nginx (веб-сервер): лицензия BSD из 2-х пунктов NetBSD (операционная система): лицензия BSD из 2-х пунктов — лицензия BSD «4-х пунктов» до 2008 В заключение о лицензиях Open Source Вы дочитали до этого места, поздравляю! Теперь вы понимаете, что лицензирование – это обширная и сложная тема. Но потратить время на то, чтобы выбрать подходящую лицензию для вашего проекта – стоит того, и лучше сделать этот выбор как можно раньше. Это убережёт вас от множества проблем в дальнейшем, и вы сможете направить ваше время и энергию на работу над проектом вместо того, чтобы тратить силы на разборки с авторским правом и юридической совместимостью лицензий. И помимо нескольких известных лицензий, о которых вкратце рассказано здесь, существует ещё множество других, используемых более или менее широко. Поэтому, не стесняйтесь писать в комментариях о том, какую лицензию вы предпочитаете и почему.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59