По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В первой части статей о протоколе Border Gateway Protocol (BGP) мы узнали и разобрали протокол BGP, а затем изучили типы сообщений BGP и состояния соседства. Сегодня, в этой статье, вы узнаете об одном из самых сложных аспектов BGP: как он принимает решение о выборе маршрута. В то время как протоколы маршрутизации, такие как RIP, OSPF и EIGRP, имеют свои собственные метрики, используемые для выбора «лучшего» пути к целевой сети, BGP использует коллекцию атрибутов пути (PAs). Предыдущие статьи цикла про BGP: Основы протокола BGP Видео: Основы BGP за 7 минут BGP- атрибуты пути (Path Attributes) Когда ваш спикер BGP получает BGP префикс, к нему будет прикреплено множество атрибутов пути, и мы знаем, что они будут иметь решающее значение, когда речь заходит о том, чтобы BGP выбрал самый лучший путь к месту назначения. Все атрибуты BGP- маршрута, делятся на четыре основные категории. Well-Known Mandatory Well-Known Discretionary Optional Transitive Optional Non-Transitive Обратите внимание, что две категории начинаются с термина Well-Known. Well-Known означает, что все маршрутизаторы должны распознавать этот атрибут пути. Две другие категории начинаются с термина Optional. Optional означает, что реализация BGP на устройстве вообще не должна распознавать этот атрибут. Тогда у нас есть термины mandatory и discretionary, связанные с термином Well-Known. Mandatory означает, что обновление должно содержать этот атрибут. Если атрибута нет, тогда появится сообщение об ошибке уведомления, и пиринг будет удален. Discretionary, конечно, будет означать, что атрибута не должно быть в обновлении. У необязательных категорий атрибутов есть- транзитивные и нетранзитивные. Если он транзитивен, то устройство должно передать этот атрибут пути своему следующему соседу. Если он не является транзитивным, то может просто игнорировать это значение атрибута. Пример 1 показывает проверку нескольких атрибутов пути для префикса, который был получен маршрутизатором TPA1 от маршрутизатора ATL. Обратите внимание, что мы используем команду show ip bgp для просмотра этой информации, которая хранится в базе данных маршрутизации BGP. В частности, этот вывод показывает атрибуты Next Hop, Metric (MED), LocPrf (Local Preference), Weight, и Path (AS Path). TPA1#show ip bgp BGP table version is 4, local router ID is 10.10.10.1 Status codes: s suppressed, d damped, h history, * valid, > best, i – internal, r RIB-failure, S Stale Origin codes^ I – IGP, e – EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path *> 100.100.100.0/24 10.10.10.2 0 200 i Атрибут Origin Атрибут ORIGIN в BGP-это попытка записать, откуда пришел префикс. Существует три возможности, когда речь заходит о происхождении этого атрибута: IGP, EGP и Incomplete. Как видно из легенды примера 1, коды, используемые Cisco для этих источников, являются i, e, и ?. Для префикса, показанного в примере 1, можно увидеть, что источником является IGP. Это указывает на то, что префикс вошел в эту топологию благодаря сетевой команде внутри конфигурации этого исходного устройства. Далее в этой статье мы рассмотрим сетевую команду во всей ее красе. Термин IGP здесь предполагает, что префикс произошел от записи протокола внутреннего шлюза (Gateway Protocol). Допустим, у нас есть префикс в нашей таблице маршрутизации OSPF, а затем мы используем сетевую команду внутри BGP, чтобы поместить его в экосистему BGP. Конечно, IGP - не единственный источник префиксов, которые могут нести этот атрибут. Например, вы можете создать локальный интерфейс обратной связи на устройстве, а затем использовать сетевую команду для объявления этого локального префикса в BGP. EGP ссылается на ныне устаревший протокол внешнего шлюза (Exterior Gateway Protocol), предшественник BGP. В результате вы не увидите этот исходный код. Incomplete означает, что BGP не уверен в том, как именно префикс был введен в топологию. Наиболее распространенным сценарием здесь является то, что префикс был перераспределен в Border Gateway Protocol из какого-то другого протокола, обычно IGP. Возникает вопрос, почему исходный код имеет такое значение. Ответ заключается в том, что это ключевой фактор, когда BGP использует свой алгоритм для выбора наилучшего пути к месту назначения в сети. Он может разорвать «связи» между несколькими альтернативными путями в сети. Мы также уделяем этому атрибуту большое внимание, потому что это действительно один из хорошо известных, обязательных атрибутов, которые должны существовать в наших обновлениях. Атрибут AS Path AS Path - это well-known mandatory атрибут. Он очень важен для наилучшего поиска пути, а также для предотвращения петель внутри Border Gateway Protocol. Рассматривая нашу топологию, показанную на рисунке 1, рассмотрим префикс, возникший в TPA. Обновление отправляется в TPA1, и TPA не добавляет свой собственный AS 100 в AS Path, так как сосед, которому он отправляет обновление, находится в своем собственном AS в соответствии с пирингом iBGP. Когда TPA1 отправляет обновления на ATL, он добавляет номер 100 в обновления. Следуя этой логике, ATL отправит обновления на ATL2 и не будет добавлять свой собственный номер в качестве AS. Это будет работать до тех пор, пока ATL2 не отправит обновления на какой-то другой AS, предшествующий AS 200. Это означает, что, когда мы рассматриваем образец AS path, как показано в примере 2, крайним правым в пути является AS, который первым создал префикс (100), а крайним левым- AS, который доставил префикс на локальное устройство (342). Пример 2: Пример BGP AS Path Атрибут Next Hop На самом деле нет ничего удивительного в том, что префикс BGP имеет атрибут под названием Next Hop. В конце концов, маршрутизатор должен знать, куда отправлять трафик для этого префикса. Next Hop атрибут удовлетворяет эту потребность. Интересным моментом здесь, однако, является тот факт, что Next Hop в BGP работает не так же, как это происходит в большинстве IGP. Также следует отметить, что правила меняются, когда вы рассматриваете iBGP в сравнении с eBGP. При рассмотрении протокола внутреннего шлюза, когда устройство отправляет обновление своему соседу, значением Next Hop по умолчанию является IP-адрес интерфейса, с которого отправляется обновление. Этот параметр продолжает сбрасываться каждым маршрутизатором по мере прохождения обновления через топологию. Next Hop принимает простую парадигму «hop-by-hop». С помощью BGP, когда у нас есть пиринг eBGP и отправляется префикс, Next Hop действительно будет (по умолчанию) IP-адресом спикера eBGP, отправляющего обновление. Однако IP-адрес этого спикера eBGP будет сохранен в качестве Next Hop, поскольку префикс передается от спикера iBGP к спикеру iBGP. Очень часто мы видим атрибут Next Hop, являющийся IP-адресом, который не является устройством, передавшим нам обновление. Это действительно адрес, который представляет собой соседний AS, который предоставил нам префикс. Таким образом, правильно думать о BGP как о протоколе «AS-to-AS» вместо протокола «hop-to-hop». Это может вызвать определенные проблемы. Основной вывод состоит в том, что вы должны гарантировать, что все ваши спикеры BGP могут достичь значения Next Hop указанного в атрибуте, чтобы путь считался допустимым. Иначе говоря, спикеры BGP будут считать префикс недопустимым, если они не смогут достичь значения Next Hop. К счастью, эту проблему можно обойти. Вы можете взять устройство iBGP и проинструктировать его, установив себя в качестве значения Next Hop всякий раз, когда вам это нужно. Это делается с помощью манипуляции пирингом командой neighbor, как показано в примере 3. ATL (config)# router bgp 200 ATL (config-router)# neighbor 10.10.10.1 next-hop-self Атрибут BGP Weight (веса) Weight (вес) - это очень интересный атрибут BGP, так как он специфичен для Cisco. Хорошая новость заключается в том, что, поскольку Cisco является гигантом в отрасли сетей, то многие другие производители будут поддерживать использование Weight в качестве атрибута. Weight также является одним из самых уникальных атрибутов, поскольку это значение не передается другим маршрутизаторам. Weight - это значение, которое присваивается нашим префиксам как локально значимое значение. Weight - это простое число в диапазоне от 0 до 65535, и чем выше значение веса, тем выше предпочтение этого пути. Когда префикс генерируется локально, он будет иметь вес 32768. В противном случае вес префикса по умолчанию равен 0. Как можно использовать вес? Поначалу это покажется странным, так как он не передается другим спикерам BGP. Однако все просто. Допустим, ваш маршрутизатор получает один и тот же префикс от двух разных автономных систем, с которыми он работает. Если администратор хочет предпочесть один из путей по какой-либо причине, он может манипулировать локальным значением веса на предпочтительном пути и мгновенно влиять на процесс принятия решения о наилучшем пути BGP. BGP Best Path (выбор лучшего пути) Как было сказано ранее, мы знаем, что у IGP есть метрическое значение, которое является ключевым для определения наилучшего пути к месту назначения. В случае с OSPF эта метрика основана на стоимости, которая основана на пропускной способности. У BGP существует множество атрибутов пути, которые может иметь префикс. Все они поддаются алгоритму выбора наилучшего пути BGP. На рисунке 2 показаны шаги (начиная сверху), которые используются в выборе наилучших путей Cisco BGP. Изучая эти критерии выбора пути, вы можете сразу же задаться вопросом, почему он должен быть таким сложным. Помните, когда мы имеем дело с чем-то вроде интернета, мы хотим, чтобы было как можно больше регулировок для политики BGP. Мы хотим иметь возможность контролировать, насколько это возможно, как префиксы используются совместно и предпочтительно в такой большой и сложной сети.
img
Под телефонными (VoIP) кодеками понимаются различные математические модели используемые для цифрового кодирования и компрессирования (сжатия) аудио информации. Многие из современных кодеков используют особенности восприятия человеческим мозгом неполной информации: алгоритмы голосового сжатия пользуются этими особенностями, вследствие чего не полностью услышанная информация полностью интерпретируется головным мозгом. Основным смыслом таких кодеков является сохранение баланса между эффективностью передачи данных и их качеством. Изначально, термин кодек происходил от сочетания слов КОДирование/ДЕКодирование, то есть устройств, которые преобразовывали аналог в цифровую форму. В современном мире телекоммуникаций, слово кодек скорее берет начало от сочетания КОмпрессия/ДЕКомпрессия. Перед тем как начать подробный рассказ про различные кодеки, мы составили таблицу со краткой сравнительной характеристикой современных кодеков: Кодек Скорость передачи, Кб/сек. Лицензирование G.711 64 Кб/сек. Нет G.726 16, 24, 32 или 40 Кб/ сек. Нет G.729А 8 Кб/ сек. Да GSM 13 Кб/ сек. Нет iLBC 13.3 Кб/ сек. (30 мс фрейма); 15.2 Кб/ сек. (20 мс фрейма) Нет Speex Диапазон от 2.15 до 22.4 Кб/ сек. Нет G.722 64 Кб/сек. Нет G.711 Кодек G.711 это самый базовый кодек ТфОП (PSTN). В рамках данного кодека используется импульсно-кодовая модуляция PCM. Всего в мире используется 2 метода компандирования (усиления сигнала) G.711: µ – закон в Северной Америке и A – закон в остальной части мира. Данный кодек передает 8 – битное слово 8 000 раз в секунду. Если умножить 8 на 8 000, то получим 64 000 бит – то есть 64 Кб/с, скорость потока, создаваемого G.711. Многие люди скажут, что G.711 это кодек, в котором отсутствует компрессирование (сжатие), но это не совсем так: сам по себе процесс компандирования является одной из форм компрессирования. Все мировые кодеки «выросли» на базе G.711. Важная особенность G.711 в том, что он минимально загружает процессор машины, на которой он запущен. G.726 Этот кодек использовался некоторое время, став заменой для G.721, который на тот момент устарел, и является одним из первых кодеков с алгоритмом компрессии. Он так же известен как кодек с адаптивной импульсно-кодовой модуляции (Adaptive Differential Pulse-Code Modulation, ADPCM) и может использовать несколько скоростей потока передачи. Наиболее распространенные скорости передачи это 16, 24 и 32 Кб/сек. Кодек G.726 почти идентичен G.711 – единственным отличием является то, что он использует половину полосы пропускания. Это достигается путем того, что вместо отправки полного результата квантования, он отправляет только разницу между двумя последними измерениями. В 1990 году от кодека практически отказались, так как он не мог работать с факсимильными сигналами и модемами. Но в наше время, из – за своей экономии полосы пропускания и ресурсов центрального процессора у него есть все шансы вновь стать популярные кодеком в современных сетях. G.729A Учитывая то, какую малую полосу пропускания использует G.729A, всего 8 Кб/сек., он обеспечивает превосходное качество связи. Это достигается за счет использования сопряженной структуры с управляемым алгебраическим кодом и линейным предсказанием (Conjugate-Structure Algebraic-Code-Excited Linear Prediction, CS-ACELP). По причине патента, использование данного кодека является коммерческим; однако это не мешает кодеку G.729A быть популярным в различных корпоративных сетях и телефонных системах. Для достижения такой высокой степени сжатия, G.729A активно задействует мощности процессора (CPU). GSM Кодек для глобального стандарта цифровой мобильной сотовой связи (Global System for Mobile Communications, GSM) не обременен лицензированием, как его аналог G.729A, но предлагает высокое качество и умеренную нагрузку на процессор при использовании 13 Кб/сек. полосы пропускания. Эксперты считают, что качество GSM несколько ниже чем G.729A. iLBC Кодек iLBC (Internet Low Bitrate Codec) сочетает в себе низкое использование полосы пропускания и высокого качества. Данный кодек идеально подходит для поддержания высокого качества связи в сетях с потерями пакетов. iLBC не так популярен как кодеки стандартов ITU и поэтому, может быть не совместим с популярными IP – телефонами и IP – АТС. Инженерный совет Интернета (IETF) выпустил RFC 3951 и 3952 в поддержку кодека iLBC. Internet Low Bitrate кодек использует сложные алгоритмы для достижения высокого показателя сжатия, поэтому, весьма ощутимо загружает процессор. В настоящий момент iLBC используется бесплатно, но владелец этого кодека, Global IP Sound (GIPS), обязует уведомлять пользователей о намерении коммерческого использования этого кодека. Кодек iLBC работает на скорости в 13.3 Кб/сек. с фреймами в 30 мс, и на скорости 15.2 кб/сек. с фреймами в 20 мс. Speex Кодек Speex относится к семейству кодеков переменной скорости (variable-bitrate, VBR), что означает возможность кодека динамически менять скорость передачи битов в зависимости от статуса производительности сети передачи. Этот кодек предлагается в широкополосных и узкополосных модификациях, в зависимости от требования к качеству. Speex полностью бесплатный и распространяется под программной лицензией университета Беркли (Berkeley Software Distribution license, BSD). Кодек работает на диапазонах от 2.15 до 22.4 Кб/сек. в рамках переменного битрейта. G.722 G.722 является стандартом ITU-T (International Telecommunication Union - Telecommunication sector) и впервые опубликован в 1988 году. Кодек G.722 позволяет обеспечить качество, не ниже G.711 что делает его привлекательным для современных VoIP разработчиков. В настоящий момент патент на G.722 не действителен, и этот кодек является полностью бесплатным.
img
Привет! В голливудских фильмах про хакеров, ты наверняка видел как герой сидит перед компом, быстро набирая команды на клавиатуре. На черном экране бегут зеленые буквы, появляется надпись “HACKED!” и в результате у него получается за считанные секунды, обойти все системы защиты, открыть хранилище банка или и вовсе запустить ядерную боеголовку. Ты можешь подумать, что в современном мире, где царит удобство, почти у всего есть приложение и графический интерфейс ввод команд в черный экран - это прошлый век. Но спешим тебя разубедить! Сетевой инженер, администратор, специалист по информационной безопасности и конечно же хакер точно также сидит перед компом и вбивает на клавиатуре команды, чтобы выполнить определенные задачи. Сейчас мы объясним, что это за черный экран такой и как с помощью него человек может взаимодействовать с сетевым устройством. Когда компьюстеры только появлялись, у них не было ни дисплеев, ни клавиатуры, ни тем более мыши. Но их надо было как-то настраивать и заставлять их складывать большие числа, которые самому было складывать лень. Нужно было некое устройство, с помощью которого человек мог бы взаимодействовать с компьютером. Такое устройство - прослойку принято называть терминалом. Видео: SSH/Telnet/Терминал/Консоль Заценили ролик? Продолжаем. На первых порах ими стали телетайпы. Это такие печатные машинки, которые соединяются по электрическому каналу для отправки и получения текстовых сообщений на простом листе бумаги. Да-да, раньше этим хакерским черным экраном был простой лист с командами! Это было дико неудобно и медленно, но идея ввода и вывода информации построчно затем легла в основу будущих интерфейсов. Позднее, посредством электронно-лучевой трубки, строку для ввода команд вывели на экран и плюс-минус в таком виде она добралась до наших дней. Таким образом, мы теперь вбиваем команды не на печатной машинке, а на клавиатуре и видим эти команды не на листе бумаги, а на мега тонком UltraHD мониторе, но модель взаимодействия осталась такой же как и 60 лет назад. Вообще совокупность устройств для взаимодействия с человека и компьютера называют консолью. Это может быть клавиатура, мышь, монитор, дисплей, микрофон, джойстик, но с одной оговорочкой. Всё это должно быть подключено непосредственно к компу и ты должен находиться прямо перед ним. А вот если ты сидишь в удобном отремонтированном кабинете с кондиционером и через промежуточное устройство подключаешься к серверу, который стоит в подвале здания, то это уже терминал. Улавливаешь суть? Консоль - это когда ты сидишь прямо перед устройством и юзаешь перефирию подключенную прямо к нему. Терминал - это когда ты через что-то ещё (зачастую удаленно) подключаешься к консоли взаимодействуешь с ней. Супер, разобрались. Ну и что, можно взаимодействовать с компами только если за ними сидеть или через какой-то промежуточный девайс? Конечно нет! Для этого был придуман протокол Telnet (телетайп нетворк). С помощью него можно удаленно по сети подключиться к сетевому устройству и заниматься его администрированием. По умолчанию, телнет использует TCP порт 23. При подключении по телнет ты с помощью текстовых команд можешь говорить удаленному серверу что делать - запускать программы, создавать и удалять файлы и директории, управлять сетевыми параметрами, гонять гусей короче вообще всё на что хватит прав, а самое главное ты при этом можешь находиться на другом конце планеты. Всё было бы просто замечательно, если бы телнет не был разработан в 69 году, как следует из названия - для тех самых телетайпов. А в те времена, на безопасность было вообще пофиг. Дело в том, что все команды, которые ты вбиваешь по телнет, включая логины и пароли передаются в открытом виде, а значит любой, кто перехватит твой телнет трафик сможет узнать всё что ты делал в рамках сессии. Поэтому сегодня использование телнет для доступа к удаленным устройствам в профессиональном сообществе считается зашкваром. “Ну блеск, и как же теперь лазить на удаленные компы, сервера и прочий сетевой хлам”? - спросите вы. Тут хочется ответить тремя буквами - SSH (Secure Shell) или защищенная оболочка, хотя так никто не говорит. Этот парень создан для защищенного удаленного администрирования и внимательно слушает TCP порт 22. Все команды, которые ты введешь в рамках сессии, включая логины и пароли, будут зашифрованы уникальным ключом и даже если хацкеры перехватят твой трафик, то вряд ли им удастся его расшифровать. Мало того, он ещё и целостность переданной информации будет проверять, чтоб ничего не потерялось и не побилось. Благодаря своей надёжности, SSH также применяется для защищенной передачи файлов, (SFTP - SSH File Transfer Protocol, SCP - Secure Copy) и туннелирования других протоколов. Чтобы иметь возможность подключаться к девайсам как по телнет, так и по SSH нужно 2 вещи: Удаленное устройство должно выступать как Telnet/SSH - сервер, то есть иметь некое ПО, которое будет понимать эти протоколы У тебя должен быть Telnet/SSH клиент, с помощью которого ты сможешь инициировать соединение. Обычно, в качестве такого клиента выступает эмулятор терминала. Это такая программа, которая даёт тебе возможность подключиться к устройству (по сети или напрямую) и выводит в отдельном окошке его консоль. Примером такой программы может служить PuTTY.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59