По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Со всеми может произойти ситуация, когда забытый или потерянный пароль не позволяет получить доступ к оборудованию. Сегодня в статье мы расскажем про то, как сбросить пароль на маршрутизаторах и коммутаторах Cisco. Стоит уточнить, что описанные способы подразумевают подключение к оборудованию только напрямую через консольный кабель. Поэтому стоит уделить внимание безопасности и сделать так, чтобы в серверную или помещение, где находится оборудование доступ имел только авторизованный персонал. Суть этих методов заключается в том, чтобы загрузиться без конфигурационного файла с забытым паролем, войти в привилегированный режим (Privileged EXEC), заменить новый конфигурационный файл на старый и поменять на нем все пароли. Если вам нужно создать криптостойкий пароль, то можно воспользоваться нашим онлайн генератором устойчивых паролей Сброс пароля на маршрутизаторах Cisco Прежде всего, нам нужно подключиться к маршрутизатору при помощи консольного кабеля (он еще называется Rollover): Подключившись к нему, отправляем его в перезагрузку. Во время загрузки IOS нам нужно отправить сигнал прерывания, нажав клавиши [Ctrl]+[Break]: System Bootstrap, Version 12.1(3r)T2, RELEASE SOFTWARE (fc1) Copyright (c) 2000 by cisco Systems, Inc. Initializing memory for ECC .. c2811 processor with 524288 Kbytes of main memory Main memory is configured to 64 bit mode with ECC enabled Readonly ROMMON initialized Self decompressing the image : ############## monitor: command "boot" aborted due to user interrupt rommon 1 > Таким образом, мы окажемся в режиме rommon (ROM monitor). Тут изменим конфигурацию регистра командной confreg 0x2142, в результате которой маршрутизатор при запуске не будет использовать конфигурационный файл, записанный во flash памяти. После этого перезапускаем маршрутизатор, введя команду reset. rommon 1 > confreg 0x2142 rommon 2 > reset Теперь мы загрузимся без конфига, и нам нужно загрузить старый конфигурационный файл. Делаем это командной copy startup-config running-config в привилегированном режиме. Router>en Router#copy startup-config running-config Destination filename [running-config]? 700 bytes copied in 0.416 secs (1682 bytes/sec) Router1# %SYS-5-CONFIG_I: Configured from console by console После этого применится старый конфиг, который был запаролен, но при этом мы уже находимся в привилегированном режиме, откуда можем выставить новые пароли для привилегированного режима, telnet и консоли. Router1#conf t Router1(config)#enable password NewPassword Router1(config)#enable secret NewPassword Router1(config)#line vty 0 4 Router1(config-line)#password NewPassword Router1(config-line)#login Router1(config-line)#exit Router1(config)#line console 0 Router1(config-line)#password NewPassword Router1(config-line)#login Теперь, когда мы сменили все пароли нам нужно вернуть старое значение конфигурационного регистра, введя из режима конфигурации команду config-register 0x2102 Router1(config)# config-register 0x2102 После этого сохраняем наш новый конфиг и перезагружаемся Router1#copy running-config startup-config Router1#reload Когда роутер загрузится, то он возьмет сохраненный конфигурационный файл, с новыми паролями. Также, можно отключить возможность сброса пароля, используя команду no service password-recovery. Но как мы упомянули ранее, для этого метода восстановления требуется физический доступ к оборудованию. Сброс пароля на коммутаторах Cisco Catalyst Для того чтобы сбросить пароль на коммутаторе Cisco Catalyst нам также нужен физический доступ к оборудованию. Подключаемся к свитчу консольным кабелем, выключаем его по питанию, а затем включаем, удерживая нажатой кнопку Mode на лицевой панели. Таким образом мы прервем обычный процесс загрузки. Loading "flash:/c2960-lanbase-mz.122-25.FX.bin"... ############################# Boot process terminated. switch: После этого мы вводим команды flash_init и load_helper. И теперь мы можем посмотреть содержимое нашей flash памяти, используя команду dir flash: (внимание – в конце команды должно стоять двоеточие) switch: flash_init Initializing Flash... flashfs[0]: 3 files, 0 directories flashfs[0]: 0 orphaned files, 0 orphaned directories flashfs[0]: Total bytes: 64016384 flashfs[0]: Bytes used: 3059643 flashfs[0]: Bytes available: 60956741 flashfs[0]: flashfs fsck took 1 seconds. ...done Initializing Flash. switch: load_helper switch: dir flash: Directory of flash:/ 1 -rw- 3058048 c2950-i6q4l2-mz.121-22.EA4.bin 3 -rw- 979 config.text 2 -rw- 616 vlan.dat 60956741 bytes available (3059643 bytes used) Мы видим содержимое нашей flash памяти и нам интересен файл config.text – файл конфигурации коммутатора. Сейчас нам нужно его переименовать, чтобы коммутатор загрузился без него. Делаем это командой rename flash:config.text flash:config.old и затем можно сделать проверку. switch: rename flash:config.text flash:config.old switch: dir.flash Directory of flash:/ 1 -rw- 3058048 c2950-i6q4l2-mz.121-22.EA4.bin 3 -rw- 979 config.old 2 -rw- 616 vlan.dat 60956741 bytes available (3059643 bytes used) После этого возобновляем загрузку командой boot. switch: boot Коммутатор не найдет файл конфигурации и загрузится без него. Теперь входим в привилегированный режим, и переименовываем обратно наш конфиг, выполнив команду rename flash:config.old flash:config.text, а затем загружаем его командой copy flash:config.text system:running-config Switch>en Switch#rename flash:config.old flash:config.text Switch#copy flash:config.text system:running-config Теперь после того как конфиг загружен мы можем задать новый пароль Switch1#conf t Switch1(config)#enable secret NewPassword Switch1(config)#enable password NewPassword Switch1 (config)#line vty 0 4 Switch1 (config-line)#password NewPassword Switch1 (config-line)#login Switch1 (config-line)#exit Switch1 (config)#line console 0 Switch1 (config-line)#password NewPassword Switch1 (config-line)#login И сохраняем новую конфигурацию. Switch1#copy running-config startup-config Готово! Теперь после перезагрузки роутер будет загружать конфигурационный файл с измененными паролями.
img
Несмотря на то, что системы на базе Linux считаются самыми неуязвимыми, всё же существуют риски, к которым нужно относиться серьезно. Руткиты, вирусы, программы-вымогатели и многие другие вредоносные программы часто могут атаковать и вызывать проблемы на серверах Linux. Независимо от установленной операционной системы, для серверов необходимо принимать повышенные меры безопасности. Крупные корпорации и организации взялись за повышение уровня безопасности и разработали инструменты, которые не только обнаруживают недостатки и вредоносные программы, но и исправляют их и принимают меры для предотвращения разного вида неприятностей. Но такие ПО стоят дорого и не все могут позволить себе их покупать. К счастью, есть инструменты, по приемлемой цене или вовсе бесплатные, которые могут помочь с поиском и устранением уязвимостей. Они могут обнаруживать слабые места в различных разделах сервера на базе Linux. Lynis Lynis это известный инструмент безопасности, который пользуется популярностью среди Linux специалистов. Он также работает на системах на базе Unix и macOS. Это программное обеспечение с открытым исходным кодом, которое с 2007 года распространяется под лицензией GPL. Lynis не требует установки. Можно извлечь его из загруженного пакета или tar архива и запустить. Чтобы получить доступ к полной документации и исходному коду, можно скачать его с Git, Lynis был создан автором Rkhunter Майклом Боеленом. Она имеет две версии: для домашнего пользования и для предприятий. Обе версии показывают отличные результаты. Chkrootkit Как вы уже наверно предположили, chkrootkit утилита для сканирования системы на наличие руткитов. Руткиты это вид вредоносного ПО, который дает неавторизованному пользователю право на вход в систему. Если в парке есть сервера на базе Linux, то руткиты могут стать настоящей проблемой. Chkrootkit одна из самых популярных программ на базе Unix, которая помогает обнаруживать руткиты в системе. Для обнаружения проблем она использует команды "strings" (команда Linux для просмотра содержимого бинарного файла) и "grep". Она может быть запущена как с альтернативной директории, так и внещнего накопителя в случае работы с уже скомпрометированной системой. Различные компоненты chkrootkit занимаются поиском удалённые записи в "wtmp" и "lastlog" файлах, находят записи сниффера или конфигурационных файлов руткитов, а также проверяют на наличие скрытых записей в "/proc" или вызовов программы "readdir". Чтобы использовать эту утилиту нужно скачать последнюю версию, распаковать, скомпилировать и запустить. Rkhunter Майкл Болин разработчик, который создал в 2003 году Rkhunter. Эта очень полезная программа для POSIX систем помогает обнаруживать руткиты и другие уязвимости в системах Linux. Rkhunter тщательно просматривает файлы (скрытые или видимые), каталоги по умолчанию, модули ядра и неправильно настроенные разрешения в поисках слабых мест. После обычной проверки, он сопоставляет результаты с безопасными и правильными записями баз данных и ищет подозрительное ПО. Так как программа полностью написана на Bash, его можно использовать не только на Linux, но и на всех версиях Unix. ClamAV Написанный на C++ ClamAV антивирус с открытым исходным кодом, который помогает выявлять вирусы, трояны и другие виды вредоносных программ. Он полностью бесплатен, ввиду чего очень много пользователей используют его для сканирования персональных данных включая электронную почту на наличие вредоносных файлов любого типа. Он так же может быть использован для сканирования серверов. Изначально он был создан только для Unix. Несмотря на это, есть сторонние версии, которые можно использовать на Linux, BSD, AIX, MacOS, OpenVMS, Solaris. ClamAV регулярно выполняет автоматическое обновление баз данных для выявления самых последних угроз. Есть возможность сканирования в режиме командной строки, а также включает в себя расширяемый многопоточный демон, благодаря чему, существенно увеличивается скорость сканирования. Он проверяет различные типы файлов на наличие уязвимостей. Антивирус поддерживает все типы сжатых файлов включая RAR, Zip, Gzip, Tar, Cabinet, OLE2, CHM, SIS format, BinHex и почти все типы почтовых систем. LMD Linux Malware Detect LMD другой очень популярный продукт для Linux систем, специально разработанный для часто встречающихся угроз. Как и другие подобные продукты для поиска вредоносных программ и руткитов, LMD использует базу сигнатур для выявления и прекращения работы любого вредоносного кода. LMD не ограничивается собственными базами сигнатур. Для лучшего поиска он может использовать базы ClamAV и Team Cymru. Для заполнения своих баз, LMD собирает данные об уязвимостях на пограничных системах обнаружения угроз. Тем самым он генерирует новые сигнатуры для вредоносных ПО, которые активно эксплуатируются в атаках. Radare2 Radare2 (R2) фреймворк для анализа и реверс-инжиниринга двоичных файлов с превосходными возможностями обнаружения. Он может выявить заражённые файлы, даёт пользователю инструменты для управления ими, нейтрализует потенциальные угрозы. Фереймворк использует NoSQL базу sdb. Исследователи безопасности и разработчики ПО предпочитают эту программу за возможность отличного визуального представления данных. Одной из отличительных особенностей Radare2 является то, что пользователь не должен использовать командную строку для выполнения таких задач, как статический/динамический анализ и использование программного обеспечения. Рекомендуется для любого типа исследований по бинарным данным. OpenVAS Open Vulnarability Assessment System или OpenVAS эта размещённая система для сканирования уязвимостей и управления ими. Она предназначена для предприятий любого размера и помогает выявлять невидимые проблемы безопасности в инфраструктуре. Изначально этот продукт был известен под названием GNessUs, до тех пор, пока новый владелец, Greenbone Networks, не сменил название на OpenVAS. Начиная с версии 4.0, OpenVAS предоставляет непрерывное обновление Сетевой базы Тестирования Уязвимостей обычно менее чем за 24 часа. На июнь 2016 система имеет больше 47 тысяч баз. Эксперты безопасности используют OpenVAS из-за возможности быстрого сканирования. Он также отличается превосходной возможностью конфигурирования. Программы OpenVAS могут использоваться на автономных виртуальных машинах для проведения безопасных исследований вредоносных программ. Его исходный код доступен под лицензией GNU GPL. Многие другие средства обнаружения уязвимостей зависят от OpenVAS - именно поэтому его принимают как важнейшую программу в платформах на базе Linux. REMnux REMNux использует метод обратного-инжиниринга для анализа вирусов. Он может обнаруживать большинство проблем на основе браузера, скрытых в изменённых фрагментах кода JavaScript и апплетах Flash. Он также способен сканировать PDF-файлы и выполнять экспертизу памяти. Средство помогает обнаруживать вредоносные программы внутри папок и файлов, которые сложно проверить с помощью других программ обнаружения вирусов. Он эффективен благодаря своим возможностям декодирования и обратного проектирования. Он может определять свойства подозрительных программ, и, будучи легким, он в значительной степени не обнаруживается интеллектуальными вредоносными программами. Он может использоваться как на Linux, так и на Windows, а его функциональность может быть улучшена с помощью других инструментов сканирования. Tiger В 1992 году Техасский Университет A&M начал работать над Tiger для повышения безопасности компьютеров кампуса. Сегодня же она самая популярная система для Unix-подобных платформ. Уникальность этого решения заключается в том, что оно является не только средством аудита безопасности, но и системой обнаружения вторжений. Программа свободно распространяются под лицензией GPL. Она зависит от средств POSIX, и вместе они могут создать идеальную инфраструктуру, которая может значительно повысить безопасность вашего сервера. Tiger полностью написан на shell - это одна из причин его эффективности. Он подходит для проверки состояния и конфигурации системы, а его многоцелевое использование делает его очень популярным среди людей, использующих инструменты POSIX. Maltrail Maltrail - это система обнаружения трафика, способная обеспечить чистоту трафика вашего сервера и помочь ему избежать любых угроз. Она выполняет эту задачу, сравнивая источники трафика с сайтами в черном списке, опубликованными в Интернете. Помимо проверки сайтов, включенных в черный список, она также использует усовершенствованные эвристические механизмы для обнаружения различных видов угроз. Даже если это необязательная функция, она пригодится, когда вы считаете, что ваш сервер уже подвергся атаке. Эта система имеет особый сенсор, способный обнаруживать трафик сервера, и посылать информацию на сервер Maltrail. Система обнаружения проверяет, достаточно ли безопасен трафик для обмена данными между сервером и источником. YARA Созданная для Linux, Windows и macOS, YARA (Yet Another Ridiculous Acronym) является одним из наиболее важных инструментов, используемых для исследования и обнаружения вредоносных программ. Он использует текстовые или двоичные шаблоны для упрощения и ускорения процесса обнаружения, что упрощает и ускоряет решение задачи. У YARA есть некоторые дополнительные функции, но для их использования необходима библиотека OpenSSL. Даже если у вас нет этой библиотеки, вы можете использовать YARA для базового исследования вредоносных программ с помощью механизма, основанного на правилах. Также его можно использовать в песочнице Cuckoo - песочнице на основе Python, идеальной для проведения безопасных исследований вредоносного программного обеспечения. Как выбрать лучшую утилиту? Все инструменты, о которых мы говорили выше, работают очень хорошо, и когда инструмент популярен в среде Linux, вы можете быть уверены, что его используют тысячи опытных пользователей. Нужно помнить, что каждое приложение обычно зависит от других программ. Например, это касается ClamAV и OpenVAS. Необходимо понять, что нужно вашей системе и в каких компонентах она может иметь уязвимости. Во-первых, используйте легковесный инструмент, чтобы изучить, какой раздел требует внимания. Затем используйте соответствующий инструмент для решения проблемы.
img
В этой серии лекций продолжается рассмотрение распределенных плоскостей управления, добавляя к изучению еще три протокола маршрутизации. Два из них являются протоколами состояния канала, а третий – единственный, широко распространенный протокол вектора пути, Border Gateway Protocol (BGP) v4. В этих лекция мы уделим внимание тому, почему каждый из этих протоколов реализован именно так. Очень легко увлечься и запутаться в изучении мельчайших деталей работы протоколов, но нам гораздо важнее помнить о проблемах, для решения которых эти протоколы были разработаны, и о диапазоне возможных решений. Каждый изучаемый вами протокол будет представлять собой комбинацию умеренно ограниченного набора доступных решений: существует очень мало доступных новых решений. Существуют различные комбинации решений, реализованных иногда уникальными способами для решения конкретных наборов проблем. Изучая эти принципы работы протокола, вы должны попытаться выбрать общие решения, которые они реализуют. Затем отразить эти решения обратно в набор проблем, которые должна решить любая распределенная плоскость управления, чтобы устранить проблемы в реальных сетях. Краткая история OSPF и IS-IS Протокол Intermediate System to Intermediate System (IS-IS или IS to IS) был разработан в 1978 году. Open Shortest Path First (OSPF) изначально задумывался как альтернатива IS-IS, предназначенная специально для взаимодействия с сетями IPv4. В 1989 году первая спецификация OSPF была опубликована Internet Engineering Task Force, а OSPFv2, значительно улучшенная спецификация, была опубликована в 1998 году как RFC2328. OSPF, безусловно, был более широко используемым протоколом, причем ранние реализации IS-IS практически не применялись в реальном мире. Были некоторые аргументы за и против, и многие функции были «позаимствованы» из одного протокола в другой (в обоих направлениях). В 1993 году компания Novell, в то время крупный игрок в мире сетевых технологий, использовала протокол IS-IS как основу для замены собственного протокола маршрутизации Netware. Протокол транспортного уровеня Novell, Internet Packet Exchange (IPX), в то время работал на большом количестве устройств, и возможность использования одного протокола для маршрутизации нескольких транспортных протоколов была решающим преимуществом на сетевом рынке (EIGRP, также может маршрутизировать IPX). Этот протокол замены был основан на IS-IS. Чтобы реализовать новый протокол Novell, многие производители просто переписали свои реализации IS-IS, значительно улучшив их в процессе. Это переписывание сделало IS-IS привлекательным для крупных провайдеров Интернет-услуг, поэтому, когда они отказались от протокола RIP, они часто переходили на IS-IS вместо OSPF. Intermediate System to Intermediate System Protocol В протоколе Intermediate System to Intermediate System (IS-IS) маршрутизатор называется Intermediate System (Промежуточной системой (IS), а хост- End System (Конечной системой (ES). Оригинальный дизайн набора состоял в том, чтобы каждое устройство, а не интерфейс, имело один адрес. Службы и интерфейсы на устройстве будут иметь точку доступа к сетевым службам (Network Service Access Point - NSAP), используемую для направления трафика к определенной службе или интерфейсу. Таким образом, с точки зрения IP, IS-IS изначально был разработан в рамках парадигмы маршрутизации хоста. Промежуточные и конечные системы связываются непосредственно с помощью протокола End System to Intermediate System (ES-IS), позволяющего IS-IS обнаруживать службы, доступные в любой подключенной конечной системе, а также сопоставлять адреса нижних интерфейсов с адресами устройств более высокого уровня. Еще один интересный аспект дизайна IS-IS - он работает на канальном уровне. Разработчикам протокола не имело большого смысла запускать плоскость управления для обеспечения доступности транспортной системы через саму транспортную систему. Маршрутизаторы не будут пересылать пакеты IS-IS, поскольку они параллельны IP в стеке протоколов и передаются по локальным адресам связи. Когда была разработана IS-IS, скорость большинства каналов была очень низкой, поэтому дополнительная инкапсуляция также считалась расточительной. Каналы связи также довольно часто выходили из строя, теряя и искажая пакеты. Следовательно, протокол был разработан, чтобы противостоять ошибкам при передаче и потере пакетов. Адресация OSI Поскольку IS-IS был разработан для другого набора транспортных протоколов, он не использует адреса Internet Protocol (IP) для идентификации устройств. Вместо этого он использует адрес взаимодействия открытых систем (Open Systems Interconnect - OSI) для идентификации как промежуточных, так и конечных систем. Схема адресации OSI несколько сложна, включая идентификаторы для органа, распределяющего адресное пространство, идентификатор домена, состоящий из двух частей, идентификатор области, системный идентификатор и селектор услуг (N-селектор). Многие из этих частей адреса OSI имеют переменную длину, что еще больше затрудняет понимание системы. Однако в мире IP используются только три части этого адресного пространства. Authority Format Identifier (AFI), Initial Domain Identifier (IDI), High-Order Domain Specific Part (HO-DSP) и область, где все обрабатывается как одно поле. Системный идентификатор по-прежнему рассматривается как системный идентификатор. N Selector, или NSAP, обычно игнорируется (хотя есть идентификатор интерфейса, который похож на NSAP, используемый в некоторых конкретных ситуациях). Таким образом, промежуточные системные адреса обычно принимают форму, показанную на рисунке 1. На рисунке 1: Точка разделения между системным идентификатором и остальной частью адреса находится в шестом октете или если отсчитать двенадцать шестнадцатеричных цифр с правой стороны. Все, что находится слева от шестого октета, считается частью адреса области. Если N-селектор включен, это один октет или две шестнадцатеричные цифры справа от идентификатора системы. Например, если для адреса A был включен N-селектор, это могло бы быть 49.0011.2222.0000.0000.000A.00. Если в адрес включен N-селектор, вам нужно пропустить N-селектор при подсчете более шести октетов, чтобы найти начало адреса области. A и B находятся в одном домене flooding рассылки, потому что у них одни и те же цифры от седьмого октета до крайнего левого октета в адресе. C и D находятся в одном flooding domain. A и D представляют разные системы, хотя их системный идентификатор одинаков. Однако такая адресация может сбивать с толку и поэтому не используется в реальных развертываниях IS-IS (по крайней мере, вдумчивыми системными администраторами). Вы посчитать эту схему адресации более сложной, чем IP, даже если вы регулярно работаете с IS-IS в качестве протокола маршрутизации. Однако есть большое преимущество в использовании схемы адресации, отличной от той, которая используется на транспортном уровне в сети. Гораздо проще различать типы устройств в сети и гораздо проще отделить узлы от адресатов, если продумать алгоритм Дейкстры по кратчайшему пути (SPF). Маршаллинг данных в IS-IS IS-IS использует довольно интересный механизм для маршалинга данных для передачи между промежуточными системами. Каждая IS генерирует три вида пакетов: Hello-пакеты Пакеты с порядковыми номерами (PSNP и CSNP) Одиночный пакет состояния канала (Link State Packet - LSP) Единый LSP содержит всю информацию о самой IS, любых доступных промежуточных системах и любых доступных адресатах, подключенных к IS. Этот единственный LSP форматируется в Type Length Vectors (TLV), которые содержат различные биты информации. Некоторые из наиболее распространенных TLV включают следующее: Типы 2 и 22: достижимость к другой промежуточной системе Типы 128, 135 и 235: достижимость до пункта назначения IPv4 Типы 236 и 237: достижимость к адресату IPv6 Существует несколько типов, потому что, IS-IS изначально поддерживал 6-битные метрики (большинство процессоров на момент появления протокола могли хранить только 8 бит за раз, и два бита были «украдены» из размера поля, чтобы нести информацию о том, был ли маршрут внутренним или внешним, а также другую информацию). Со временем, по мере увеличения скорости связи, были введены различные другие метрические длины, включая 24 - и 32-битные метрики, для поддержки широких метрик. Одиночный LSP, несущий всю информацию о доступности IS, IPv4 и IPv6, а также, возможно, теги MPLS и другую информацию, не поместится в один пакет MTU. Для фактической отправки информации по сети IS-IS разбивает LSP на фрагменты. Каждый фрагмент рассматривается как отдельный объект в процессе лавинной рассылки. Если изменяется один фрагмент, лавинной рассылкой по сети распространяется только измененный фрагмент, а не весь LSP. Благодаря этой схеме IS-IS очень эффективен при лавинной рассылке информации о новой топологии и достижимости без использования полосы пропускания, превышающей минимальную требуемую. Обнаружение соседей и топологии Хотя IS-IS изначально был разработан, чтобы узнать о доступности сети через протокол ES-IS, когда IS-IS используется для маршрутизации IP, он «действует так же, как протоколы IP», и узнает о достижимых местах назначения через локальную конфигурацию каждого из них. устройства и путем перераспределения из других протоколов маршрутизации. Следовательно, IS-IS - это проактивный протокол, который изучает и объявляет достижимость без ожидания пакетов, которые будут переданы и переадресованы через сеть. Формирование соседей в IS-IS довольно просто. Рисунок 2 иллюстрирует этот процесс. На рисунке 2: IS A передает приветствие в сторону B. Это приветствие содержит список соседей, от которых получен сигнал, который будет пустым. Настройку времени удержания (hold time) B следует использовать для A, и добавляется к максимальному блоку передачи (MTU) локального интерфейса для канала связи. Пакеты приветствия дополняются только до завершения процесса формирования смежности. Не каждый пакет приветствия дополняется MTU канала. IS B передает приветствие к A. Это приветствие содержит список соседей, от которых получен ответ, который будет включать A. Настройку времени удержания A следует использовать для B. Добавляется к MTU локального интерфейса. Поскольку A находится в списке «слышимых соседей» B, A рассмотрит B и перейдет к следующему этапу формирования соседей. Как только A включил B в список «услышанных соседей» хотя бы в одно приветствие, B рассмотрит A и перейдет к следующему этапу формирования соседа. B отправит полный список всех записей, которые он имеет в своей таблице локальной топологии (B описывает LSP, которые он имеет в своей локальной базе данных). Этот список отправляется в Complete Sequence Number Packet (CSNP). A проверит свою локальную таблицу топологии, сравнив ее с полным списком, отправленным B. Любые записи в таблице топологии (LSP), которых он не имеет, он будет запрашивать у B с использованием Partial Sequence Number Packet (PSNP). Когда B получает PSNP, он устанавливает флаг Send Route Message (SRM) для любой записи в его локальной таблице топологии (LSP), запрошенной A. Позже процесс лавинной рассылки будет проходить по таблице локальной топологии в поисках записей с установленным флагом SRM. Он заполнит эти записи, синхронизируя базы данных в A и B. Примечание. Описанный здесь процесс включает изменения, внесенные в RFC5303, который определяет трехстороннее рукопожатие, и дополнение приветствия, которое было добавлено в большинство реализаций примерно в 2005 году. Установка флага SRM отмечает информацию для лавинной рассылки, но как на самом деле происходит лавинная рассылка? Надежная лавинная рассылка. Для правильной работы алгоритма SPF Дейкстры (или любого другого алгоритма SPF) каждая IS в flooding domain должна совместно использовать синхронизированную базу данных. Любая несогласованность в базе данных между двумя промежуточными системами открывает возможность зацикливания маршрутизации. Как IS-IS гарантирует, что подключенные промежуточные системы имеют синхронизированные базы данных? В этой лекции описывается процесс создания point-to-point каналов. Далее будут описаны модификации, внесенные в процесс flooding domain по каналам с множественным доступом (например, Ethernet). IS-IS полагается на ряд полей в заголовке LSP, чтобы гарантировать, что две промежуточные системы имеют синхронизированные базы данных. Рисунок 3 иллюстрирует эти поля. На рисунке 3: Длина пакета (packet length) содержит общую длину пакета в октетах. Например, если это поле содержит значение 15 , длина пакета составляет 15 октетов. Поле длины пакета составляет 2 октета, поэтому оно может описывать пакет длиной до 65 536 октетов - больше, чем даже самые большие MTU канала. Поле оставшегося времени жизни (remaining lifetime) также составляет два октета и содержит количество секунд, в течение которых этот LSP действителен. Это вынуждает периодически обновлять информацию, передаваемую в LSP, что является важным соображением для старых технологий передачи, где биты могут быть инвертированы, пакеты могут быть усечены или информация, передаваемая по каналу связи, может быть повреждена. Преимущество таймера, который ведет обратный отсчет, а не на увеличение, состоит в том, что каждая IS в сети может определять, как долго ее информация должна оставаться действительной независимо от каждой другой IS. Недостаток в том, что нет четкого способа отключить описанный функционал. Однако 65 536 секунд - это большое время - 1092 минуты, или около 18 часов. Повторная загрузка каждого фрагмента LSP в сети примерно каждые 18 часов создает очень небольшую нагрузку на работу сети. LSP ID описывает сам LSP. Фактически, это поле описывает фрагмент, поскольку оно содержит идентификатор исходной системы, идентификатор псевдоузла (функцию этого идентификатора рассмотрим позже) и номер LSP, или, скорее, номер фрагмента LSP. Информация, содержащаяся в одном фрагменте LSP, рассматривается как «один блок» во всей сети. Отдельный фрагмент LSP никогда не «рефрагментируется» какой-либо другой IS. Это поле обычно составляет 8 октетов. Порядковый номер (Sequence Number) описывает версию этого LSP. Порядковый номер гарантирует, что каждая IS в сети имеет одинаковую информацию в своей локальной копии таблицы топологии. Это также гарантирует, что злоумышленник (или «кривая» реализация) не сможет воспроизвести старую информацию для замены новой. Контрольная сумма (Checksum) гарантирует, что информация, передаваемая во фрагменте LSP, не была изменена во время передачи. Лавинная рассылка описана на рисунке 4. На рисунке 4: А подключен к 2001: db8: 3e8: 100 :: / 64. A создает новый фрагмент, описывающий этот новый достижимый пункт назначения. A устанавливает флаг SRM на этом фрагменте в сторону B. Процесс лавинной рассылки в какой-то момент (обычно это вопрос миллисекунд) проверит таблицу топологии и перезальет все записи с установленным флагом SRM. Как только новая запись будет помещена в свою таблицу топологии, B создаст CSNP, описывающий всю свою базу данных, и отправит его в A. Получив этот CSNP, A удаляет свой флаг SRM в направлении B. B проверяет контрольную сумму и сравнивает полученный фрагмент с существующими записями в своей таблице топологии. Поскольку нет другой записи, соответствующей этой системе и идентификатору фрагмента, он поместит новый фрагмент в свою таблицу локальной топологии. Учитывая, что это новый фрагмент, B инициирует процесс лавинной рассылки по направлению к C. А как насчет удаления информации? Есть три способа удалить информацию из системы IS-IS flooding: Исходящая IS может создать новый фрагмент без соответствующей информации и с более высоким порядковым номером. Если весь фрагмент больше не содержит какой-либо действительной информации, исходящая IS может заполнить фрагмент с оставшимся временем жизни (lifetime) равным 0 секунд. Это приводит к тому, что каждая IS в домене лавинной рассылки повторно загружает фрагмент zero age и удаляет его из рассмотрения для будущих вычислений SPF. Если таймер lifetime во фрагменте истекает в любой IS, фрагмент заполняется лавинной рассылкой с zero age оставшегося времени жизни. Каждая IS, получающая этот фрагмент с zero age, проверяет, что это самая последняя копия фрагмента (на основе порядкового номера), устанавливает оставшееся время жизни для своей локальной копии фрагмента на ноль секунд и повторно загружает фрагмент. Это называется удалением фрагмента из сети. Когда IS отправляет CNSP в ответ на полученный фрагмент, она фактически проверяет всю базу данных, а не только один полученный фрагмент. Каждый раз, когда фрагмент лавинно рассылается по сети, вся база данных проверяется между каждой парой промежуточных систем. Подведение итогов об IS-IS IS-IS можно описать как: Использование лавинной рассылки для синхронизации базы данных в каждой промежуточной системе в flooding domain (протокол состояния канала). Расчет loop-free -путей с использованием алгоритма SPF Дейкстры. Изучение доступных пунктов назначения через конфигурацию и локальную информацию (проактивный протокол). Проверка двусторонней связи при формировании соседей путем переноса списка «замеченных соседей» в своих пакетах приветствия. Удаление информации из домена лавинной рассылки с помощью комбинации порядковых номеров и полей оставшегося времени жизни (lifetime) в каждом фрагменте. Проверка MTU каждой линии связи путем заполнения первоначально обмененных пакетов приветствия. Проверка правильности информации в синхронизированной базе данных с помощью контрольных сумм, периодического перезапуска и описаний базы данных, которыми обмениваются промежуточные системы. IS-IS - это широко распространенный протокол маршрутизации, который доказал свою работоспособность в широком диапазоне сетевых топологий и эксплуатационных требований.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59