По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет! В голливудских фильмах про хакеров, ты наверняка видел как герой сидит перед компом, быстро набирая команды на клавиатуре. На черном экране бегут зеленые буквы, появляется надпись “HACKED!” и в результате у него получается за считанные секунды, обойти все системы защиты, открыть хранилище банка или и вовсе запустить ядерную боеголовку. Ты можешь подумать, что в современном мире, где царит удобство, почти у всего есть приложение и графический интерфейс ввод команд в черный экран - это прошлый век. Но спешим тебя разубедить! Сетевой инженер, администратор, специалист по информационной безопасности и конечно же хакер точно также сидит перед компом и вбивает на клавиатуре команды, чтобы выполнить определенные задачи. Сейчас мы объясним, что это за черный экран такой и как с помощью него человек может взаимодействовать с сетевым устройством. Когда компьюстеры только появлялись, у них не было ни дисплеев, ни клавиатуры, ни тем более мыши. Но их надо было как-то настраивать и заставлять их складывать большие числа, которые самому было складывать лень. Нужно было некое устройство, с помощью которого человек мог бы взаимодействовать с компьютером. Такое устройство - прослойку принято называть терминалом. Видео: SSH/Telnet/Терминал/Консоль Заценили ролик? Продолжаем. На первых порах ими стали телетайпы. Это такие печатные машинки, которые соединяются по электрическому каналу для отправки и получения текстовых сообщений на простом листе бумаги. Да-да, раньше этим хакерским черным экраном был простой лист с командами! Это было дико неудобно и медленно, но идея ввода и вывода информации построчно затем легла в основу будущих интерфейсов. Позднее, посредством электронно-лучевой трубки, строку для ввода команд вывели на экран и плюс-минус в таком виде она добралась до наших дней. Таким образом, мы теперь вбиваем команды не на печатной машинке, а на клавиатуре и видим эти команды не на листе бумаги, а на мега тонком UltraHD мониторе, но модель взаимодействия осталась такой же как и 60 лет назад. Вообще совокупность устройств для взаимодействия с человека и компьютера называют консолью. Это может быть клавиатура, мышь, монитор, дисплей, микрофон, джойстик, но с одной оговорочкой. Всё это должно быть подключено непосредственно к компу и ты должен находиться прямо перед ним. А вот если ты сидишь в удобном отремонтированном кабинете с кондиционером и через промежуточное устройство подключаешься к серверу, который стоит в подвале здания, то это уже терминал. Улавливаешь суть? Консоль - это когда ты сидишь прямо перед устройством и юзаешь перефирию подключенную прямо к нему. Терминал - это когда ты через что-то ещё (зачастую удаленно) подключаешься к консоли взаимодействуешь с ней. Супер, разобрались. Ну и что, можно взаимодействовать с компами только если за ними сидеть или через какой-то промежуточный девайс? Конечно нет! Для этого был придуман протокол Telnet (телетайп нетворк). С помощью него можно удаленно по сети подключиться к сетевому устройству и заниматься его администрированием. По умолчанию, телнет использует TCP порт 23. При подключении по телнет ты с помощью текстовых команд можешь говорить удаленному серверу что делать - запускать программы, создавать и удалять файлы и директории, управлять сетевыми параметрами, гонять гусей короче вообще всё на что хватит прав, а самое главное ты при этом можешь находиться на другом конце планеты. Всё было бы просто замечательно, если бы телнет не был разработан в 69 году, как следует из названия - для тех самых телетайпов. А в те времена, на безопасность было вообще пофиг. Дело в том, что все команды, которые ты вбиваешь по телнет, включая логины и пароли передаются в открытом виде, а значит любой, кто перехватит твой телнет трафик сможет узнать всё что ты делал в рамках сессии. Поэтому сегодня использование телнет для доступа к удаленным устройствам в профессиональном сообществе считается зашкваром. “Ну блеск, и как же теперь лазить на удаленные компы, сервера и прочий сетевой хлам”? - спросите вы. Тут хочется ответить тремя буквами - SSH (Secure Shell) или защищенная оболочка, хотя так никто не говорит. Этот парень создан для защищенного удаленного администрирования и внимательно слушает TCP порт 22. Все команды, которые ты введешь в рамках сессии, включая логины и пароли, будут зашифрованы уникальным ключом и даже если хацкеры перехватят твой трафик, то вряд ли им удастся его расшифровать. Мало того, он ещё и целостность переданной информации будет проверять, чтоб ничего не потерялось и не побилось. Благодаря своей надёжности, SSH также применяется для защищенной передачи файлов, (SFTP - SSH File Transfer Protocol, SCP - Secure Copy) и туннелирования других протоколов. Чтобы иметь возможность подключаться к девайсам как по телнет, так и по SSH нужно 2 вещи: Удаленное устройство должно выступать как Telnet/SSH - сервер, то есть иметь некое ПО, которое будет понимать эти протоколы У тебя должен быть Telnet/SSH клиент, с помощью которого ты сможешь инициировать соединение. Обычно, в качестве такого клиента выступает эмулятор терминала. Это такая программа, которая даёт тебе возможность подключиться к устройству (по сети или напрямую) и выводит в отдельном окошке его консоль. Примером такой программы может служить PuTTY.
img
В статье поговорим о борьбе со спамом в мире телефонии. Существует множество различных программ для блокировки спама на мобильных телефонах, а вот найти что-то подобное для IP-АТС и IP-телефонов – уже сложнее. В Telegram есть специальный бот для определения спам-звонков. Бот определяет спамеров, местоположение и оператора связи. Предназначен для IP-АТС (Asterisk, FreePBX, FreeSWITCH), IP-телефонов и CRM. Если фиксируется спам-звонок, то сервис присылает уведомление в Telegram с соответствующей пометкой и названием оператора связи. API ссылка так же возвращает текст с названием оператора. Таким образом если указать эту ссылку в Asterisk, то сообщение с пометкой спам и оператором связи отобразится в Telegram и на экране IP-телефона, а в статистике CDR всегда можно будет фильтровать выдачу по операторам связи. Помечая звонок как “спам”, все пользователи вносят свой вклад в расширение спам-базы. Возможности сервиса: Определение номеров по спам-базам; Персональный спам список; Определение страны/города; Определение оператора связи; Добавление комментариев к звонку. Подключение API Телеграм бот: telegram.org/phone_info_bot t.me/phone_info_bot Альтернативная ссылка: tele.gg/phone_info_bot Ссылка: http://rustyle.tmweb.ru/bots/tgbots/phone_info_bot/callerid_lookup_src/callerid_lookup.php?in_num=ВХОДЯЩИЙ_НОМЕР&dst_num=НОМЕР_НАЗНАЧЕНИЯ&user_id=ВАШ_USER_ID Получить user ID можно обратившись к боту по одной из ссылок выше. Подключение FreePBX Перейдите в Web-интерфейс, в меню Admin → CallerID Lookup Sources → Add CID Lookup Source и заполните следующие поля: В поле Source type выберите HTTP; В поле Host укажите rustyle.tmweb.ru; В поле Path введите bots/tgbots/phone_info_bot/callerid_lookup_src/callerid_lookup.php; И наконец – в поле Query введите следующее: in_num=[NUMBER]&dst_num=${FROM_DID}&user_id=ВАШ_USER_ID; В поле Query не забудьте заменить ВАШ_USER_ID. Параметры [NUMBER] и ${FROM_DID} менять не нужно - оставьте без изменений. Далее переходим в меню Connectivity → Inbound Routes, выбираем или создаем маршрут, переходим на вкладку Other → CID Lookup Source и выбираем источник из предыдущего шага. ВХОДЯЩИЙ_НОМЕР - Код страны и телефон. Пример: 74991234567; НОМЕР_НАЗНАЧЕНИЯ - Код страны и телефон. Пример: 74991234567; ВАШ_USER_ID = Выдается при запуске бота; Готово. Есть вопрос – пиши в комментариях :)
img
Цель данной статьи, чтобы разобраться с тем как поправить незначительные ошибки, возникающие в файловых системах. Файловых систем много, поэтому много различных инструментов для работы с ними. Поэтому будет рассказано об основных инструментах к основным стандартным системам Linux. И рассмотрим несколько инструментов к рекомендованным LPIC файловым системам. Рассмотрим, так же журналируемые файловые системы и посмотрим индексные дескрипторы. Проверка целостности файловой системы; Проверка свободного пространства и индексных дескрипторов в файловой системе; Исправление проблем файловой системы. Список утилит: df, du, fsck, debugfs – общие утилиты для всех Linux систем mke2fs, e2fsck, dumpe2fs, tune2fs – утилиты для файловой системы ext xfs_check, xfs_repair, xfs_info, xfs_metadump – утилиты для файловой системы xfs Совершенно понятно, что для других файловых систем есть свои утилиты для работы с данными файловыми сиcтемами. Первая утилита df: man df Данная утилита показывает использование дискового пространства. У данной утилиты достаточно много ключей. Её особенностью является то, что она показывает дисковое пространство в 1 кбайт блоках. Данные цифры не очень понятны и удобны, для того чтобы было удобно можно использовать ключ –h и тогда вид станет удобно читаемым. В выводе команды мы сразу видим размер, сколько использовано, процент использование и точка монтирования. Как мы видим на новом перемонтированном разделе /dev/sdc1 занят 1% дискового пространства. Если посмотреть в папку монтирования раздела, то мы увидим там папку lost+found. Данная папка пуста, но занимает 37 МБ. Есть такое понятие индексные дескрипторы в журналируемых файловых системах inode. Inode – это метка идентификатора файла или по другому индексный дескриптор. В этих индексных дескрипторах хранится информация о владельце, типе файла, уровне доступа к нему. И нужно понимать, что для каждого файла создается свой отдельный inode. Команда df –I может показать нам inode. Число, например, inode напротив /dev/sda2 показывает сколько inode всего может быть на устройстве, далее сколько используется и сколько свободно. Обычно под inode отдается примерно 1% жесткого диска. И получается, что больше чем число inode на устройстве файлов и папок быть не может. Количество inode зависит от типа файловой системы. Далее мы рассмотрим, как пользоваться inode. Следующая команда du man du Данная команда показывает, что и сколько занимает у нас места на жестком диске, а именно размер папок в текущей директории. Если посмотреть вывод данной команды без ключей, то мы увидим список папок в текущей директории и количество блоков, с которым очень неудобно работать. Чтобы перевести данные блоки в человеческий вид, то необходимо дать ключ –h. А для еще большего удобства, можно установить замечательную утилиту ncdu простой командой. sudo apt install ncdu –y После установки нужно запустить ncdu. И мы увидим очень красивую картинку. Но вернемся к стандартной утилите du. С помощью данной утилиты мы можем указать в какой папке необходим просмотр папок и вывод их размера. du –h /home К сожалению данная утилита умеет взвешивать вес только каталогов и не показывает размер файлов. Для того, чтобы посмотреть размер файлов, мы конечно же можем воспользоваться командой ls –l. А также если мы запустим данную команду с ключем –i мы увидим номера inode файлов. Как вы видите у каждой папки и у каждого файла есть свой индексный дескриптор. Далее команды, которые нам позволят проверить целостность файловой системы. Команда fsck man fsck Как написано в описании утилиты она позволяет проверять и чинить Linux файловую систему. Мы можем видеть, например, в oперационной системе Windows, что в случае некорректного завершения работы операционной системы, операционная система запускает утилиту проверки целостности checkdisk. В случае необходимости данная утилита исправляет найденные ошибки в файловой системе. Следовательно, в Linux данные операции выполняет утилита fsck, причем может работать с различными файловыми системами Linux операционных систем. Мы можем попробовать воспользоваться утилитой fsck /dev/sdc1. В ответ от операционной системы мы получим следующее: Как мы видим операционная система вернула в ответ на команду для работы с данным разделом, что данный раздел с монтирован и операция прервана. Аналогичную ситуацию мы будем наблюдать в операционной системе Windows, если мы будем пытаться рабочий раздел проверить на ошибки. Т.е возникнет следующая ситуация. Если мы будем проверять дополнительный логический диск, где не установлена операционная система Windows, то данный раздел на время проведения тестов будет отключен и будут идти проверки. А если мы попытаемся проверить основной раздел, куда установлена операционная система Windows, то операционная система не сможет запустить данную утилиту и попросит перезагрузиться для запуска данной утилиты. В нашем случае придется делать точно так же. Поэтому, чтобы проверить необходимо отключить (от монтировать раздел) и после уже этого запускать утилиту. Из вывода можно заметить утилита пыталась запустить другую утилиту e2fsck, которая в данном случае отвечает за проверку файловых систем extext2ext3ext4. О чем достаточно подробно написано в описании данной утилиты. По сути fsck запускает утилиту ту, которая идет в пакете утилит для конкретной файловой системы. Бывает такое, что fsck не может определить тип файловой системы. Для того, чтобы утилита все-таки проверила файловую систему, необходимо отмонтировать логический раздел. Воспользуемся командой umount /mnt. И запускаем непосредственно саму проверку fsck –t ext4 /dev/sdc1 Проходит проверка моментально. Команда fsck запустилась и запустила необходимую утилиту для файловой системы. По результатам проверки файловая система чистая, найдено 11 файлов и 66753 блока. При обнаружении проблем, утилита предложила нам исправить. Для того, чтобы посмотреть на проверку другой файловой системы, необходимо переформатировать раздел. mkfs –t xfs –f /dev/sdc1 При попытке запуска проверки без указания типа файловой системы fsck /dev/sdc1 Как мы видим, утилита fsck отказалась проверять или вызывать утилиту, а явно указала на ту которую необходимо использовать в данном случае. Для проверки используем xfs_ncheck /dev/sdc1. А для починки файловой системы xfs_repair /dev/sdc1. Перемонтируем обратно наш раздел mount /dev/sdc1 /mnt Теперь можно получить информацию по разделу xfs_info /dev/sdc1 Или сделать дамп файловой системы xfs_metadump /dev/sdc1 dump.db Переформатируем файловую систему ext4 на разделе обратно /dev/sdc1. Перемонтируем в папку mnt. Создадим текстовый файл с текстом на данном разделе nano /mnt/test.txt Далее мы можем посмотреть следующую утилиту man debugfs. Данная утилита умеет очень многое: очень много ключей и различных опций. Чистит, удаляет, чинит, работает с inodes. Зайти в данную утилиту можно debugfs –w /dev/sdc1. Набираем help и видим кучу опций. Можно попросить данную утилиту вывести содержимое нашего тома. ls В результате данной команды мы увидим 2 объекта с номерами их inode. Теперь мы можем сказать rm test.txt и файл будет удален, точнее не сам файл а его индексный дескриптор., если посмотреть опять с помощью команды ls. То будет видно, что количество объектов не изменилось. Следовательно, мы этот файл в журналируемых файловых системах можем восстановить, восстановив его индексный дескриптор. Но только до тех пор, пока на место удаленного файла не был записан другой. Именно поэтому если требуется восстановление информации на диске, рекомендуется немедленно отключить ПК и после этого отдельно подключать носитель информации для процедуры восстановления. Так же на данном принципе основано сокрытие информации в Информационной безопасности, когда на носитель информации в 2 или 3 прохода записываются псевдослучайные данные. Для восстановления данных мы можем использовать команду lsdel. Данная команда показывает удаленные файлы. В принципе на данном debugfs и основаны многие программы для восстановления данных. На скриншоте хорошо видно, что был удален 1 inode с номером 12 дата и время, другие параметры. Для выхода используем q. Для восcтановления используем undel test.txt, команда, номер индексного дескриптора и имя файла с которым оно восстановится. Убедиться, что файл на месте можно с помощью команды ls. Утилита debagfs помогает восстанавливать файлы и вообще работать с файловой системой на низком уровне. Конечно восстанавливать по 1 файлу, это очень трудозатратно. Поэтому вот эти низкоуровневые утилиты используют более современные программы. Еще одна утилита dumpe2fs. Можно вызвать справку по данной утилите man dumpe2fs Данная команда делает дамп информации, которая хранится на данных томах. Выполним данную команду для /dev/sdc1 Мы получим следующий вывод информации. Данный вывод был сделан на стандартный вывод – т.е экран. Сделаем вывод в файл, например: dumpe2fs /dev/sdc1 > /tmp/output.txt Мы можем просмотреть информацию в выведенную в файл поэкранно с помощью less /tmp/output.txt В выводе мы сможем увидеть основные опции данной файловой системы. Переделаем файловую систему, текущую ext4 в ext2. Это можно сделать 3-мя способами с помощью утилит: mkfs, mke2fs, mkfs.ext2. Перед переформатирование необходимо отмонтировать файловую систему. После форматирования и перемонтируем. Опять снимаем дамп и передаем по конвееру на команду grep чтобы посмотреть features. Получаем следующее: dumpe2fs /dev/sdc1 | grep features И видим, что файловые системы отличаются, более новая файловая система имеет фишку журналирования has_jounal. Данная опция так же присутствует в ext3. Т.е в данных файловых системах имеются журналы с помощью которых удобно восстанавливать. Есть интересная утилита tune2fs – настраивать файловую систему. man tune2fs Данная утилита, как следует из описания настраивает настраиваемые параметры файловых систем. Например, у нас есть не журналируемая файловая система ext2. Мы даем команду tune2fs –O has_journal /dev/sdc1. Данная утилита добавляет опцию ведения журнала к файловой системе ext2. Или можем наоборот сказать удалить опцию поставив значок ^.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59