По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Данная тема важна так как позволяет изменять приоритет процессов в операционной системе Linux. Иногда возникает такая ситуация, что необходимо изменить приоритет процессов, какой - то процесс сделать более приоритетным, отдав побольше ресурсов, а какой-то менее приоритетным забрав часть ресурсов сервера. В данной теме мы рассмотрим следующие вопросы: Научимся определять приоритеты процессов; Рассмотрим, как запускать программы с повышенным приоритетом или с пониженным; Посмотрим, как изменять приоритет запущенных программы. В Linux любой процесс может иметь приоритет от -20 до +19. Во FreeBSD до +20. Максимальным приоритетом считается, тот процесс у которого минимальное число. Т.е. максимальный по приоритету процесс будет иметь число - 20, а минимальный -19 соответственно. Поэтому задача с приоритетом -20 будет выполняться в первую очередь с максимум ресурсов и наоборот задача с +19 будет выполняться в последнюю очередь и минимум ресурсов. Linux для установки приоритетов использует такую программу nice и renice. Для того, чтобы рассмотреть данную тему воспользуемся командой ps aux. Запуская данную команду мы получаем все сведения о запущенных процессах на данном сервере. Так же мы можем увидеть от какого пользователя данный процесс запущен. Теперь мы используем другой набор ключей для команды ps. Чтоб получить нам интересующий вывод данных используем команду ps alx. Мы можем видеть, что получили немного другую информацию. Появилась колонка, промаркированная "NI" и колонка "PRI". Мы можем видеть, что верхние процессы выполняются с nice 0, т.е. это авторитет по умолчанию, который присваивается если не сказано иного. Возьмем другой вариант команды ps, с другими ключами. ps -eo user,pid,pcpu,nice,comm -e - ключ показывать все -o - output т.е какая информация нужна, далее в команде перечисляется необходимая информация (колонки) После ввода данной команды, мы видим, что столбцов стало меньше. Только то, что мы запрашивали, пользователь, ID процесса, загрузка CPU, приоритет и какая команда. Для того, чтобы понять, что такое приоритет, попробуем использовать команду sleep, которая позволяет, остановить операционную систему на указанное число секунд. sleep 10000 & И выведем команду ps -eo user,pid,pcpu,nice,comm | grep sleep, используя pipline сортируем по названию процесса sleep. Вот, что у нас вышло. Видим наш запущенный процесс. Далее запустим какую-нибудь задачу с максимальным приоритетом. Это полезно если мы хотим запустить, какой ни будь серьезный процесс, чтобы он получил максимальный приоритет. Как пример, срочная переиндексация базы данных на сервере с максимальным приоритетом или программку, которая будет собирать информацию о системе с минимальным приоритетом. nice sleep 60000 И мы можем увидеть, что появился наш процесс со значение 10 по умолчанию. Десять - это приоритет по умолчанию, и он ниже, чем ноль. Чем выше значение, тем приоритет ниже. Т.е. получается если мы запускаем с командой niсе, то процесс запускает с приоритетом ниже в 2 раза, чем просто если бы запустили. Мы можем принудительно завершить процессы. killall sleep. Попробуем запустить задачу с минимальным приоритетом. Для этого воспользуемся параметром. Команда будет выглядеть следующим образом. nice -n 19 sleep 6000 Как мы видим все получилось. Процесс запущен с минимальным приоритетом. Аналогично запускается процесс с максимальным приоритетом. nice -n -20 sleep 6000 Тут нужно пояснить, что задачи с наивысшим приоритетом, могут пользователи только с правами root. Если мы бы попытались сделать из-под обычного пользователя, то ничего у нас бы не вышло. killall sleep, еще раз завершим принудительно процессы. Запустим еще раз процесс с наименьшим приоритетом. nice -n 19 sleep 60000. Теперь изменим приоритет текущего процесса. Для этого есть следующая команда: renice 5 -p 416802 - т.е 5 - новый приоритет , 416802 - id процесса. Как мы видим все успешно поменялось. Вот таким образом мы можем динамически менять приоритеты. В Операционной системе Windows мы так же можем менять приоритеты в менеджере задач, но если там пять уровней, то в Linux их получается 40. Мы можем так же менять приоритеты определенному пользователю. renice приоритет -u пользователь Данные команды, нам позволяют гибко управлять распределением ресурсов на нашем сервере.
img
Всем привет! Недавно мы в одной из наших статей рассматривали, как сделать резервную копию Cisco Unified Communications Manager (CUCM) при помощи системы восстановления системы Disaster Recovery System (DRS). Сегодня рассмотрим метод архивации и восстановления при помощи интерфейса командной строки (CLI), который может использоваться в случае, когда нет возможности воспользоваться графическим интерфейсом. Создание бэкапа Сначала нужно указать устройство, на которых будет храниться бэкап (SFTP сервер). Для начала нужно выполнить команду: utils disaster_recovery device add network [devicename path] [server_name/ip_address] [username] [number_of_backups] devicename – имя устройства резервного копирования; path – путь до архива; server_name/ip_address – имя хоста или IP - адрес устройства, где будет храниться архив username – имя пользователя, необходимое для подключения к серверу; number_of_backups – количество бэкапов, которое будет создано. По умолчанию 2. Опциональный параметр; Пример: admin: utils disaster_recovery device add network networkDevice /root 192.168.1.1 root 3 Посмотреть список добавленных устройств можно используя команду: utils disaster_recovery device list Далее создаем резервную копию, выполнив команду utils disaster_recovery backup network [featurelist] [path] [servername] [username] featurelist – список функций для создания копии, разделяется запятой; path – путь до архива; servername – имя хоста или ip адрес устройства, где будет храниться архив; username – имя пользователя, необходимое для подключения к серверу; Список функций можно получить используя команду: utils disaster_recovery show_registration Чтобы проверить статус бэкапа используем команду: utils disaster_recovery status backup Восстановление Сначала проверим наличие файлов на SFTP сервере: utils disaster_recovery show_backupfiles [name] name – имя устройства резервного копирования Выбираем файл бэкапа, из тех, которые отобразились при выводе предыдущей команды: utils disaster_recovery restore network [restore_server] [tarfilename] [devicename] restore_server – имя хоста или ip адрес устройства, где будет храниться архив; tarfilename – имя файла бэкапа; devicename – имя устройства резервного копирования; Пример: utils disaster_recovery restore network 192.168.1.1 2018-01-15-15-35-28 networkDevice На вопрос действительно ли мы хотим восстановить систему отвечаем “y”. После этого проверяем статус восстановления системы: utils disaster_recovery status restore
img
В 2012 году Джим Роскинд разработал новый транспортный протокол, основной целью которого было увеличение скорости, с которой данные могут передаваться по относительно стабильным высокоскоростным сетям. В частности: Сокращение трехстороннего рукопожатия до запуска одного пакета (нулевое рукопожатие) Уменьшение количества повторно передаваемых пакетов, необходимых для передачи данных Уменьшение блокировки заголовка между несколькими потоками данных в пределах одного потока TCP, вызванной потерей пакетов Уменьшение рукопожатия при запуске Как правило, значение rtt нельзя изменить, поскольку оно обычно ограничено физическим расстоянием и скоростью соединения между отправителем и получателем. Таким образом, один из лучших способов сократить общее время передачи данных - просто уменьшить количество циклов обмена, необходимых между отправителем и получателем для передачи заданного потока или блока данных. QUIC разработан для сокращения количества циклов приема-передачи, необходимых для установки нового соединения, от трехстороннего подтверждения TCP до процесса запуска с нулевым временем приема-передачи. Для этого QUIC использует серию криптографических ключей и хэшей; процесс состоит из: Клиент отправляет серверу приветствие (CHLO), содержащее требование подтверждения, которое представляет собой список типов сертификатов, которые клиент примет для проверки идентичности сервера; набор сертификатов, к которым у клиента есть доступ; и хэш сертификата, который клиент намеревается использовать в этом соединении. Одно конкретное поле, маркер адреса источника (STK) будет оставлено пустым, потому что раньше с этим сервером не было связи. Сервер будет использовать эту информацию для создания STK на основе информации, предоставленной в первоначальном приветствии клиента и исходном IP-адресе клиента. Сервер отправляет отклонение (REJ), которое содержит этот STK. Как только клиент получает STK, он включает его в будущие пакеты приветствия. Если STK совпадает с ранее использованным STK с этого IP-адреса, сервер примет приветствие. Примечание: Эта пара IP-адрес / STK может быть украдена, и, следовательно, исходный IP-адрес может быть подменен злоумышленником с доступом к любой связи с этой парой. Это известная проблема в QUIC, которая рассматривается в документации QUIC. Для сравнения, TCP требует, как минимум полтора rtts для создания нового сеанса: SYN, SYN-ACK, а затем следующий ACK. Сколько времени экономит при переходе на одно соединение rtt? Конечно, это зависит от реализации клиентского и серверного приложений. Однако многие веб-страницы и приложения для мобильных устройств должны подключаться к множеству разных серверов (возможно, к сотням) для создания единой веб-страницы. Если каждое из этих подключений уменьшить с полутора до одного RTT, это может значительно снизить производительность. Сокращение повторных передач QUIC использует ряд различных механизмов для уменьшения количества повторно передаваемых пакетов: Включая Forward Error Correction (FEC) во все пакеты; это позволяет получателю (часто) восстанавливать поврежденную информацию, а не запрашивать ее повторно. Использование отрицательных подтверждений (NACK) вместо SACK или механизма тройного ACK для запроса повторной передачи определенных порядковых номеров; это предотвращает неоднозначность между запросом на повторную передачу и условиями сети, которые вызывают отправку нескольких подтверждений. Использование быстрых подтверждений, как описано ранее для TCP. Использование управления окном предотвращения перегрузки CUBIC. Механизм предотвращения перегрузки CUBIC - самый интересный из них. CUBIC пытается выполнить двоичный поиск между последним размером окна перед отбрасыванием пакета и некоторым меньшим размером окна, рассчитанным с использованием множительного коэффициента. Когда обнаруживается потеря пакета (либо через тайм-аут RTO, либо через NACK), максимальный размер окна (WMAX) устанавливается равным текущему размеру окна, и вычисляется новый минимальный размер окна (WMIN). Окно отправителя устанавливается на WMIN, а затем быстро увеличивается до размера окна посередине между WMIN и WMAX. Как только окно достигает этой средней точки, размер окна очень медленно увеличивается при так называемом зондировании, пока не встретится следующий сброс пакета. Этот процесс позволяет CUBIC находить максимальную скорость передачи чуть ниже точки, в которой сеть начинает довольно быстро отбрасывать пакеты. Исключение блокировки начала строки "Единая транзакция" в Интернете часто является не "отдельной транзакцией", а скорее большим набором транзакций на нескольких разных серверах. Например, чтобы создать единую веб-страницу, сотни элементов, таких как изображения, скрипты, элементы каскадной таблицы стилей (CSS) и файлы языка гипертекстовой разметки (HTML), должны быть переданы с сервера на клиент. Эти файлы можно передавать двумя способами: последовательно или параллельно. Рисунок 1 иллюстрирует это. На рисунке 1 показаны три варианта передачи нескольких элементов от сервера к клиенту: В serialized варианте элементы передаются по одному в течение одного сеанса. Это самый медленный из трех возможных вариантов, так как вся страница должна быть построена поэлементно, при этом меньшие элементы ждут передачи больших, прежде чем их можно будет отобразить. В варианте с несколькими потоками (multiple streams) каждый элемент передается через отдельное соединение (например, сеанс TCP). Это намного быстрее, но требует создания нескольких подключений, что может негативно повлиять на ресурсы клиента и сервера. В мультиплексном (multiplexed) варианте каждый элемент передается отдельно через одно соединение. Это позволяет передавать каждый элемент с его собственной скоростью, но с дополнительными расходами ресурсов из-за опции нескольких потоков. Некоторые формы механизма мультиплексной передачи имеют тенденцию обеспечивать максимальную скорость передачи при наиболее эффективном использовании ресурсов, но как это мультиплексирование должно быть реализовано? Протокол передачи гипертекста версии 2 (HTTPv2) позволяет веб-серверу мультиплексировать несколько элементов в одном сеансе HTTP; поскольку HTTP работает поверх TCP, это означает, что один поток TCP может использоваться для параллельной передачи нескольких элементов веб-страницы. Однако один отброшенный пакет на уровне TCP означает, что каждая параллельная передача в потоке HTTP должна быть приостановлена на время восстановления TCP. QUICK решает эту проблему, позволяя нескольким потокам HTTP v2 находиться в одном быстром соединении. Это уменьшает транспортные издержки на клиенте и сервере, обеспечивая при этом оптимальную доставку элементов веб - страницы. Обнаружение MTU пути Одним из основных вопросов спора между асинхронным режимом передачи (ATM) и интернет-протоколом (IP) был фиксированный размер ячейки. В то время как IP-сети полагаются на пакеты переменной длины, ATM, чтобы обеспечить более высокую скорость коммутации и улучшить взаимодействие с множеством различных физических уровней Time Division Multiplexing (TDM), задал ячейки фиксированной длины. В частности, IPv4 обеспечивает не только пакет переменной длины, но и фрагментацию в процессе передачи. Рисунок 2 иллюстрирует это. На рис. 2 показано, что если A посылает пакет в направлении E, то какого размера он должен быть? Единственный канал, о котором действительно знает А, - это канал между собой и В, которое помечено как имеющее максимальный размер блока передачи 1500 октетов (Maximum Transmission Unit- MTU). Однако если A отправляет пакет длиной 1500 октетов, то этот пакет не сможет пройти через канал [C,D]. Есть два способа решить эту проблему. Первый заключается в том, что C фрагментирует пакет на два меньших пакета. Это возможно в IPv4; C может определить, что пакет не поместится на следующем канале, по которому пакет должен быть передан, и разбить пакет на два меньших пакета. Конечно, с этим решением есть ряд проблем. Например, процесс фрагментации пакета требует гораздо больше работы со стороны C, возможно, даже перемещение пакета из аппаратного пути коммутации в программный путь коммутации. Во-вторых, A никогда не отправляет пакет, превышающий минимальный MTU, по всему пути к E. Для этого A должен определить минимальный MTU на пути, и он должен иметь возможность фрагментировать информацию, отправляемую из протоколов верхнего уровня на несколько пакетов перед передачей. IPv6 выбирает этот последний вариант, полагаясь на обнаружение Path MTU (PMTU), чтобы найти минимальный MTU на пути (при условии, что PMTU действительно работает), и позволяя процессу IPv6 в A фрагментировать информацию из протоколов верхнего уровня на несколько пакетов, которые затем повторно собираются в исходный блок данных верхнего уровня в приемнике. Это решение, однако, также является проблемным. В недавней работе с системой доменных имен (DNS) исследователи обнаружили, что около 37% всех DNS- resolvers отбрасывают фрагментированные пакеты IPv6. Почему это происходит? Самый простой способ понять это-рассмотреть структуру фрагментированного пакета, а также природу DoS и DDoS атак. При передаче пакета, в пакет помещается заголовок, указывающий принимающую услугу (номер сокета или протокола какого-либо рода), а также информацию о передаваемой услуге. Эта информация важна для фильтрации пакета на основе различных политик безопасности, особенно если политика безопасности гласит: "разрешать только пакеты инициации сеанса в сеть, если пакет не принадлежит существующему сеансу." Другими словами, типичный фильтр с отслеживанием состояния, защищающий сервер, будет иметь некоторые основные правила, которым он следует: Если пакет инициирует новый сеанс, пересылайте его и создайте новую запись сеанса. Если пакет является частью существующего сеанса, перенаправьте его и сбросьте таймер сеанса. Если пакет не является частью существующего сеанса, отбросьте его. Время от времени очищайте старые сеансы. Возможно подделать пакет, похожий на настоящий, но это очень сложно, т.к. используются различные nonce и другие методы, чтобы препятствовать подобному поведению. Но фрагментация пакета удаляет заголовок из второй половины пакета, что фактически означает, что второй пакет во фрагментированной паре может быть присоединен только к определенному сеансу или потоку, отслеживая часть пакета, которая имеет полный заголовок. Как маршрутизатор или middlebox могут выполнить это? Он должен каким-то образом хранить копию каждого фрагмента пакета с заголовком где-нибудь в памяти, чтобы на пакет с заголовком можно было ссылаться для обработки любых будущих фрагментов. Как долго он должен хранить эти фрагменты с заголовками? На это нет ответа. Проще просто отбросить любые фрагменты, чем поддерживать состояние, необходимое для их обработки. Каков результат? Похоже, что даже фрагментация на основе исходного кода не очень полезна на уровне IP. Это должно напомнить об одном из основополагающих принципов пакета Интернет-протоколов: end-to-end принципе. End-to-end принцип гласит, что сеть не должна изменять трафик, передаваемый между двумя оконечными устройствами; или, скорее, сеть должна работать как черный ящик, соединяющий два устройства, никогда не изменяя данные, полученные от конечного хоста. Означает ли это, что вся фильтрация трафика должна быть запрещена в общедоступном Интернете, всерьез навязывая end-to-end правило, оставляя всю безопасность конечным хостам? Это представляет собой первоначальное обсуждения фильтрации пакетов в IPv6 с отслеживанием состояния. Однако это менее реалистичный вариант; более сильная защита - это не один идеальный файрволл, а скорее серия неидеальных файрволлов. Другая альтернатива - принять еще одну частичку реальности, о которой часто забывают в мире сетевой инженерии: утечка абстракций. Сквозной принцип описывает идеально абстрактную систему, способную передавать трафик от одного хоста к другому, и совершенно абстрагированный набор хостов, между которыми переносится трафик. Но утекают все нетривиальные абстракции; проблема MTU и фрагментации - это просто утечка состояния из сети в хост, а система на хосте пытается абстрагировать эту утечку в приложение, отправляющее трафик по сети. В такой ситуации лучше всего просто признать утечку и официально отправить информацию в стек, чтобы приложение могло лучше принять решение о том, как отправлять трафик. Другая альтернатива-принять еще одну частицу реальности, часто забываемую в мире сетевой инженерии: утечку абстракций. Сквозной принцип описывает идеально абстрагированную систему, способную передавать трафик от одного хоста к другому, и идеально абстрагированный набор хостов, между которыми осуществляется трафик. Но все нетривиальные абстракции протекают; проблема MTU и фрагментации-это просто утечка состояния из сети в хост, и система на хосте пытается абстрагировать эту утечку в приложение, отправляющее трафик по сети. В такой ситуации, возможно, лучше всего просто признать утечку и официально продвинуть информацию вверх по стеку, чтобы приложение могло принять лучшее решение о том, как отправлять трафик. Но это приводит к еще одному интересному вопросу для размышления: является ли описанная здесь фильтрация состояний предательством end-to-end принципа? Ответ зависит от того, считаете ли вы протокол верхнего уровня, отправляющий данные, конечной точкой, или систему, на которой работает приложение (следовательно, включая сам стек IP), конечной точкой. Так или иначе, эта двусмысленность преследовала Интернет с самых ранних дней, хотя мир сетевой инженерии не всегда серьезно задумывался о разнице между этими двумя точками зрения. ICMP Хотя транспортные протоколы, такие как TCP и QUIC, обычно привлекают наибольшее внимание среди протоколов среднего уровня, существует ряд других протоколов, которые не менее важны для работы сети на основе IP. Среди них - протокол ICMP, который, можно сказать, предоставляет метаданные о самой сети. ICMP - это простой протокол, который используется для запроса информации о конкретном состоянии или для отправки сетевыми устройствами информации о том, почему определенный пакет отбрасывается в какой-либо точке сети. В частности: ICMP может использоваться для отправки эхо-запроса или эхо-ответа. Эта функция используется для проверки связи с конкретным адресом назначения, который можно использовать для определения доступности адреса без использования слишком большого количества ресурсов на приемнике. ICMP можно использовать для отправки уведомления об отброшенном пакете из-за того, что он слишком велик для передачи по каналу (слишком большой пакет). ICMP может использоваться для отправки уведомления о том, что пакет был отброшен, поскольку его время жизни (TTL) достигло 0 (срок действия пакета истек при передаче). Ответ на слишком большой пакет можно использовать для определения максимального размера передаваемого блока (MTU) в сети; отправитель может передать большой пакет и дождаться, чтобы увидеть, не отправит ли какое-либо устройство в сети уведомление о слишком большом пакете через ICMP. Если такое уведомление приходит, отправитель может попробовать постепенно уменьшать пакеты, чтобы определить самый большой пакет, который может быть передан из конца в конец по сети. Ответ с истекшим транзитом может использоваться для отслеживания маршрута от источника до пункта назначения в сети (это называется трассировкой маршрута). Отправитель может передать пакет в конкретное место назначения, используя любой протокол транспортного уровня (включая TCP, UDP или QUIC), но с TTL равным 1. Сетевое устройство первого перехода должно уменьшить TTL и отправить обратно ICMP-сообщение с истекшим сроком действия в транзитном уведомлении отправителю. Отправляя серию пакетов, каждый с TTL на один больше, чем предыдущий, каждое устройство на пути может быть вынуждено передать отправителю сообщение ICMP с истекшим сроком действия в транзитном уведомлении, открывая весь путь пакета.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59