По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье рассказываем как восстановить потерянный или забытый пароль root пользователя в утилите VMware vCenter Server в версиях 5.5 и 6.0. Для поздних версий инструкцию по сбросу пароля смотрите здесь. Решение В vCenter Server Appliance 5.5 и 6.0 пароль локальной учетной записи по умолчанию истекает через 90 дней. В vCenter Server Appliance 5.5 Update 1 срок действия пароля истекает также через 90 дней. Однако вы можете войти в систему через командную строку и обновить пароль после истечения срока действия пароля. Чтобы решить эту проблему необходимо: Повторно активировать учетную запись путем перезагрузки устройства vCenter Server Изменить параметр ядра в загрузчике GRUB, чтобы получить оболочку с правами root. Примечание: если учетная запись root недоступна через командную строку, такую как secure shell и интерфейс управления виртуальными устройствами (VAMI) (vCenter Server Appliance 5.5 и 6.0 Update 1), то это означает, что учетная запись root не активyf из-за истечения срока действия пароля. Инструкция по повторной активации учетной записи и изменению ядра Перезагрузите устройство vCenter Server с помощью клиента vSphere. Когда появится загрузчик GRUB, нажмите пробел, чтобы отключить автозагрузку. Примечание: после включения питания виртуальным машинам требуется небольшое время, чтобы выйти из BIOS/EFI и запустить гостевую операционную систему. Вы можете настроить задержку загрузки или принудительно запустить виртуальную машину поверх экрана настройки BIOS или EFI после включения питания. Введите p, чтобы получить доступ к параметрам загрузки устройства. Введите пароль GRUB. Примечание: Если устройство vCenter Server используется без изменения пароля суперпользовавтеля в интерфейсе управления виртуальными устройствами (VAMI), то пароль GRUB по умолчанию - vmware. Если root пароль устройства vCenter Server сброшен с помощью VAMI, пароль GRUB - это последний пароль, установленный в VAMI для учетной записи root. Используйте клавиши со стрелками для выделения устройства VMware vCenter Server и нажмите e для редактирования команд загрузки. Прокрутите страницу до второй строки, отображающей параметры загрузки ядра. Введите e, чтобы изменить команду загрузки. Добавьте init=/bin/bash к параметрам загрузки ядра. Нажмите Enter. Меню GRUB появится снова. Введите b, чтобы начать процесс загрузки. Система загрузит оболочку. Сбросьте пароль суперпользователя, выполнив команду passwd root. Перезагрузите устройство, выполнив команду reboot.Если вы не можете перезагрузить устройство, выполнив команду reboot, то выполните следующие команды: mkfifo /dev/initctl reboot -f Примечание: если учетная запись с правами root заблокирована в течение длительного времени, это может быть связано с отсутствием места в журнале сообщений. Сопутствующая информация В vCenter Server Appliance вы можете установить свой собственный период истечения срока действия пароля и схему предупреждений по электронной почте на вкладке Admin интерфейса управления виртуальным устройством (VAMI). Адреса электронной почты, настроенные на вкладке Admin В VAMI (https://IP_address:5480 или https://VAMI_host_name:5480) будут получать уведомления по электронной почте каждый день в течение семи дней до истечения срока действия пароля. Параметры электронной почты, такие как ретрансляционный SMTP-сервер, настраиваются через клиент vSphere в настройках почты vCenter Server.
img
Девятая часть тут. Ни одна среда передачи данных не может считаться совершенной. Если среда передачи является общей, как радиочастота (RF), существует возможность возникновения помех или даже столкновений дейтаграмм. Это когда несколько отправителей пытаются передать информацию одновременно. Результатом является искаженное сообщение, которое не может быть понято предполагаемым получателем. Даже специализированная среда, такая как подводный оптический кабель типа point-to-point (световолновой), может испытывать ошибки из—за деградации кабеля или точечных событий-даже, казалось бы, безумных событий, таких как солнечные вспышки, вызывающие излучение, которое, в свою очередь, мешает передаче данных по медному кабелю. Существует два ключевых вопроса, на которые сетевой транспорт должен ответить в области ошибок: Как можно обнаружить ошибки при передаче данных? Что должна делать сеть с ошибками при передаче данных? Далее рассматриваются некоторые из возможных ответов на эти вопросы. Обнаружение ошибок Первый шаг в работе с ошибками, независимо от того, вызваны ли они отказом носителя передачи, повреждением памяти в коммутационном устройстве вдоль пути или любой другой причиной, заключается в обнаружении ошибки. Проблема, конечно, в том, что когда получатель изучает данные, которые он получает, нет ничего, с чем можно было бы сравнить эти данные, чтобы обнаружить ошибку. Проверка четности — это самый простой механизм обнаружения. Существуют два взаимодополняющих алгоритма проверки четности. При четной проверке четности к каждому блоку данных добавляется один дополнительный бит. Если сумма битов в блоке данных четная—то есть если в блоке данных имеется четное число битов 1, то дополнительный бит устанавливается равным 0. Это сохраняет четное состояние четности блока. Если сумма битов нечетна, то дополнительный бит устанавливается равным 1, что переводит весь блок в состояние четной четности. Нечетная четность использует ту же самую дополнительную битную стратегию, но она требует, чтобы блок имел нечетную четность (нечетное число 1 бит). В качестве примера вычислите четную и нечетную четность для этих четырех октетов данных: 00110011 00111000 00110101 00110001 Простой подсчет цифр показывает, что в этих данных есть 14 «1» и 18 «0». Чтобы обеспечить обнаружение ошибок с помощью проверки четности, вы добавляете один бит к данным, либо делая общее число «1» в недавно увеличенном наборе битов четным для четной четности, либо нечетным для нечетной четности. Например, если вы хотите добавить четный бит четности в этом случае, дополнительный бит должен быть установлен в «0». Это происходит потому, что число «1» уже является четным числом. Установка дополнительного бита четности на «0» не добавит еще один «1» и, следовательно, не изменит, является ли общее число «1» четным или нечетным. Таким образом, для четной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 0 С другой стороны, если вы хотите добавить один бит нечетной четности к этому набору битов, вам нужно будет сделать дополнительный бит четности «1», так что теперь есть 15 «1», а не 14. Для нечетной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 1 Чтобы проверить, были ли данные повреждены или изменены при передаче, получатель может просто отметить, используется ли четная или нечетная четность, добавить число «1» и отбросить бит четности. Если число «1» не соответствует используемому виду четности (четное или нечетное), данные повреждены; в противном случае данные кажутся такими же, как и первоначально переданные. Этот новый бит, конечно, передается вместе с оригинальными битами. Что произойдет, если сам бит четности каким-то образом поврежден? Это на самом деле нормально - предположим, что даже проверка четности на месте, и передатчик посылает 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110011 00111000 00110101 00110001 1 Сам бит четности был изменен с 0 на 1. Приемник будет считать «1», определяя, что их 15. Поскольку даже проверка четности используется, полученные данные будут помечены как имеющие ошибку, даже если это не так. Проверка на четность потенциально слишком чувствительна к сбоям, но в случае обнаружения ошибок лучше ошибиться в начале. Есть одна проблема с проверкой четности: она может обнаружить только один бит в передаваемом сигнале. Например, если даже четность используется, и передатчик отправляет 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110010 00111000 00110101 00110000 0 Приемник подсчитает число «1» и обнаружит, что оно равно 12. Поскольку система использует четную четность, приемник будет считать данные правильными и обработает их в обычном режиме. Однако оба бита, выделенные жирным шрифтом, были повреждены. Если изменяется четное число битов в любой комбинации, проверка четности не может обнаружить изменение; только когда изменение включает нечетное число битов, проверка четности может обнаружить изменение данных. Циклическая проверка избыточности (Cyclic Redundancy Check - CRC) может обнаруживать более широкий диапазон изменений в передаваемых данных, используя деление (а не сложение) в циклах по всему набору данных, по одной небольшой части за раз. Работа с примером - лучший способ понять, как рассчитывается CRC. Расчет CRC начинается с полинома, как показано на рисунке 1. На рис. 1 трехчленный многочлен x3 + x2 + 1 расширен, чтобы включить все члены, включая члены, предшествующие 0 (и, следовательно, не влияют на результат вычисления независимо от значения x). Затем эти четыре коэффициента используются в качестве двоичного калькулятора, который будет использоваться для вычисления CRC. Чтобы выполнить CRC, начните с исходного двоичного набора данных и добавьте три дополнительных бита (поскольку исходный полином без коэффициентов имеет три члена; следовательно, это называется трехбитной проверкой CRC), как показано здесь: 10110011 00111001 (оригинальные данные) 10110011 00111001 000 (с добавленными битами CRC) Эти три бита необходимы для обеспечения того, чтобы все биты в исходных данных были включены в CRC; поскольку CRC перемещается слева направо по исходным данным, последние биты в исходных данных будут включены только в том случае, если эти заполняющие биты включены. Теперь начните с четырех битов слева (потому что четыре коэффициента представлены в виде четырех битов). Используйте операцию Exclusive OR (XOR) для сравнения крайних левых битов с битами CRC и сохраните результат, как показано здесь: 10110011 00111001 000 (дополненные данные) 1101 (Контрольные биты CRC) ---- 01100011 00111001 000 (результат XOR) XOR'инг двух двоичных цифр приводит к 0, если эти две цифры совпадают, и 1, если они не совпадают. Контрольные биты, называемые делителем, перемещаются на один бит вправо (некоторые шаги здесь можно пропустить), и операция повторяется до тех пор, пока не будет достигнут конец числа: 10110011 00111001 000 1101 01100011 00111001 000 1101 00001011 00111001 000 1101 00000110 00111001 000 110 1 00000000 10111001 000 1101 00000000 01101001 000 1101 00000000 00000001 000 1 101 00000000 00000000 101 CRC находится в последних трех битах, которые были первоначально добавлены в качестве заполнения; это "остаток" процесса разделения перемещения по исходным данным плюс исходное заполнение. Получателю несложно определить, были ли данные изменены, оставив биты CRC на месте (в данном случае 101) и используя исходный делитель поперек данных, как показано здесь: 10110011 00111001 101 1101 01100011 00111001 101 1101 00001011 00111001 101 1101 00000110 00111001 101 110 1 00000000 10111001 101 1101 00000000 01101001 101 1101 00000000 00000001 101 1 101 00000000 00000000 000 Если данные не были изменены, то результат этой операции всегда должен быть равен 0. Если бит был изменен, результат не будет равен 0, как показано здесь: 10110011 00111000 000 1101 01100011 00111000 000 1101 00001011 00111000 000 1101 00000110 00111000 000 110 1 00000000 10111000 000 1101 00000000 01101000 000 1101 00000000 00000000 000 1 101 00000000 00000001 000 CRC может показаться сложной операцией, но она играет на сильных сторонах компьютера—бинарных операциях конечной длины. Если длина CRC задается такой же, как у стандартного небольшого регистра в обычных процессорах, скажем, восемь бит, вычисление CRC-это довольно простой и быстрый процесс. Проверка CRC имеет то преимущество, что она устойчива к многобитовым изменениям, в отличие от проверки четности, описанной ранее. Исправление ошибок Однако обнаружение ошибки — это только половина проблемы. Как только ошибка обнаружена, что должна делать транспортная система? Есть, по существу, три варианта. Транспортная система может просто выбросить данные. В этом случае транспорт фактически переносит ответственность за ошибки на протоколы более высокого уровня или, возможно, само приложение. Поскольку некоторым приложениям может потребоваться полный набор данных без ошибок (например, система передачи файлов или финансовая транзакция), у них, вероятно, будет какой-то способ обнаружить любые пропущенные данные и повторно передать их. Приложения, которые не заботятся о небольших объемах отсутствующих данных (например, о голосовом потоке), могут просто игнорировать отсутствующие данные, восстанавливая информацию в приемнике, насколько это возможно, с учетом отсутствующей информации. Транспортная система может подать сигнал передатчику, что произошла ошибка, и позволить передатчику решить, что делать с этой информацией (как правило, данные при ошибке будут повторно переданы). Транспортная система может выйти за рамки отбрасывания данных, включив достаточное количество информации в исходную передачу, определить, где находится ошибка, и попытаться исправить ее. Это называется Прямой коррекцией ошибок (Forward Error Correction - FEC). Коды Хэмминга, один из первых разработанных механизмов FEC, также является одним из самых простых для объяснения. Код Хэмминга лучше всего объяснить на примере - для иллюстрации будет использована таблица 1. В Таблице № 1: Каждый бит в 12-битном пространстве, представляющий собой степень двух (1, 2, 4, 6, 8 и т. д.) и первый бит, устанавливается в качестве битов четности. 8-битное число, которое должно быть защищено с помощью FEC, 10110011, распределено по оставшимся битам в 12-битном пространстве. Каждый бит четности устанавливается равным 0, а затем четность вычисляется для каждого бита четности путем добавления числа «1» в позиции, где двоичный бит имеет тот же бит, что и бит четности. В частности: P1 имеет набор крайних правых битов в своем битовом номере; другие биты в числовом пространстве, которые также имеют набор крайних правых битов, включены в расчет четности (см. вторую строку таблицы, чтобы найти все позиции битов в номере с набором крайних правых битов). Они указаны в таблице с X в строке P1. Общее число «1»-нечетное число, 3, поэтому бит P1 устанавливается равным 1 (в этом примере используется четная четность). P2 имеет второй бит из правого набора; другие биты в числовом пространстве, которые имеют второй из правого набора битов, включены в расчет четности, как указано с помощью X в строке P2 таблицы. Общее число «1»-четное число, 4, поэтому бит P2 установлен в 0. P4 имеет третий бит из правого набора, поэтому другие биты, которые имеют третий бит из правого набора, имеют свои номера позиций, как указано с помощью X в строке P3. В отмеченных столбцах есть нечетное число «1», поэтому бит четности P4 установлен на 1. Чтобы определить, изменилась ли какая-либо информация, получатель может проверить биты четности таким же образом, как их вычислял отправитель; общее число 1s в любом наборе должно быть четным числом, включая бит четности. Если один из битов данных был перевернут, приемник никогда не должен найти ни одной ошибки четности, потому что каждая из битовых позиций в данных покрыта несколькими битами четности. Чтобы определить, какой бит данных является неправильным, приемник добавляет позиции битов четности, которые находятся в ошибке; результатом является положение бита, которое было перевернуто. Например, если бит в позиции 9, который является пятым битом данных, перевернут, то биты четности P1 и P8 будут ошибочными. В этом случае 8 + 1 = 9, так что бит в позиции 9 находится в ошибке, и его переворачивание исправит данные. Если один бит четности находится в ошибке—например, P1 или P8—то это тот бит четности, который был перевернут, и сами данные верны. В то время как код Хэмминга гениален, есть много битовых шаблонов-перевертышей, которые он не может обнаружить. Более современный код, такой как Reed-Solomon, может обнаруживать и исправлять более широкий диапазон условий ошибки, добавляя меньше дополнительной информации в поток данных. Существует большое количество различных видов CRC и кодов исправления ошибок, используемых во всем мире связи. Проверки CRC классифицируются по количеству битов, используемых в проверке (количество битов заполнения или, точнее, длины полинома), а в некоторых случаях - по конкретному применению. Например, универсальная последовательная шина использует 5-битный CRC (CRC-5-USB); Глобальная система мобильной связи (GSM), широко используемый стандарт сотовой связи, использует CRC-3-GSM; Мультидоступ с кодовым разделением каналов (CDMA), другой широко используемый стандарт сотовой связи, использует CRC-6-CDMA2000A, CRC-6-CDMA2000B и CRC-30; и некоторые автомобильные сети (CAN), используемые для соединения различных компонентов в автомобиле, используют CRC-17-CAN и CRC-21-CAN. Некоторые из этих различных функций CRC являются не единственной функцией, а скорее классом или семейством функций со многими различными кодами и опциями внутри них.
img
Автоматически перезвонить клиенту через определенное время. Как вам? Оказывается, данный функционал легко реализуем путем настройки четырех опций. В данной статье кратко разберем модуль обратного звонка Callback в IP - АТС Elastix 4. Настройка Данный модуль можно найти по следующему пути: PBX → PBX Configuration → Callback (в разделе Remote Access). На скриншоте выше виден интерфейс создания Callback-а – как видно, интерфейс крайне прост. Для создания необходимо указать следующие параметры: Callback Description – описание обратного вызова, к примеру – cheap call to your mamma Callback Number – опциональное поле, можно указать номер отличный от номера вызывающего абонента, если оставить пустым – вызов от АТС поступит вызывающему абоненту Delay Before Callback– пауза в секундах перед совершением обратного вызова Destination after Callback – направление вызова после совершения Callback-а, логично ставить IVR для совершения вызова внутри компании или DISA для возможности набрать любой внешний номер. Далее необходимо нажать Submit Changes и данный коллбэк появится в списке справа. После создания обратного вызова, вы можете назначить его как опцию при входящем вызове или в интерактивном голосовом меню (IVR). В примере ниже используется обратный вызов с названием «test». Так же если АТС используется для личной связи можно настроить входящий маршрут таким образом, чтобы ваш звонок сразу попадал на коллбэк.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59