По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Если вы начинающий веб-разработчик, возможно вы уже знаете, как работает всемирная сеть, по крайней мере, на базовом уровне. Но когда начинаете кому-то объяснять принцип работы веб-сайта, то терпите неудачу. Что такое IP-адрес? Как работает модель «клиент-сервер» на самом деле? В наши дни есть достаточно мощные фреймворки, которые можно использовать в своих проектах. Настолько мощные, что начинающие разработчики легко могут запутаться в принципах работы веб. Базовый веб-поиск Начнем с того места, где мы все были раньше: введите «www.github.com» в адресную строку браузера и просмотрите загрузку страницы. С первого взгляда может показаться, что тут происходит какая-то магия. Но давайте заглянем глубже. Определение частей web Из-за обилия жаргонных слов, понимание работы интернета поначалу пугает. Но к сожалению, для дальнейшего погружения в тему, придется разобраться с ними. Клиент: Приложение, например, Chrome или Firefox, которое запущено на компьютере и подключено к Интернету. Его основная роль состоит в том, чтобы принимать пользовательские команды и преобразовывать их в запросы к другому компьютеру, называемому веб-сервером. Хотя мы обычно используем браузер для доступа к Интернету, вы можете считать весь ваш компьютер «клиентом» модели клиент-сервер. Каждый клиентский компьютер имеет уникальный адрес, называемый IP-адресом, который другие компьютеры могут использовать для идентификации. Сервер: Компьютер, который подключен к Интернету и также имеет IP-адрес. Сервер ожидает запросов от других машин (например, клиента) и отвечает на них. В отличие от вашего компьютера (т.е. клиента), который также имеет IP-адрес, на сервере установлено и работает специальное серверное программное обеспечение, которое подсказывает ему, как реагировать на входящие запросы от вашего браузера. Основной функцией веб-сервера является хранение, обработка и доставка веб-страниц клиентам. Существует множество типов серверов, включая веб-серверы, серверы баз данных, файловые серверы, серверы приложений и многое другое. Подробнее про сервера можно прочитать тут IP-адрес: Internet Protocol Address. Числовой идентификатор устройства (компьютера, сервера, принтера, маршрутизатора и т.д.) в сети TCP/IP. Каждый компьютер в Интернете имеет IP-адрес, который он использует для идентификации и связи с другими компьютерами. IP-адреса имеют четыре набора чисел, разделенных десятичными точками (например, 244.155.65.2). Это называется «логический адрес». Для определения местоположения устройства в сети логический IP-адрес преобразуется в физический адрес программным обеспечением протокола TCP/IP. Этот физический адрес (т.е. MAC-адрес) встроен в оборудование. Подробнее про IP-адрес можно прочитать тут Интернет-провайдер: Интернет-провайдер. Интернет-провайдер - посредник между клиентом и серверами. Для типичного домовладельца ИП обычно является «кабельной компанией». Когда браузер получает от вас запрос на переход к www.github.com, он не знает, где искать www.github.com. Это задание поставщика услуг Интернета - выполнить поиск DNS (системы доменных имен), чтобы спросить, на какой IP-адрес настроен сайт, который вы пытаетесь посетить. DNS: система доменных имен. Распределенная база данных, которая хранит соответствие доменных имен компьютеров и их IP-адресов в Интернете. Не беспокойтесь о том, как сейчас работает «распределенная база данных»: просто знайте, что DNS существует, чтобы пользователи могли вводить www.github.com вместо IP-адреса. Подробнее про DNS можно прочитать тут Имя домена: используется для идентификации одного или нескольких IP-адресов. Пользователи используют доменное имя (например, www.github.com) для доступа к веб-сайту в Интернете. При вводе имени домена в обозреватель DNS использует его для поиска соответствующего IP-адреса данного веб-сайта. TCP/IP: Наиболее широко используется протокол связи. «Протокол» - это просто стандартный набор правил для чего-либо. TCP/IP используется в качестве стандарта для передачи данных по сетям. Подробнее про TCP/IP можно прочитать тут Номер порта: 16-разрядное целое число, которое идентифицирует определенный порт на сервере и всегда связано с IP-адресом. Он служит способом идентификации конкретного процесса на сервере, на который могут пересылаться сетевые запросы. Хост: Компьютер, подключенный к сети - это может быть клиент, сервер или любой другой тип устройства. Каждый хост имеет уникальный IP-адрес. Для веб-сайта, как www.google.com, хост может быть веб-сервером, который обслуживает страницы для веб-сайта. Часто между хостом и сервером происходит какая-то путаница, но заметьте, что это две разные вещи. Серверы - это тип хоста - это конкретная машина. С другой стороны, хост может ссылаться на всю организацию, которая предоставляет службу хостинга для обслуживания нескольких веб-серверов. В этом смысле можно запустить сервер с хоста. HTTP: протокол передачи гипертекста. Протокол, используемый веб-браузерами и веб-серверами для взаимодействия друг с другом через Интернет. URL: URL-адреса идентифицируют конкретный веб-ресурс. Простой пример https://github.com/someone. URL указывает протокол («https»), имя хоста (github.com) и имя файла (чья-то страница профиля). Пользователь может получить веб-ресурс, идентифицированный по этому URL-адресу, через HTTP от сетевого хоста, доменное имя которого github.com. Подробнее про URL можно прочитать тут Переход от кода к веб-странице Теперь у нас есть необходимая база, чтобы разобраться, что происходит за кулисами, когда мы вводим в строку поиска адрес Github: 1) Введите URL-адрес в браузере 2) Браузер анализирует информацию, содержащуюся в URL. Сюда входят протокол («https»), доменное имя («github.com») и ресурс («/»). В этом случае после «.com» нет ничего, что указывало бы на конкретный ресурс, поэтому браузер знает, как получить только главную (индексную) страницу. 3) Браузер связывается с поставщиком услуг Интернета, чтобы выполнить DNS-поиск IP-адреса для веб-сервера, на котором размещен веб-сервер www.github.com. Служба DNS сначала свяжется с корневым сервером имен, который просматривает https://www.github.com и отвечает IP-адресом сервера имен для домена верхнего уровня .com. Получив этот адрес служба DNS выполняет еще один запрос на сервер имен, который отвечает за домен .com и запрашивает адрес https://www.github.com. 4) Получив IP-адрес сервера назначения, Интернет-провайдер отправляет его в веб-браузер. 5) Ваш браузер берет IP-адрес и заданный номер порта из URL (протокол HTTP по умолчанию - порт 80, а HTTPS - порт 443) и открывает TCP-сокет. На этом этапе связь между веб-браузером и веб-сервер наконец-то установлена. 6) Ваш веб-браузер отправляет HTTP-запрос на веб-сервер главной HTML-страницы www.github.com. 7) Веб-сервер получает запрос и ищет эту HTML-страницу. Если страница существует, веб-сервер подготавливает ответ и отправляет его обратно в браузер. Если сервер не может найти запрошенную страницу, он отправляет сообщение об ошибке HTTP 404 (тот самый Error 404 Not Found), которое означает «Страница не найдена». 8) Ваш веб-браузер берет HTML-страницу, которую он получает, а затем анализирует ее, делая полный обзор, чтобы найти другие ресурсы, которые перечислены в ней: это адреса изображений, CSS файлов, JavaScript файлов и т.д. 9) Для каждого перечисленного ресурса браузер повторяет весь указанный выше процесс, делая дополнительные HTTP-запросы на сервер для каждого ресурса. 10) После того, как браузер закончит загрузку всех других ресурсов, перечисленных на странице HTML, страница будет загружена в окно браузера и соединение будет закрыто. Пересечение Интернет-пропасти Стоит отметить, как информация передается при запросе информации. Когда вы делаете запрос, эта информация разбивается на множество крошечных порций, называемых пакетами. Каждый пакет маркируется заголовком TCP, который включает в себя номера портов источника и назначения, и заголовком IP, который включает в себя IP-адреса источника и назначения. Затем пакет передается через сеть Ethernet, WiFi или сотовую сеть. Пакет может перемещаться по любому маршруту и проходить столько транзитных участков, сколько необходимо для того, чтобы добраться до конечного пункта назначения. И пакеты передаются отнюдь не в том, порядке, в котором они сформировались. Например, первый пакет может прийти третьим, а последний первым. Нам на самом деле все равно, как пакеты туда попадут - важно только то, что они доберутся до места назначения в целости и сохранности! Как только пакеты достигают места назначения, они снова собираются и доставляются как единое целое. Так как же все пакеты знают, как добраться до места назначения без потери? Ответ: TCP/IP. TCP/IP - это двухкомпонентная система, функционирующая как фундаментальная «система управления» Интернета. IP означает Интернет-протокол; его задачей является отправка и маршрутизация пакетов на другие компьютеры с использованием заголовков IP (т.е. IP-адресов) каждого пакета. Вторая часть, протокол управления передачей (TCP), отвечает за разбиение сообщения или файла на меньшие пакеты, маршрутизацию пакетов к соответствующему приложению на целевом компьютере с использованием заголовков TCP, повторную отправку пакетов, если они теряются в пути, и повторную сборку пакетов в правильном порядке, как только они достигают другого конца. Получение финальной картины Но подождите - работа еще не закончена! Теперь, когда ваш браузер имеет ресурсы, составляющие веб-сайт (HTML, CSS, JavaScript, изображения и т.д.), он должен пройти несколько шагов, чтобы представить вам ресурсы в виде читабельной для нас с вами веб-страницы. В браузере имеется механизм визуализации, отвечающий за отображение содержимого. Обработчик рендеринга получает содержимое ресурсов в небольших фрагментах. Затем существует алгоритм синтаксического анализа HTML, который сообщает браузеру, как анализировать ресурсы. После анализа создается древовидная структура элементов DOM. DOM (Document Object Model) обозначает объектную модель документа и является условным обозначением для представления объектов, расположенных в HTML-документе. Этими объектами - или «узлами» - каждого документа можно управлять с помощью таких языков сценариев, как JavaScript. После построения дерева DOM анализируются таблицы стилей, чтобы понять, как определить стиль каждого узла. Используя эту информацию, браузер проходит вниз по узлам DOM и вычисляет стиль CSS, положение, координаты и т.д. для каждого узла. После того как в браузере появятся узлы DOM и их стили, он наконец готов соответствующим образом нарисовать страницу на экране. Результат – все, что вы когда-либо просматривали в интернете. Итог Интернет - это комплексная вещь, но вы только что закончили сложную часть! О структуре веб-приложений мы расскажем в нашей следующей статье.
img
Хочу рассказать, как с минимальным даунтаймом на продакшн оборудовании настроить EtherChannel. Для начала нужно подключить оборудование, и оно начнет работать в режиме STP. На коммутаторе уровня агрегации (ядра) в зависимости от топологии нужно узнать порты к которому подключено оборудование. Для этого есть команда show cdp neighbors, которую нужно запустить на коммутаторе уровня доступа. Так удобней будет. Для мониторинга запускаем PING на IP коммутатора. После этого выключаем порт, который заблокирован по протоколу STP. Советую сделать это на коммутаторе агрегации (ядра). Далее по очереди настраиваем логический порт на обоих коммутаторах. AccSwitch-2#conf t AccSwitch-2(config)#int port-channel 1 AccSwitch-2(config-if)#switchport mode trunk CoreSW#conf t CoreSW(config)#int port-channel 10 CoreSW(config)#switchport mode trunk После этого уже настраиваем отключенный физический порт: AccSwitch-2(config-if)#int gi1/0/47 AccSwitch-2(config-if)#switchport mode trunk AccSwitch-2(config-if)#channel-group 1 mode on CoreSW (config-if)#int gi2/0/38 CoreSW (config-if)#switchport mode trunk CoreSW (config-if)#channel-group 10 mode on Для начала ставим минимальную настройку. Но если на свитчах настроен DHCP Snooping или Dynamic Arp Inspection, то под логическим и физическим транк портом нужно прописать ip dhcp snooping trust и ip arp inspection trust. После того как все настройки сделаны и проверены можно включить настроенный порт не отключая работающий. В этом случае должен потеряться максимум один PING, что совсем не критично так, как TCP сессия не обрывается. Далее выключаем уже другой порт, настраиваем аналогично и включаем. Внимание, после этого все настройки на UpLink портах нужно производить на логическом интерфейсе. Все изменения автоматически применяются на порты, которые входят в port-channel. Надеюсь статья окажется полезной!
img
Всем привет! На IP-телефонах Cisco, которые зарегистрированы на Cisco Unified Communications Manager (CUCM) , можно просматривать статусные сообщения о состоянии телефона и сетевую статистику в реальном времени. Эта информация доступна с самого телефона и может быть полезна при траблшутинге системы. /p> Для доступа к статусным сообщениям нужно на IP-телефоне Cisco нажать физическую кнопку Settings, далее в меню настроек выбрать Status (Состояние) и затем нажать Status Messages (Сообщения о состоянии). Сообщение отображается вместе со временем его появления. Сообщение Описание BootP server used Информационное сообщение, телефон получил IP адрес через BootP сервер, а не через DHCP сервер File auth error Произошла ошибка, когда телефон пытался проверить подписанный файл. Это сообщение содержит имя файла, с которым возникла проблема. Вероятная проблема – файл поврежден, необходимо удалить и добавить заново телефон через Cisco Unified Communications Manager Administration tool. Либо это проблема с CTL файлом и в этом случае нужно запустить CTL клиент и обновить CTL файл, убедившись, что в него включены необходимые TFTP серверы. CFG file not found Именной файл конфигурации и файл конфигурации по умолчанию не был найден на TFTP сервере. Файл конфигурации для определенного телефона создается при добавлении телефона в базу данных CUCM. Если телефон не был добавлен в базу данных, то TFTP-сервер генерирует ответ CFG File Not Found. CFG TFTP Size Error Конфигурационный файл слишком большой для файловой системы телефона. Нужно перезагрузить телефон. Checksum Error Скачанный файл ПО поврежден. Необходимо скачать новую копию файла прошивки телефона и поместить его в каталог TFTP. DHCP timeout DHCP сервер не отвечает. Возможные проблемы: большая нагрузка на сеть (выполнить проверку, когда нагрузка уменьшится), нет сетевой связанности между DHCP сервером и телефоном (проверить сетевой доступ между этими элементами сети) или не работает сам DHCP сервер (проверить его конфигурацию). DNS timeout DNS сервер не отвечает. Возможные проблемы: большая нагрузка на сеть (выполнить проверку, когда нагрузка уменьшится), нет сетевой связанности между DNS сервером и телефоном (проверить сетевой доступ между этими элементами сети) или не работает сам DNS сервер (проверить его конфигурацию). DNS unknown host DNS не смог разрешить имя TFTP сервера или CUCM. Необходимо убедиться, что имена хостов TFTP сервера или CUCM настроены правильно в DNS или использовать IP-адреса вместо имен хостов. Duplicate IP Другое устройство уже использует IP адрес, который присвоен телефону. Если телефону присвоен статический адрес, то нужно проверить, что ни у какого другого устройства нет такого же адреса, а если используется DHCP, то следует проверить конфигурацию DHCP сервера. Error update locale Один или более файлов локализаций не был найден в директории TFTP или файл оказался не валидным, и локализация не была изменена. Необходимо убедиться что следующие файлы находятся в поддиректориях TFTP сервера: tones.xml, glyphs.xml, dictionary.xml, kate.xml IP address released Телефон остается в режиме ожидания пока не включится питание или пока DHCP адрес не будет сброшен. Load ID incorrect Load ID программного обеспечения неправильного типа. Нужно проверить Load ID, назначенный телефону (во вкладке Device - Phone) и убедиться, что он введен правильно. Load rejected HC Загруженное приложение несовместимо с аппаратным обеспечением телефона. Эта ошибка возникает, когда происходит попытка установить на телефоне версию ПО, которое не поддерживает аппаратные изменения на этом телефоне. No default router В DHCP или статической конфигурации не указан default router. Если телефон имеет статические адреса, то необходимо проверить что default router был указан, а если используется DHCP, то нужно проверить его конфигурацию. No DNS server IP В DHCP или статической конфигурации не указан адрес DNS сервер. Нужно проверить что он указан на телефоне или на DHCP сервера. Programming error Произошла ошибка во время программирования телефона. Нужно попробовать перезагрузить телефон и если проблема не устранится, то обратиться в службу техподдержки Cisco. XmlDefault.cnf.xml, or .cnf.xml corresponding to the phone device name Информационное сообщение с указанием имени конфигурационного файла. TFTP access error TFTP сервер указывает на директорию, которая не существует. Необходимо проверить что у DHCP сервера или телефона правильно указан адрес TFTP. TFTP file not found Запрашиваемый файл (.bin) не найден в директории TFTP. Нужно проверить, что Load ID присвоен телефону (во вкладке Device - Phone) и что директория TFTTP сервера содержит .bin файл с этим идентификатором загрузки в качестве имени. TFTP server not authorized Указанный TFTP-сервер не может быть найден в CTL телефона. Это может быть по нескольким причинам: DHCP-сервер настроен неправильно и не обслуживает правильный адрес сервера TFTP, если телефон использует статический IP-адрес, телефон может быть настроен с неправильным адресом сервера TFTP или если адрес сервера TFTP верен, может возникнуть проблема с файлом CTL (в этом случае нужно запустить CTL клиент и обновить CTL файл). TFTP timeout TFTP сервер не отвечает. Возможные проблемы: большая нагрузка на сеть (выполнить проверку, когда нагрузка уменьшится), нет сетевой связанности между TFTP сервером и телефоном (проверить сетевой доступ между этими элементами сети) или не работает сам TFTP сервер (проверить его конфигурацию). Теперь рассмотрим меню сетевой статистики. Чтобы попасть в него нужно на IP-телефоне Cisco нажать физическую кнопку Settings, далее в меню настроек выбрать Status (Состояние) и Netwkork Statistics (Статистика сети). Там можно увидеть следующие поля Поле Описание Rcv (Rx Frames) Количество пакетов, полученных телефоном Xmt Frames (Tx Frames) Количество пакетов, отправленных телефоном REr (Rx Broadcasts) Количество broadcast пакетов, полученных телефонном BCast Количество broadcast пакетов, отправленных телефонном Phone Initialized Сколько времени прошло с момента инициализации телефона Elapsed Time Сколько времени прошло с момента перезагрузки телефона Port 1 Состояние PC порта телефона (скорость и дуплекс) Port 2 Состояние Network порта
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59