По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье речь пойдёт о способах и алгоритмах настройки VoIP шлюза для осуществления звонков с офисных телефонных аппаратов, имеющихся в офисе, через сеть IP. В настоящее время подавляющее большинство современных компаний имеют телефонную связь. Какие-то компании уже открыли для себя преимущества, открывающиеся благодаря VoIP телефонии, каким-то только предстоит это сделать. Очень распространена ситуация, когда в компании уже имеются средства традиционной (аналоговой или цифровой) телефонной связи и переоснащение всего офиса новыми IP телефонами получается довольно дорогостоящим. В таких ситуациях на помощь приходят межсетевые VoIP шлюзы. Межсетевой шлюз VoIP – это устройство предназначенное для сопряжения сетей традиционной телефонии с пакетной сетью передачи данных, в качестве которой выступает Интернет. Такое сопряжение достигается благодаря аппаратным и программным возможностям шлюзов, а именно преобразованием трафика из одного типа сетей в другой. Аппаратное исполнение VoIP шлюза различается по типу телефонного стыка, на цифровые (E1/T1, ISDN) и аналоговые (FXO, FXS). Организовать телефонную связь через голосовой шлюз предлагают провайдеры IP телефонии, которые предоставляют услуги связи по протоколу SIP через сеть Интернет. При такой схеме реализации создаётся, так называемый, SIP - транк (trunk), являющийся по сути телефонной линией, которая устанавливается через сеть Интернет по средствам протокола SIP. SIP провайдер, при помощи данного протокола, даёт компании - клиенту множество голосовых каналов. После заключения договора с оператором VoIP, остаётся только настроить голосовой шлюз, это является основной и самой объёмной работой на пути к обеспечению компании качественной IP телефонией. Рассмотрим настройку подключения аналогового телефона к пакетной сети на простейшем примере, когда в офисе имеется всего один аналоговый телефонный аппарат и голосовой шлюз компании AddPac. По командной консоли устройства AddPac очень напоминают Cisco, поэтому, конфигурация приведённая ниже отлично подойдёт для понимания процесса настройки. Сперва следует настройка сетевых параметров шлюза и маршрутизации. Gateway# configure terminal Gateway(config)#interface FastEthernet 0/0 Gateway(config-if)# ip address 192.168.0.11 255.255.255.0 Gateway(config-if)# exit Gateway(config)# ip route 0.0.0.0 0.0.0.0 192.168.0.1 Далее настройка диал-пиров (dial-peer) и маршрутов. Диал-пиры определяют параметры, направление и участников соединения. В нашем случае, необходимо настраивать диал-пиры в два направления, в сторону аналогового порта и в сторону SIP провайдера. Диал-пир в сторону аналогового порта: Gateway(config)# dial-peer voice 0 pots Gateway(config-dialpeer-pots-0)#destination-pattern [ID, выданный SIP провайдером] Gateway(config-dialpeer-pots-0)#port 0/0 Gateway(config-dialpeer-pots-0)#exit Gateway(config)# dial-peer voice 1 pots Gateway(config-dialpeer-pots-1)#destination-pattern [ID, выданный SIP провайдером] Gateway (config-dialpeer-pots-1)#port 1/0 Gateway(config-dialpeer-pots-1)#exit Создание диал-пира в сторону SIP провайдера: Gateway(config)#dial-peer voice 100 VoIP Gateway(config-dialpeer-VoIP-100)#destination-pattern T Данная команда означает что этот dial-peer будет соответствовать любому номеру Gateway(config-dialpeer-VoIP-100)#session target sip-server Команда, указывающая адрес SIP-сервера. Gateway(config-dialpeer-VoIP-100)#session protocol sip Команда, указывающая шлюзу по какому протоколу устанавливать соединение, в данном случае SIP Gateway(config-dialpeer-VoIP-100)#voice-class codec 0 Настройка приоритизации используемых кодеков Gateway(config-vclass-codec#0)# codec preference 1 g711alaw Gateway(config-vclass-codec#0)# codec preference 2 g729 Gateway(config-dialpeer-VoIP-100)# no vad Команда, включающая принудительное подавление тишины Gateway(config-dialpeer-VoIP-100)#exit Настройка SIP UA (User Agent) для подключения к поставщику услуг Gateway(config)# sip-ua Gateway(config-sip-ua)# sip-username [ID, выданный SIP провайдером] Gateway(config-sip-ua)# sip-password ******* [Password, выданный SIP провайдером] Gateway(config-sip-ua)# sip-server [адрес SIP-сервера] Gateway(config-sip-ua)# srv enable Команда, позволяющая серверу определять местоположение (имя хоста и номер порта) для определенных служб. Является стандартом DNS Service Record Gateway(config-sip-ua)#register e164 Команда для отдельной регистрации телефонных портов на сервере. Позволяет настраивать маршрутизацию звонков индивидуально для каждого порта. Gateway(config-sip-ua)#exit Router#write После проведённых действий можно звонить с аналогового аппарата, имеющегося в офисе на любые телефонные номера через SIP провайдера. Входящие звонки извне будут поступать на порт 0/0 или 1/0, в случае недоступности первого. Конфигурация, приведённая выше является простейшим примером. В реальности же включается дополнительный функционал и опции, например настройка переадресации или удержания звонка, телефонная сеть офиса может быть выделена в отдельный VLAN, а голосовой трафик иметь множество механизмов приоритизации. Специалисты нашей компании имеют большой опыт в настройке и устранении проблем VoIP шлюзов. Если Вы решили модернизировать старую или с нуля разворачиваете телефонную сеть для своего офиса – доверьте это дело высококвалифицированным сотрудникам нашей компании.
img
Во многих наших статьях проскакивают различные команды, связанные с файловыми манипуляциями – создание директорий, файлов, установка пакетов и т.д. В данной статье мы решили начать повествование последовательно. Основы Итак, в Linux в отличие от Windows существует понятие полного и относительного пути. Разница между ними в том, что полный путь всегда начинается с корневого каталога (корневой каталог обозначается как /), и далее также через слеш происходит перечисление всех названий каталогов на пути к искомому файлу или директории, а в случае относительного пути – в начале слеш не указывается. То есть без слеша путь указывается относительно нынешнего местоположения, а со слешем – относительно корневого каталога. Примеры: /home/user1/tmp/test.sh - полный путь; ~/tmp/file1 - относительный путь; Ниже вы встретите часто используемые команды для работы с файлами, архивами и установкой программ. Команды для работы с файлами и директориями Команд довольно много, я перечислю самые, на мой взгляд, часто используемые: cd - смена директории на домашнюю, можно добавлять аргументы – к примеру, cd /root; pwd - команда покажет текущий путь к директории, в которой вы находитесь в данный момент; ls - вывод списка файлов и каталогов по порядку (наверное, самая известная команда) если добавить модификаторы lax, то команда выведет форматированный список всех файлов и директорий (в том числе скрытые); cat - показывает содержимое файла, к примеру – cat /root/file.txt; tail - например, tail /root/file.txt, выводит только конец файла, удобно при работе с логами; cp - копирование директории или файла, то есть cp /root/file.txt /etc/folder1/file.txt – из /root файл будет скопирован в указанную директорию mkdir - создание директории, например, mkdir /root/1; rmdir - удаление директории, синтаксис такой же, как и у команды выше; rm -rf - очень опасная команда (и довольно популярная в интернет фольклоре), но иногда и она может пригодиться – она удаляет директорию со вложенными файлами; mv - переименование файла или директории, сначала указывается целевая директория и затем её новое название; locate - поиск файла с заданным названием; Для наглядности, посмотрите на вывод команды tail # tail install.log Installing dosfstools-3.0.9-4.el6.i686 Installing rfkill-0.3-4.el6.i686 Installing rdate-1.4-16.el6.i686 Installing bridge-utils-1.2-10.el6.i686 Installing eject-2.1.5-17.el6.i686 Installing b43-fwcutter-012-2.2.el6.i686 Installing latrace-0.5.9-2.el6.i686 Installing trace-cmd-2.2.4-3.el6.i686 Installing crash-trace-command-1.0-5.el6.i686 *** FINISHED INSTALLING PACKAGES *** В примере выше, команда tail вывела только последние 11 строк. Работа с архивами Работа с .tar архивами – очень часто встречающаяся задача, поэтому хотим привести несколько полезных команд, чтобы не пришлось лишний раз пользоваться поисковиком :) tar cf example.tar /home/example.txt - создание .tar архива, который будет содержать в себе текстовый файл example.txt; tar cjf example1.tar.codez2 /home/example1.txt - команда с тем же функционалом, только будет использоваться сжатие Bzip2; tar czf example2.tar.gz /home/example2.txt - опять архивация, только на этот раз со сжатием Gzip; tar xf example.tar - распаковка архива в текущую директорию, если тип сжатия нестандартный, то после расширения нужно добавить тип сжатия (.codez2 или .gz соответственно); Работа с .rpm пакетами Так как мы больше всего рассказываем и пишем про FreePBX, который по умолчанию скачивается с официального сайта вместе c СentOS, здесь место для пары команд по работе c RPM пакетами. Почему? Потому что CentOS – RPM-based Linux Distribution :) Команды требуют наличие прав супер - пользователя. rpm -qa - вывод списка всех установленных RPM пакетов в системе; rpm –i rpmpackage.rpm - установка пакета с именем rpmpackage; rpm –e rpmpackage - удаление пакета с таким именем; dpkg -i *.rpm - установка всех пакетов в директории; Про жёсткие диски Команда fdisk –l выводит информацию о всех подключенных жёстких и сменных дисках в системе, бывает очень полезной. Ниже пример вывод этой команды (в качестве пример рассматривается OTRS - сервер) umask 0077
img
В этой статье мы рассмотрим механизмы масштабируемости BGP и связанные с ними концепции. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Формирование соседства в BGP Оповещения NLRI и политики маршрутизации BGP Видео: Основы BGP за 7 минут Механизмы масштабируемости BGP Истощение доступных автономных системных номеров явилось проблемой точно так же, как было проблемой для интернета истощение IP-адресов. Чтобы решить эту проблему, инженеры обратились к знакомому решению. Они обозначили диапазон номеров AS только для частного использования. Это позволяет вам экспериментировать с AS конструкцией и политикой, например, в лаборатории и использовать числа, которые гарантированно не конфликтуют с интернет-системами. Помните, что число AS-это 16-разрядное число, допускающее до 65 536 чисел AS. Диапазон для частного использования: 64512-65535. Еще одним решением проблемы дефицита, стало расширение адресного пространства имен. Было утверждено пространство, представляющее собой 32-разрядное число. В течение длительного времени, с точки зрения масштабируемости, одноранговые группы Border Gateway Protocol считались абсолютной необходимостью. Мы настраивали одноранговые группы для уменьшения конфигурационных файлов. Так же мы настраивали одноранговые группы для повышения производительности. Преимущества производительности были нивелированы с помощью значительно улучшенных механизмов, сейчас. Несмотря на это, многие организации все еще используют одноранговые группы, поскольку они поняты и легки в настройке. Появились в BGP одноранговые группы для решения нелепой проблемы избыточности в BGP конфигурации. Рассмотрим простой (и очень маленький) пример 1. Даже этот простой пример отображает большое количество избыточной конфигурации. Пример 1: типичная конфигурация BGP без одноранговых групп ATL1(config)#router bgp 200 ATL1( config-router)#neiqhbor 10.30.30.5 remote-as 200 ATL1( config-router)#neiqhbor 10.30.30.5 update- source lo0 ATL1( config= router)#neiqhbor 10.30 .30.5 password S34Dfr112s1WP ATL1(config-router)#neiqhbor 10.40.40.4 remote-as 200 ATL1( config-router)#neiqhbor 10.40.40 .4 update- source lo0 ATL1(config-router)#neiqhbor 10.40.40.4 password S34Dfr112s1WP Очевидно, что все команды настройки относятся к конкретному соседу. И многие из ваших соседей будут иметь те же самые характеристики. Имеет смысл сгруппировать их настройки в одноранговую группу. Пример 2 показывает, как можно настроить и использовать одноранговую группу BGP. Пример 2: одноранговые группы BGP ATL2 (config)#router bgp 200 ATL2 (config-router)#neighbor MYPEERGR1 peer-group ATL2 (config-router)#neighbor MYPEERGR1 remote-as 200 ATL2 (config-router)#neighbor MYPEERG1l update-source lo0 ATL2(config-router)#neighbor MYPEERGRl next-hop-self ATL2 (config-router)#neighbor 10.40.40 .4 peer-group MYPEERGR1 ATL2 (config-router)#neighbor 10.50.50 .5 peer-group MYPEERGR1 Имейте в виду, что, если у вас есть определенные настройки для конкретного соседа, вы все равно можете ввести их в конфигурацию, и они будут применяться в дополнение к настройкам одноранговой группы. Почему же так часто использовались одноранговые группы? Они улучшали производительность. Собственно говоря, это и было первоначальной причиной их создания. Более современный (и более эффективный) подход заключается в использовании шаблонов сеансов для сокращения конфигураций. А с точки зрения повышения производительности теперь у нас есть (начиная с iOS 12 и более поздних версий) динамические группы обновлений. Они обеспечивают повышение производительности без необходимости настраивать что-либо в отношении одноранговых групп или шаблонов. Когда вы изучаете одноранговую группу, вы понимаете, что все это похоже на шаблон для настроек. И это позволит вам использовать параметры сеанса, а также параметры политики. Что ж, новая и усовершенствованная методология разделяет эти функциональные возможности на шаблоны сессий и шаблоны политики. Благодаря шаблонам сеансов и шаблонам политик мы настраиваем параметры, необходимые для правильной установки сеанса, и помещаем эти параметры в шаблон сеанса. Те параметры, которые связаны с действиями политик, мы помещаем в шаблон политики. Одна из замечательных вещей в использовании этих шаблонов сеансов или политик, а также того и другого, заключается в том, что они следуют модели наследования. У вас может быть шаблон сеанса, который выполняет определенные действия с сеансом. Затем вы можете настроить прямое наследование так, чтобы при создании другого наследования оно включало в себя вещи, созданные ранее. Эта модель наследования дает нам большую гибкость, и мы можем создать действительно хорошие масштабируемые проекты для реализаций BGP. Вы можете использовать шаблоны или одноранговые группы, но это будет взаимоисключающий выбор. Так что определитесь со своим подходом заранее. Вы должны заранее определиться, что использовать: использовать ли устаревший подход одноранговых групп или же использовать подход шаблонов сеанса и политики. После выбора подхода придерживайтесь его, так как, использовать оба подхода одновременно нельзя. Теперь можно предположить, что конфигурация для шаблонов сеансов будет довольно простой, и это так. Помните, прежде всего, все что мы делаем здесь и сейчас, относится к конкретной сессии. Поэтому, если мы хотим установить timers, нам нужно установить remote-as – и это будет считается параметром сеанса. Например, мы делаем update source. Мы настраиваем eBGP multihop. Все это имеет отношение к текущему сеансу, и именно это мы будем прописывать в шаблоне сеанса. Обратите внимание, что мы начинаем с создания шаблона. Поэтому используем команду template peer-session, а затем зададим ему имя. И тогда в режиме конфигурации шаблона можем настроить наследование, которое позволит наследовать настройки от другого однорангового сеанса. Можем установить наш remote-as как и/или update source. После завершения, мы используем команду exit-peer-session, чтобы выйти из режима конфигурации для этого сеанса. Пример 3 показывает конфигурацию шаблона сеанса. Пример 3: Шаблоны сеансов BGP ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#router bgp 200 ATL2 (config-router)#template peer- session MYNAME ATL2 (config-router-stmp)#inherit peer- session MYOTHERNAME ATL2 (config- router-stmp )#remote-as 200 ATL2(config-router-stmp )#password MySecrectPass123 ATL2 (config-router-stmp )#exit-peer-session ATL2 (config-router)#neiqhbor 10.30.30 .10 inherit peer-session MYNAME ATL2 (config-router)#end ATL2# Это простой пример настройки соседства с помощью оператора neighbor и использования наследования однорангового сеанса. Затем присваивается имя однорангового сеанса, созданного нами для нашего шаблона сеанса. Это соседство наследует параметры сеанса. Помните, что, если вы хотите сделать дополнительную настройку соседства, можно просто присвоить соседу IP-адрес, а затем выполнить любые настройки вне шаблона однорангового сеанса, которые вы хотите дать этому соседу. Таким образом, у вас есть та же гибкость, которую мы видели с одноранговыми группами, где вы можете настроить индивидуальные параметры для этого конкретного соседа вне шаблонного подхода этого соседства. Вы можете подумать, что шаблоны политик будут иметь сходную конструкцию и использование с шаблонами сеансов, и вы будете правы. Помните, что если ваши шаблоны сеансов находятся там, где мы собираемся настроить параметры, которые будут относиться к сеансу BGP, то, конечно, шаблоны политик будут храниться там, где мы храним параметры, которые будут применяться к политике. Пример 4 показывает настройку и использование шаблона политики BGP. Пример 4: Шаблоны политики BGP ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL2 (config)#router bgp 200 ATL2(config-router)#template peer-policy MYPOLICYNAME ATL2 (config-router-ptmp )#next-hop-self ATL2 (config-router-ptmp )#route-map MYMAP out ATL2 (config-router-ptmp )#allowas-in ATL2 (config-router-ptmp )#exit-peer-policy ATL2 (config-router)#neighbor 10.40.40.10 remote-as 200 ATL2 (config-router)#neighbor 10.40.40.10 inherit peer-policy MYNAME ATL2 (config-router)#end ATL2# Да, все эти параметры, которые мы обсуждали при изучении манипуляций с политикой, будут тем, что мы будем делать внутри шаблона политики. Однако одним из ключевых отличий между нашим шаблоном политики и шаблоном сеанса является тот факт, что наследование здесь будет еще более гибким. Например, мы можем перейти к семи различным шаблонам, от которых мы можем непосредственно наследовать политику. Это дает нам еще более мощные возможности наследования с помощью шаблонов политик по сравнению с шаблонами сеансов. Опять же, если мы хотим сделать независимые индивидуальные настройки политики для конкретного соседа, мы можем сделать это, добавив соответствующие команды соседства. Благодаря предотвращению циклов и правилу разделения горизонта (split-horizon rule) IBGP, среди прочих факторов, нам нужно придумать определенные решения масштабируемости для пирингов IBGP. Одним из таких решений является router reflector. Рис. 1: Пример топологии router reflector Конфигурация router reflector удивительно проста, поскольку все это обрабатывается на самом router reflector (R3). Клиенты route reflector – это R4, R5 и R6. Они совершенно не знают о конфигурации и настроены для пиринга IBGP с R3 как обычно. Пример 5 показывает пример конфигурации router reflector. Обратите внимание, что это происходит через простую спецификацию клиента router reflector. Пример 5: BGP ROUTE REFLECTOR R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3 (config)#router bgp 200 R3 (config-router)#neighbor 10.50.50.10 remote -as 200 R3 (config-router)#neighbor 10.50.50.10 route-reflector-client R3 (config-router)#end R3# Route reflector автоматически создает значение идентификатора (ID) кластера для кластера, и это устройство и эти клиенты будут частью того, что мы называем кластером route reflector. Cisco рекомендует разрешить автоматическое назначение идентификатора кластера для идентификации клиента. Это 32-разрядный идентификатор, который BGP извлекает из route reflector. Магия Route reflector заключается в том, как меняются правила IBGP. Например, если обновление поступает от клиента Route reflector (скажем, R4), то устройство R3 «отражает» это обновление своим другим клиентам (R5 и R6), а также своим неклиентам (R1 и R2). Это обновление происходит даже при том, что конфигурация для IBGP значительно короче полной сетки пирингов, которая обычно требуется. А теперь что будет, если обновление поступит от не клиента Route reflector (R1)? Route reflector отправит это обновление всем своим клиентам Route reflector (R4, R5 и R6). Но тогда R3 будет следовать правилам IBGP, и в этом случае он не будет отправлять обновление через IBGP другому не клиенту Route reflector (R2). Чтобы решить эту проблему, необходимо будет создать пиринг от R1 к устройству R2 с помощью IBGP. Или, можно добавить R2 в качестве клиента Route reflector R3. Есть еще один способ, которым мы могли бы решить проблему с масштабируемостью IBGP- это манипулирование поведением EBGP. Мы делаем это с конфедерациями. Вы просто не замечаете, что конфедерации используются так же часто, как Route reflector. И причина состоит в том, что они усложняют нашу топологию, и делают поиск неисправностей более сложным. На рис. 2 показан пример топологии конфедерации. Рисунок 2: Пример топологии конфедерации Мы имеем наш AS 100. Для создания конфедерации необходимо создать небольшие субавтономные системы внутри нашей основной автономной системы. Мы их пронумеруем с помощью, номеров автономных систем только для частного использования. Что мы имеем, когда манипулируем поведением eBGP, что бы имеет конфедерацию EBGP пирингов? Это позволяет нам установить пиринги между соответствующими устройствами, которые хотим использовать в этих автономных системах. Как вы можете догадаться, они не будут следовать тем же правилам, что и наши стандартные пиринги EBGP. Еще один важный момент заключается в том, что все это для внешнего неконфедеративного мира выглядит просто как единый AS 100. Внутри мы видим реальные AS, и конфедеративные отношения EBGP между ними. Помимо устранения проблемы разделения горизонта IBGP, что же меняется с пирингами конфедерации EBGP? В следующем прыжке поведение должно измениться. Следующий прыжок не меняется тогда, когда мы переходим от одной из этих небольших конфедераций внутри нашей АС к другой конфедерации. Вновь добавленные атрибуты обеспечивают защиту от цикла из-за конфедерации. Атрибут AS_confed_sequence и AS_confed_set используются в качестве механизмов предотвращения циклов. Пример 6 показывает пример частичной настройки конфедерации BGP. R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3 (config)#router bgp 65501 R3(config-router)#bgp confederation identifier 100 R3 (config-router)#bgp confederation peers 65502 R3 (config-router)#neighbor 10 .20.20.1 remote-as 65502 R3 (config-router)#end R3# Иногда возникает необходимость применения общих политик к большой группе префиксов. Это делается легко, если вы помечаете префиксы специальным значением атрибута, называемым сообществом (community). Обратите внимание, что сами по себе атрибуты сообщества ничего не делают с префиксами, кроме как прикрепляют значение идентификатора. Это 32-разрядные значения (по умолчанию), которые мы можем именовать, чтобы использовать дополнительное значение. Вы можете настроить значения сообщества таким образом, чтобы они были значимы только для вас или значимы для набора AS. Вы также можете иметь префикс, который содержит несколько значений атрибутов сообщества. Кроме того, можно легко добавлять, изменять или удалять значения сообщества по мере необходимости в вашей топологии BGP. Атрибуты сообщества могут быть представлены в нескольких форматах. Более старый формат выглядит следующим образом: Decimal - 0 to 4294967200 (в десятичном) Hexadecimal – 0x0 to 0xffffffa0 (в шестнадцатеричном) Более новый формат: AA:NN AA - это 16-битное число, которое представляет ваш номер AS, а затем идет 16-битное число, используемое для задания значимости своей политике AS. Таким образом, вы можете задать для AS 100 100:101, где 101- это номер внутренней политики, которую вы хотите применить к префиксам. Есть также хорошо известные общественные значения. Это: No-export - префиксы не объявляются за пределами AS. Вы можете установить это значение, когда отправляете префикс в соседний AS. чтобы заставить его (соседний AS) не объявлять префикс за собственные границы. Local-AS - префиксы с этим атрибутом сообщества никогда не объявляются за пределами локального AS No-advertise - префиксы с этим атрибутом сообщества не объявляются ни на одном устройстве Эти хорошо известные атрибуты сообщества просто идентифицируются по их зарезервированным именам. Есть также расширенные сообщества, которые также можно использовать. Они предлагают 64-битную версию для идентификации сообществ! Задание параметров осуществляется настройкой TYPE:VALUE. Выглядит оно следующим образом: 65535:4294967295 Как вы можете догадаться, мы устанавливаем значения сообщества, используя route maps. Пример 7 показывает пример настроек. Обратите внимание, что в этом примере также используется список префиксов. Они часто используются в BGP для гибкой идентификации многих префиксов. Они гораздо более гибки, чем списки доступа для этой цели. Пример 7: Установка значений сообщества в BGP R3#configure terminal Enter configuration commands, one per line. End with CNTL/Z. R3(config)#ip prefix-list MYLIST permit 172.16.0.0/16 le 32 R3(config)#route-map SETCOMM permit 10 R3(config-route-map)#match ip address prefix-list MYLIST R3(config-route-map)#set community no-export R3(config-route-map)#route-map SETCOMM permit 20 R3(config)#router bgp 100 R3(config-router)#neighbor 10.20.20.1 route-map SETCOMM out R3 (config-router)#neighbor 10.20.20.1 send-community R3(config-router)#end R3#
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59