По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этом материале расскажем, как можно фильтровать маршруты, анонсируемые протоколом динамической маршрутизации EIGRP. Данный материал предполагает, что у читателя есть начальные навыки работы с сетью или как минимум знания на уровне CCNA. Поэтому о том, что такое динамическая маршрутизация в этом материале не будет рассказано, так как тема достаточно большая и займет не одну страницу. Теперь представим, что мы работаем в большой компании с сотнями серверов, десятками филиалов. Мы подняли сеть, настроили динамическую маршрутизацию и все счастливы. Пакеты ходят куда надо, как надо. Но в один прекрасный день, нам сказали, что на маршрутизаторах филиалов не должно быть маршрутов к сетям отдела производства. На рисунке ниже представлена упрощенная схема нашей вымышленной сети. Конфигурацию всех устройств из этой статьи (для каждой ноды) можно скачать в архиве по ссылке ниже. Скачать конфиги тестовой лаборатории Мы конечно можем убрать из-под EIGRP указанные сети, но в этом случае из сетей в головном офисе тоже не будет доступа к сетям отдела производства. Именно для таких случаев была придумана такая возможность, как фильтрация маршрутов. В EIGRP это делается командой distribute-list в конфигурации EIGRP. Принцип работы distribute-list (список распределения) прост: список распределения работает по спискам доступа (ACL), спискам префиксов (prefix-list) или карте маршрутов (route-map). Эти три инструмента определяют будут ли анонсироваться указанные сети в обновлениях EIGRP или нет. В команде distribute-list также можно указать направление обновлений: входящие или исходящие. Также можно указать конкретный интерфейс, где должны фильтроваться обновления. Полная команда может выглядеть так: distribute-list acl [in | out][interface-type interface-number] Фильтрация маршрутов с помощью списков доступа Первым делом рассмотрим фильтрацию с помощью ACL. Фильтрация маршрутов EIGRP с помощью списков ACL основан на разрешающих и запрещающих действиях списков доступа. То есть, чтобы маршрут анонсировался, в списке доступа он должен быть указан с действием permit, а deny, соответственно, запрещает анонсирование маршрута. При фильтрации, EIGRP сравнивает адрес источника в списке доступа с номером подсети (префиксом) каждого маршрута и принимает решение на основе действий, указанных в ACL. Чтобы лучше узнать принцип работы приведём примеры. Для фильтрации маршрутов, указанных на рисунке выше нужно создать ACL, где каждый указанный маршрут сопровождается командой deny, а в конце следует прописать permit any, чтобы остальные маршруты могли анонсироваться: access-list 2 deny 10.17.32.0 0.0.1.255 access-list 2 deny 10.17.34.0 0.0.0.255 access-list 2 deny 10.17.35.0 0.0.0.127 access-list 2 deny 10.17.35.128 0.0.0.127 access-list 2 deny 10.17.36.0 0.0.0.63 access-list 2 deny 10.17.36.64 0.0.0.63 access-list 2 permit any А на интерфейсе настройки EGRP прописываем: distribute-list 2 out s4/0 Проверим таблицу маршрутизации до и после применения указанных команд. Фильтрацию будем проводить на WAN маршрутизаторах. Как видим все маршруты до сети отдела Производства видны в таблице маршрутизации филиала. Теперь применим указанные изменения: И посмотрим таблицу маршрутов роутера филиала еще раз: Все маршруты в отдел производства исчезли из таблицы маршрутизации. Правда, можно было обойтись и одной командой в списке доступа, но для наглядности решили прописать все адреса. А более короткую версию можете указать в комментариях к этому посту. Кстати, фильтрацию в данном примере мы применили на один интерфейс, но можно применить и на все интерфейсы, на которых включен EIGRP. Для этого команду distribute-list нужно ввести без указания конкретного интерфейса. distribute-list 2 out Следует отметить, что для правильной работы фильтрации в нашей топологии на маршрутизаторе WAN2 нужно прописать те же настройки, что и на WAN1. Фильтрация маршрутов с помощью списка префиксов В Cisco IOS есть еще один инструмент, который позволяет осуществлять фильтрацию маршрутов prefix-list-ы. Может возникнуть вполне логичный вопрос: а чем не угодили списки доступа? Дело в том, что изначально ACL был разработан для фильтрации пакетов, поэтому для фильтрации маршрутов он не совсем подходит по нескольким причинам: списки IP-префиксов позволяют сопоставлять длину префикса, в то время как списки ACL, используемые командой EIGRP distribution-list, нет; Использование расширенных ACL может оказаться громоздким для конфигурирования; Невозможность определения совпадения маски маршрута при использовании стандартных ACL; Работа ACL достаточно медленна, так как они последовательно применяется к каждой записи в маршрутном обновлении; Для начала разберёмся в принципе работы списка префиксов. Списки IP префиксов позволяют сопоставлять два компонента маршрута: адрес сети (номер сети); длину префикса (маску сети); Между списками доступа и списками префиксов есть общие черты. Как и нумерованные списки доступа, списки префиксов могу состоять из одной и более команд, которые вводятся в режиме глобальной конфигурации и нет отдельного режима конфигурации. Как и в именованных списках доступа, в списках префиксов можно указать номер строки. В целом команда выглядит так: ip prefix-list list-name [ seq seq-value ] { deny | permit prefix / prefix-length } [ ge ge-value ] [ le le-value ] Коротко работу списка префиксов можно описать так: Адрес сети маршрута должен быть в пределах, указанных в команде ip prefix-list prefix/prefix-length. Маска подсети маршрута должна соответствовать значениям, указанным в параметрах prefix-length, ge, le. Первый шаг работает также как и списки доступа. Например, написав ip prefix-list TESTLIST 10.0.0.0/8 мы скажем маршрутизатору, что адрес сети должен начинаться с 10. Но списки префиксов всегда проверяют и на соответствие длины маски сети указанным значениям. Ниже приведено пояснение параметров списка IP-префиксов: Параметр prefix-list-а Значение Не указан 10.0.0.0/8; Маска сети должна быть равной длине, указанной в параметре prefix/prefix-length. Все маршруты, которые начинаются с 10. ge и le (больше чем, меньше чем) 10.0.0.0/8 ge 16 le 24 Длина маски должна быть больше 16, но меньше 24. А первый байт должен быть равен 10-ти. le меньше чем 10.0.0.0/8 le 24 Длина маски должна быть от восьми до 24-х включительно. ge больше чем 10.0.0.0/8 ge 24 Длина маски должна быть равна или больше 24 и до 32-х включительно. Учтите, что Cisco требует, чтобы параметры prefix-length, ge и le соответствовали следующему равенству: prefix-length <= ge-value <= le-value (8<=10<=24). А теперь перейдем непосредственно к настройке фильтрации с помощью списка префиксов. Для этого в интерфейсе конфигурации EIGRP прописываем distribute-list prefix prefix-name. Воспользуемся той же топологией и введём некоторые изменения в конфигурацию маршрутизатора WAN1, точно такую же конфигурацию нужно прописать и на WAN2. Итак, наша задача: отфильтровать маршруты в сети 10.17.35.0 и 10.17.36.0; отфильтровать маршруты сетей точка-точка так, чтобы маршрутизаторы в филиалах и на коммутаторах ядра (Core1 и Core2) не видели сети с длиной маски /30 бит. Так как трафик от пользователей в эти сети не идет, следовательно, нет необходимости анонсировать их в сторону пользователей. Для этого создаем prefix-list с названием FILTER-EIGRP и добавим нужные сети: ip prefix-list FILTER-EIGRP seq 5 deny 10.17.35.0/24 ge 25 le 25 ip prefix-list FILTER-EIGRP seq 10 deny 10.17.36.0/24 ge 26 le 26 ip prefix-list FILTER-EIGRP seq 15 deny 0.0.0.0/0 ge 30 le 30 ip prefix-list FILTER-EIGRP seq 20 permit 0.0.0.0/0 le 32 Удалим из конфигурации фильтрацию по спискам доступа и проверим таблицу маршрутизации: А теперь применим наш фильтр и затем еще раз проверим таблицу маршрутизации: Как видим из рисунка, маршрутов в сети 10.17.35.0, 10.17.36.0 и сети для соединений точка-точка между сетевыми устройствами в таблице уже нет. А теперь объясним что мы сказали маршрутизатору: ip prefix-list FILTER-EIGRP seq 5 deny 10.17.35.0/24 ge 25 le 25 Все сети, которые начинаются на 10.17.35 и имеют длину 25 бит запретить. Под это условие попадают сети 10.17.35.0/25 и 10.17.35.128/25. Длине префикса /25 соответствует маска 255.255.255.128. ip prefix-list FILTER-EIGRP seq 10 deny 10.17.36.0/24 ge 26 le 26 Все сети, которые начинаются на 10.17.36 и имеют длину 26 бит запретить. Под это условие попадают сети 10.17.36.0/26 и 10.17.36.64/26. Длине префикса /26 соответствует маска 255.255.255.192. ip prefix-list FILTER-EIGRP seq 15 deny 0.0.0.0/0 ge 30 le 30 Все сети, длина префикса которых равна 30 бит - запретить. В нашей топологии под это условие попадают сети 10.1.1.0/30, 10.1.1.4/30, 10.1.2.0/30, 10.1.2.4/30 все сети которые начинаются на 10.9.2. ip prefix-list FILTER-EIGRP seq 20 permit 0.0.0.0/0 le 32 Все сети, префикс которых имеет длину до 32-х бит разрешить. Под это условие попадают все остальные сети топологии. Фильтрация маршрутов с помощью route-map Далее пойдет речь о картах маршрутов или route-map-ах. В целом, в работе сети route-map-ы используются довольно часто. Этот достаточно гибкий инструмент дает возможность сетевому инженеру тонко настраивать маршрутизацию в корпоративной сети. Именно поэтому следует хорошо изучить принцип их работы, чем мы и займемся сейчас. А дальше покажем, как фильтровать маршруты с помощью этого инструмента. Route-map применяет логику похожую на логику if, else, then в языках программирования. Один route-map может включать в себя несколько команд route-map и маршрутизатор выполняет эти команды поочередно согласно номеру строки, который система добавляет автоматически, если не был указан пользователем. После того как, система нашла соответствие маршрута условию и определила разрешить анонсирование или нет, маршрутизатор прекращает выполнение команды route-map для данного маршрута, даже если дальше указано другое условие. Каждый route-map включает в себя критерии соответствия, который задается командой match. Синтаксис route-map выглядит следующим образом: route-map route-map-name {permit | deny} seq sequence-number match (1st set of criteria) Как и в случае с ACL или prefix-list, в route-map тоже можно указать порядковый номер строки для добавления или удаления соответствующего правила. В команде match можно указать ACL или prefix-list. Но тут может возникнуть недоразумение. А связано оно с тем, как обрабатываются route-map Cisco IOS. Дело в том, что решение о запрете или допуске маршрута основано на команде deny или permit команды route-map. Другими словами, маршрут будет обработан route-map-ом если в ACL или prefix-list-е данный маршрут сопровождается командой permit. Иначе, route-map проигнорирует данную запись и перейдет к сравнению со следующим условием route-map. Поясним на примере: access-list 101 permit 10.17.37.0 0.0.0.255 access-list 102 deny 10.17.35.0 0.0.0.127 route-map Test permit 5 match ip-address 101 route-map Test deny 10 match ip-address 102 В данном случае маршрут 10.17.37.0 будет обработан route-map 5, а маршрут 10.17.35.0 будет проигнорирован, так как в списке доступа под номером 102 он запрещён и не попадёт под критерий соответствия route-map. Приведём ключевые пункты работы route-map при фильтрации маршрутов: Команда route-map с опцией permit либо разрешит анонсирование маршрута, если он соответствует критерию, указанному в команде match, либо пропустит для обработки следующим пунктом. Команда route-map с опцией deny либо запретит анонсирование маршрута, если он соответствует критерию, указанному в команде match, либо пропустит для обработки следующим пунктом. Если команда match основывается на ACL или prefix-list-ы, а в ACL или prefix-list-ах указанный маршрут прописан с действием deny, то маршрут не будет отфильтрован. Это будет означать, что маршрут не соответствует критерию, указанному в команде match и его нужно пропустить для обработки следующим пунктом. В конце каждого route-map существует явный запрет; чтобы пропустить все маршруты, которые не попали под критерии, нужно указать команду route-map с действием permit без опции match. Для того чтобы задействовать route-map в фильтрации маршрутов используется та же команда distribute-list с опцией route-map route-map-name. Внесём некоторые изменения в конфигурацию маршрутизатора WAN1. Точно такие же изменения нужно будет сделать на WAN2. Используем те же префикс-листы, что и в предыдущем примере с незначительными редактированиями: ip prefix-list MANUFACTURING seq 5 permit 10.17.35.0/24 ge 25 le 25 ip prefix-list MANUFACTURING seq 10 permit 10.17.36.0/24 ge 26 le 26 ip prefix-list POINT-TO-POINT seq 5 permit 0.0.0.0/0 ge 30 le 30 После внесения изменений маршрутов в сеть производства, а также в сети точка-точка таблице маршрутизации на роутерах филиалов не окажется. Также на Core1 не будет маршрута до сетей point-to-point: Мы рассмотрели фильтрацию маршрутов в EIGRP тремя способами. Хорошим тоном считается использование списка префиксов, так как они заточены именно под эти цели. А использование карты маршрутизации или route-map-ов неэффективно из-за большего количества команд для конфигурации. В следующем материале рассмотрим фильтрацию в домене OSPF.
img
Kali Linux (ранее известная как BackTrack Linux) объявила о выпуске новой версии - Kali Linux 2020.2 Kali Linux - это дистрибутив на основе Debian, специально предназначенный для тестирования на проникновение и использования цифровой криминалистики. Последняя версия Kali Linux поставляется с функциональными и косметическими изменениями. В этой статье мы описали основные улучшения, включенные в Kali 2020.2. Новый рабочий стол и экран входа в систему Новый Kali Linux 2020.2 поставляется с элегантным рабочим столом со светлыми и темными темами. Вы можете переключаться между темами, перейдя в «Настройки» и выбрав предпочитаемую тему. Среда рабочего стола GNOME также обновлена до последней версии - GNOME 3.36. Среды KDE Plasma и XFCE также получили новый изысканный внешний вид. Интеграция PowerShell в Kali Linux Powershell был перемещен из сетевого репозитория Kali Linux в один из основных метапакетов, известный как kali-linux-large. Это подразумевает, что вы можете установить Powershell либо во время установки - поскольку он теперь включен в метапакеты kali-Linux-large - либо после окончательной установки Kali. Это можно сделать на терминале с помощью показанной команды $ sudo apt install -y kali-linux-large Чтобы вызвать Powershell, просто запустите команду. $ pwsh Новые ключевые пакеты и значки Некоторые из новых пакетов, включенных в Kali 2020.2: Python 3.8 Joplin - приложение для заметок Nextnet - инструмент обнаружения точек поворота (pivot point), написанный на языке Go SpiderFoot - разведывательный инструмент Также появились новые значки пакетов для каждого инструмента в новой версии Kali 2020.2. Улучшения ARM ARM-образы больше не используют учетные данные root/toor по умолчанию при входе в систему, как это было со времен Kali Linux 2020.1. Кроме того, в последней версии Kali отсутствует поддержка SD-карт объемом не менее 8 ГБ. Теперь вам потребуется использовать SD-карту объемом 16 ГБ или более для образов ARM. Изменения в установщике Новая Kali 2020.2 избавляется от опции kali-linux-everything от установщика. Это решает проблему, которая присутствовала в более ранней версии (Kali 2020.1), когда пользователям приходилось выбирать «все», что занимало намного больше времени для получения очень больших метапакетов. Теперь каждая среда рабочего стола и большие метапакеты Kali-Linux кэшируются в образе ISO, и пользователи могут выбирать, что им нужно установить. Скачать Kali Linux Чтобы получить последнюю версию Kali Linux, просто перейдите на страницу загрузки Kali и выберите предпочитаемый ISO-образ, соответствующий архитектуре вашей системы. 64-битные и 32-битные ISO-образы Kali Linux можно скачать по следующим ссылкам. Kali Linux 64-Bit (Installer) Kali Linux 64-Bit (Live) Kali Linux 64-Bit (NetInstaller) Kali Linux 32-Bit (Installer) Kali Linux 32-Bit (Live) Kali Linux 32-Bit (NetInstaller) Kali Linux for ARM Обновление Kali Linux до последней версии Поскольку Kali является скользящим релизом, вы можете обновить свою систему, выполнив следующие команды, чтобы получить последние обновления. $ sudo apt -y update $ sudo apt -y full-upgrade Про установку Kali Linux с нуля можно прочитать в этой статье.
img
Под телефонными (VoIP) кодеками понимаются различные математические модели используемые для цифрового кодирования и компрессирования (сжатия) аудио информации. Многие из современных кодеков используют особенности восприятия человеческим мозгом неполной информации: алгоритмы голосового сжатия пользуются этими особенностями, вследствие чего не полностью услышанная информация полностью интерпретируется головным мозгом. Основным смыслом таких кодеков является сохранение баланса между эффективностью передачи данных и их качеством. Изначально, термин кодек происходил от сочетания слов КОДирование/ДЕКодирование, то есть устройств, которые преобразовывали аналог в цифровую форму. В современном мире телекоммуникаций, слово кодек скорее берет начало от сочетания КОмпрессия/ДЕКомпрессия. Перед тем как начать подробный рассказ про различные кодеки, мы составили таблицу со краткой сравнительной характеристикой современных кодеков: Кодек Скорость передачи, Кб/сек. Лицензирование G.711 64 Кб/сек. Нет G.726 16, 24, 32 или 40 Кб/ сек. Нет G.729А 8 Кб/ сек. Да GSM 13 Кб/ сек. Нет iLBC 13.3 Кб/ сек. (30 мс фрейма); 15.2 Кб/ сек. (20 мс фрейма) Нет Speex Диапазон от 2.15 до 22.4 Кб/ сек. Нет G.722 64 Кб/сек. Нет G.711 Кодек G.711 это самый базовый кодек ТфОП (PSTN). В рамках данного кодека используется импульсно-кодовая модуляция PCM. Всего в мире используется 2 метода компандирования (усиления сигнала) G.711: µ – закон в Северной Америке и A – закон в остальной части мира. Данный кодек передает 8 – битное слово 8 000 раз в секунду. Если умножить 8 на 8 000, то получим 64 000 бит – то есть 64 Кб/с, скорость потока, создаваемого G.711. Многие люди скажут, что G.711 это кодек, в котором отсутствует компрессирование (сжатие), но это не совсем так: сам по себе процесс компандирования является одной из форм компрессирования. Все мировые кодеки «выросли» на базе G.711. Важная особенность G.711 в том, что он минимально загружает процессор машины, на которой он запущен. G.726 Этот кодек использовался некоторое время, став заменой для G.721, который на тот момент устарел, и является одним из первых кодеков с алгоритмом компрессии. Он так же известен как кодек с адаптивной импульсно-кодовой модуляции (Adaptive Differential Pulse-Code Modulation, ADPCM) и может использовать несколько скоростей потока передачи. Наиболее распространенные скорости передачи это 16, 24 и 32 Кб/сек. Кодек G.726 почти идентичен G.711 – единственным отличием является то, что он использует половину полосы пропускания. Это достигается путем того, что вместо отправки полного результата квантования, он отправляет только разницу между двумя последними измерениями. В 1990 году от кодека практически отказались, так как он не мог работать с факсимильными сигналами и модемами. Но в наше время, из – за своей экономии полосы пропускания и ресурсов центрального процессора у него есть все шансы вновь стать популярные кодеком в современных сетях. G.729A Учитывая то, какую малую полосу пропускания использует G.729A, всего 8 Кб/сек., он обеспечивает превосходное качество связи. Это достигается за счет использования сопряженной структуры с управляемым алгебраическим кодом и линейным предсказанием (Conjugate-Structure Algebraic-Code-Excited Linear Prediction, CS-ACELP). По причине патента, использование данного кодека является коммерческим; однако это не мешает кодеку G.729A быть популярным в различных корпоративных сетях и телефонных системах. Для достижения такой высокой степени сжатия, G.729A активно задействует мощности процессора (CPU). GSM Кодек для глобального стандарта цифровой мобильной сотовой связи (Global System for Mobile Communications, GSM) не обременен лицензированием, как его аналог G.729A, но предлагает высокое качество и умеренную нагрузку на процессор при использовании 13 Кб/сек. полосы пропускания. Эксперты считают, что качество GSM несколько ниже чем G.729A. iLBC Кодек iLBC (Internet Low Bitrate Codec) сочетает в себе низкое использование полосы пропускания и высокого качества. Данный кодек идеально подходит для поддержания высокого качества связи в сетях с потерями пакетов. iLBC не так популярен как кодеки стандартов ITU и поэтому, может быть не совместим с популярными IP – телефонами и IP – АТС. Инженерный совет Интернета (IETF) выпустил RFC 3951 и 3952 в поддержку кодека iLBC. Internet Low Bitrate кодек использует сложные алгоритмы для достижения высокого показателя сжатия, поэтому, весьма ощутимо загружает процессор. В настоящий момент iLBC используется бесплатно, но владелец этого кодека, Global IP Sound (GIPS), обязует уведомлять пользователей о намерении коммерческого использования этого кодека. Кодек iLBC работает на скорости в 13.3 Кб/сек. с фреймами в 30 мс, и на скорости 15.2 кб/сек. с фреймами в 20 мс. Speex Кодек Speex относится к семейству кодеков переменной скорости (variable-bitrate, VBR), что означает возможность кодека динамически менять скорость передачи битов в зависимости от статуса производительности сети передачи. Этот кодек предлагается в широкополосных и узкополосных модификациях, в зависимости от требования к качеству. Speex полностью бесплатный и распространяется под программной лицензией университета Беркли (Berkeley Software Distribution license, BSD). Кодек работает на диапазонах от 2.15 до 22.4 Кб/сек. в рамках переменного битрейта. G.722 G.722 является стандартом ITU-T (International Telecommunication Union - Telecommunication sector) и впервые опубликован в 1988 году. Кодек G.722 позволяет обеспечить качество, не ниже G.711 что делает его привлекательным для современных VoIP разработчиков. В настоящий момент патент на G.722 не действителен, и этот кодек является полностью бесплатным.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59