По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
ClamAV является антивирусом с открытым исходным кодом. Его используют для обнаружения вирусов, вредоносных программ и вредоносного программного обеспечения на компьютерах под управлением Linux и даже в решениях именитых вендоров, так как эта разработка была выкуплена компанией Cisco, но все же оставлена в виде open-source. Угроза со стороны вирусов, троянов и других вредоносных программ всегда возможна, их количество растет в геометрической прогрессии как по количеству, так и по сложности, и антивирусное программное обеспечение всегда должно использовать сложные методы обнаружения. Никогда нельзя дать гарантии, что ваша система не станет жертвой этих нежелательных фрагментов кода, так что важно оставаться внимательным при использовании Интернета и совместном использовании файлов. Ну и отсюда вытекает необходимость реализации политик безопасности на основе здравого смысла и использовании современных антивирусных программ. Установка ClamAV Чтобы установить ClamAV в CentOS / RHEL 7, нам нужно установить репозиторий EPEL: # yum install epel-release Затем необходимо установить ClamAV со всеми его полезными инструментами: # yum -y install clamav-server clamav-data clamav-update clamav-filesystem clamav clamav-scanner-systemd clamav-devel clamav-lib clamav-server-systemd Настройка антивируса ClamAV Для настройки ClamAV в первую очередь нам нужно удалить конфигурацию по умолчанию, чтобы создать свою: # sed -i '/^Example/d' /etc/clamd.d/scan.conf После удаления строк примера нужно сделать некоторые правки, чтобы определить тип сервера TCP и предоставить root права для запуска антивируса: # vim /etc/clamd.d/scan.conf Значение, данное с LocalSocket, является файлом, использующим связи с внешними процессами. Следует выполнить следующую строку: LocalSocket /var/run/clamd.scan/clamd.sock Добавляем эти две строки в конец файла и сохраняем: User root LocalSocket /var/run/clamd.<SERVICE>/clamd.sock Чтобы поддерживать базу данных сигнатур ClamAV в актуальном состоянии, необходимо включить инструмент под названием Freshclam. Поэтому нужно создать файл резервной копии из его файла конфигурации: # cp /etc/freshclam.conf /etc/freshclam.conf.bak Freshclam читает свою конфигурацию из /etc/freshclam.conf. Файл содержит строку со словом Пример, чтобы пользователи не могли использовать значения по умолчанию, их необходимо удалить их или закомментировать, прежде чем сможем использовать freshclam. А так как не все настройки по умолчанию не подходят для наших целей, придется внимательно проверить файл и решить, что нам понадобится. Каждая команда также будет прокомментирована. # sed -i '/^Example/d' /etc/freshclam.conf Нам нужно запустить Freshclam, чтобы обновить базу данных и проверить, успешно ли задана конфигурация: # freshclam ClamAV update process started at Tue Nov 6 15:51:59 2018 WARNING: Can't query current.cvd.clamav.net WARNING: Invalid DNS reply. Falling back to HTTP mode. Reading CVD header (main.cvd): OK (IMS) main.cvd is up to date (version: 58, sigs: 4566249, f-level: 60, builder: sigmgr) Reading CVD header (daily.cvd): OK Downloading daily-25006.cdiff [100%] Downloading daily-25092.cdiff [100%] Downloading daily-25093.cdiff [100%] Downloading daily-25094.cdiff [100%] Downloading daily-25095.cdiff [100%] daily.cld updated (version: 25095, sigs: 2143057, f-level: 63, builder: neo) Reading CVD header (bytecode.cvd): OK bytecode.cvd is up to date (version: 327, sigs: 91, f-level: 63, builder: neo) Database updated (6709397 signatures) from database.clamav.net (IP: 104.16.186.138) Процесс выводит свой прогресс-бар в терминал, и вы можете увидеть несколько сообщений об ошибках. Например, он может сообщить, что ему не удалось загрузить нужный файл. Не паникуйте - freshclam попробует несколько зеркал. Он сообщает, что main.cvd, daily.cvd и bytecode.cvd обновляются, и по завершении, вы будете знать, что у вас есть последние сигнатуры. Мы можем запустить freshclam в любое время, когда необходимо убедиться, что базы данных сигнатур обновлены, но было бы неудобно всегда запускать его вручную. При запуске с аргументом -d freshclam будет работать и периодически проверять наличие обновлений в течение дня (по умолчанию каждые два часа). Чтобы сохранить некий порядок в системе, мы создали файл службы для запуска freshclam и зарегистрировали его в systemd: # vim /usr/lib/systemd/system/clam-freshclam.service Затем мы помещаем следующий код в файл и сохраняем его: [Unit] Description = freshclam scanner After = network.target [Service] Type = forking ExecStart = /usr/bin/freshclam -d -c 4 Restart = on-failure PrivateTmp = true RestartSec = 20sec [Install] WantedBy=multi-user.target Раздел [Unit] определяет основные атрибуты сервиса, такие как его описание и его зависимость от сетевого соединения. Раздел [Service] определяет сам сервис, ExecStart будет запускать freshclam с аргументом -d, Type сообщает systemd, что процесс будет разветвляться и запускаться в фоновом режиме, а при перезапуске systemd отслеживает сервис и перезапускает его автоматически в случае. Раздел [Install] определяет, как он будет связан, когда запустится systemctl enable. Перезагрузите systemd, чтобы применить изменения: # systemctl daemon-reload Далее запустите и включите сервис freshclam: # systemctl start clam-freshclam.service # systemctl status clam-freshclam.service clam-freshclam.service - freshclam scanner oaded: loaded (/usr/lib/systemd/system/clam-freshclam.service; disabled; vendor preset: disabled) Active: active (running) since Tue 2018-11-06 15:56:53 IST; 3s ago Process: 7926 ExecStart=/usr/bin/freshclam -d -c 4 (code=exited, status=0/SUCCESS) Main PID: 7927 (freshclam) CGroup: /system.slice/clam-freshclam.service L-7927 /usr/bin/freshclam -d -c 4 Nov 06 15:56:53 node2.example.com systemd[1]: Starting freshclam scanner... Nov 06 15:56:53 node2.example.com systemd[1]: Started freshclam scanner. Nov 06 15:56:53 node2.example.com freshclam[7927]: freshclam daemon 0.100.2 (OS: linux-gnu, ARCH: x86_64, CPU: x86_64) Nov 06 15:56:53 node2.example.com freshclam[7927]: ClamAV update process started at Tue Nov 6 15:56:53 2018 Если все работает нормально, добавляем его в службу запуска системы: # systemctl enable clam-freshclam.service Created symlink from /etc/systemd/system/multi-user.target.wants/clam-freshclam.service to /usr/lib/systemd/system/clam-freshclam.service. Теперь для настройки ClamAV необходимо создать файл сервиса ClamAV. У нас есть пример файла службы, который нам нужно скопировать в папку системных служб. Нам нужно изменить его имя на что-то понятное. Затем нам нужно внести в него небольшие изменения: # mv /usr/lib/systemd/system/clamd@.service /usr/lib/systemd/system/clamd.service Поскольку мы изменили имя, нам нужно изменить его в файле, который также использует этот сервис: # vim /usr/lib/systemd/system/clamd@scan.service Мы изменили первую строку, удалив @, чтобы это выглядело так: .include /lib/systemd/system/clamd.service В том же месте нам нужно изменить файл сервиса Clamd: # vim /usr/lib/systemd/system/clamd.service Мы добавляем следующие строки в конце: [Install] WantedBy=multi-user.target Удаляем % i из опций Description и ExecStart. Затем изменяем их, чтобы они выглядели следующим образом: Description = clamd scanner daemon ExecStart = /usr/sbin/clamd -c /etc/clamd.d/scan.conf TimeoutSec=5min Restart = on-failure RestartSec=10sec Далее запустите сервис clamv # systemctl start clamd.service # systemctl status clamd.service clamd.service - clamd scanner daemon Loaded: loaded (/usr/lib/systemd/system/clamd.service; enabled; vendor preset: disabled) Active: active (running) since Tue 2018-11-06 19:48:17 IST; 16s ago Docs: man:clamd(8) man:clamd.conf(5) https://www.clamav.net/documents/ Process: 1460 ExecStart=/usr/sbin/clamd -c /etc/clamd.d/scan.conf (code=exited, status=0/SUCCESS) Main PID: 1461 (clamd) CGroup: /system.slice/clamd.service L-1461 /usr/sbin/clamd -c /etc/clamd.d/scan.conf Nov 06 19:48:15 node2.example.com clamd[1461]: ELF support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: Mail files support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: OLE2 support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: PDF support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: SWF support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: HTML support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: XMLDOCS support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: HWP3 support enabled. Nov 06 19:48:15 node2.example.com clamd[1461]: Self checking every 600 seconds. Nov 06 19:48:17 node2.example.com systemd[1]: Started clamd scanner daemon. Если все хорошо, то включите сервис clamd. # systemctl enable clamd.service Created symlink from /etc/systemd/system/multi-user.target.wants/clamd.service to /usr/lib/systemd/system/clamd.service. Для проверки текущей папки мы запускаем следующую команду: # clamscan --infected --remove --recursive ./ ----------- SCAN SUMMARY ----------- Known viruses: 6702413 Engine version: 0.100.2 Scanned directories: 7 Scanned files: 9 Infected files: 0 Data scanned: 0.01 MB Data read: 0.00 MB (ratio 2.00:1) Time: 25.439 sec (0 m 25 s) Мы надеемся вы правильно выполнили все этапы настройки ClamAV в RHEL / CentOS 7 Linux и они оказались полезны для вас в том или ином виде.
img
Для любых интерфейсов 10/100 Мбит/с или 10/100/1000Мбит/с, то есть интерфейсов, которые могут работать на разных скоростях, коммутаторы Cisco по умолчанию устанавливают значение duplex auto и speed auto. В результате эти интерфейсы пытаются автоматически определить скорость и настройку дуплекса. Кроме того, как вы уже знаете, можно настроить большинство устройств, включая интерфейсы коммутатора, для использования определенной скорости и/или дуплекса. В реальности, использование автосогласования не требует каких либо дополнительных настроек: просто можно выставить параметры скорости и дуплекса по умолчанию, и пусть порт коммутатора определяет, какие настройки использовать автоматически. Однако проблемы могут возникнуть из-за неудачных комбинаций настроек. Автоматическое согласование в рабочих сетях Устройства Ethernet, объединенные каналами связи, должны использовать один и тот же стандарт. В противном случае они не смогут корректно передавать данные. Например, старый компьютер с сетевым адаптером стандарта 100BASE-T, который использует двухпарный UTP-кабель со скоростью 100 Мбит /с, не сможет "общаться" с коммутатором, подключенному к ПК, так как порт коммутатора использует стандарт 1000BASE-T. Даже если подключите кабель, работающий по стандарту Gigabit Ethernet, канал не будет работать с оконечным устройством, пытающимся отправить данные со скоростью 100 Мбит /с на порт другого устройства, работающем со скоростью 1000 Мбит /с. Переход на новые и более быстрые стандарты Ethernet становится проблемой, поскольку обе стороны должны использовать один и тот же стандарт. Например, если вы замените старый компьютер, который поддерживает стандарт передачи данных 100BASE-T , на новый, работающий по стандарту 1000BASE-T, то соответственно порты коммутатора на другом конце линии связи должны также работать по стандарту 1000BASE-T. Поэтому, если у вас коммутатор только с поддержкой технологии 100BASE-T, то вам придется его заменить на новый. Если коммутатор будет иметь порты, которые работают только по технологии 1000BASE-T, то соответственно вам придется заменить все старые компьютеры, подключенные к коммутатору. Таким образом, наличие как сетевых адаптеров ПК (NIC), так и портов коммутатора, поддерживающих несколько стандартов/скоростей, значительно облегчает переход к следующему улучшенному стандарту. Протокол автосоглосования (IEEE autonegotiation) значительно облегчает работу с локальной сетью, когда сетевые адаптеры и порты коммутатора поддерживают несколько скоростей. IEEE autonegotiation (стандарт IEEE 802.3 u) определяет протокол, который позволяет двум узлам Ethernet, на основе витой пары, договариваться таким образом, чтобы они одновременно использовали одинаковую скорость и параметры дуплекса. Вначале каждый узел сообщает соседям, свои "возможности" по передаче данных. Затем каждый узел выбирает наилучшие варианты, поддерживаемые обоими устройствами: максимальную скорость и лучшую настройку дуплекса (full duplex лучше, чем half duplex) . Автосогласование основывается на том факте, что стандарт IEEE использует одни и те же выводы кабеля для 10BASE-T и 100BASE-T (можно использовать кабель с двумя витыми парами). И что бы согласование проходило по технологии 1000BASE-T IEEE autonegotiation просто подключает новые две пары в кабеле (необходимо использовать кабель с четырьмя витыми парами). Большинство сетей работают в режиме автосогласования, особенно между пользовательскими устройствами и коммутаторами локальной сети уровня доступа, как показано на рисунке 1. В организации установлено четыре узла. Узлы соединены кабелем с поддержкой Gigabit Ethernet (1000BASE-T). В результате, линия связи поддерживает скорость 10Мбит /с, 100Мбит /с и 1000Мбит /с. Оба узла на каждом канале посылают друг другу сообщения автосогласования. Коммутатор в нашем случае может работать в одном из трех режимов: 10/100/1000, в то время как сетевые платы ПК поддерживают различные опции. Настроены в ручную Рисунок отображает концепцию автоматического согласования стандарта IEEE. В результате сетевая карта и порт на коммутаторе работают правильно. На рисунке показаны три ПК - 1, 2 и 3, подключенные к общему коммутатору. Сетевые адаптеры этих узлов имеют характеристики соответственно: 1 ПК 10 Mb/s, 2 ПК - 10/100 Mb/s и 3 ПК - 10/100/1000 Mb/s. ПК подключаются к коммутатору через порт поддерживающий режим работы 10/100/1000 Mb/s. С обеих сторон автосогласование включено. Результатом во всех трех случаях является: дуплекс включен в режиме FULL, выставлена соответствующая скорость. Далее разберем логику работы автосоглосования на каждом соединении: ПК 1: порт коммутатора сообщает, что он может работать на максимальной скорости в 1000 Мбит /с, но сетевая карта компьютера утверждает, что ее максимальная скорость составляет всего 10 Мбит / с. И ПК, и коммутатор выбирают самую быструю скорость, на которой они могут работать совместно (10 Мбит /с), и устанавливают лучший дуплекс (full). ПК2 сообщает коммутатору, что максимальная скорость передачи данных его сетевой карты составляет 100 Мбит /с. Это означает что ПК2 может работать по стандарту 10BASE-T или 100BASE-T. Порт коммутатора и сетевой адаптер договариваются использовать максимальную скорость в 100 Мбит /с и полный дуплекс (full). ПК3: сообщает коммутатору, что его сетевая карта может работать в трех режимах: 10/100/1000 Мбит/с, и соответственно поддерживает все три стандарта. Поэтому и сетевая карта, и порт коммутатора выбирают максимальную скорость в 1000 Мбит /с и полный дуплекс (full). Одностороннее автосогласовние (режим, при котором только один узел использует автоматическое согласование) На рисунке 1 показано двухстороннее автосогласования IEEE (оба узла используют этот процесс). Однако большинство устройств Ethernet могут отключить автоматическое согласование, и поэтому важно знать, что происходит, когда один из узлов использует автосогласование, а другой нет. Иногда возникает необходимость отключить автосогласование. Например, многие системные администраторы отключают автосогласование на соединениях между коммутаторами и просто настраивают желаемую скорость и дуплекс. Однако могут возникнуть ошибки, когда одно устройство использует автосогласование, а другое нет. В этом случае связь может не работать вообще, или она может работать нестабильно. IEEE autonegotiation (автосогласование) определяет некоторые правила (значения по умолчанию), которые узлы должны использовать в качестве значений по умолчанию, когда автосогласование завершается неудачей-то есть когда узел пытается использовать автосогласование, но ничего не слышит от устройства. Правила: Скорость: используйте самую низкую поддерживаемую скорость (часто 10 Мбит / с). Дуплекс: если ваша скорость равна 10 Мбит/, используйте полудуплекс (half duplex); Если 100 Мбит/с используйте полный дуплекс (full duplex) . Коммутаторы Cisco могут самостоятельно выбирать наилучшие настройки порта по скорости и дуплексу, чем параметры IEEE, установленные по умолчанию (speed default). Это связано с тем, что коммутаторы Cisco могут анализировать скорость, используемую другими узлами, даже без автосогласования IEEE. В результате коммутаторы Cisco используют эту свою возможность для выбора скорости, когда автосогласование не работает: Скорость: происходит попытка определения скорости (без использования автосогласования), если это не удается, используются настройки по умолчанию (устанавливается самая низкая поддерживаемая скорость, обычно 10 Мбит/с). Дуплекс: в зависимости от установленной скорости настраиваются параметры дуплекса: если скорость равна 10 Мбит/с назначается полудуплекс (half duplex), если скорость равна 100 Мбит/с, то используется полный дуплекс (full duplex). Гигабитные интерфейсы (1Gb/s) всегда используют полный дуплекс. На рисунке 2 показаны три примера, в которых пользователи изменили настройки свих сетевых карт и отключили автоматическое согласование, в то время как коммутатор (на всех портах поддерживается скорость 10/100/1000 Мбит/с) пытается провести автосогласование. То есть, на портах коммутатора выставлены параметры скорости (speed auto) и (duplex auto) дуплекса в режим auto. В верхней части рисунка отображены настроенные параметры каждой сетевой карты компьютеров, а выбор, сделанный коммутатором, указан рядом с каждым портом коммутатора. На рисунке показаны результаты работы автосогласования IEEE с отключенным режимом автосогласования на одной стороне. На рисунке показаны три компьютера - 1, 2 и 3, подключенные к общему коммутатору. Параметры сетевых адаптеров этих систем следующие: ПК1- 10/100Мбит/с, ПК2 - 10/100/1000 Мбит/с и ПК3 - 10/100Мбит/с. Компьютеры соединены с коммутатором через интерфейсы F0/1, F0/2 и F0/3. На стороне компьютеров автосогласование отключено, и произведены настройки скорости и дуплекса вручную, которые вы можете посмотреть на рисунке 2. На стороне коммутатора включено автосогласование (10/100/1000). Разберем работу устройств на рисунке: ПК1: коммутатор не получает сообщений автосогласования, поэтому он автоматически определяет скорость передачи данных ПК1 в 100 Мбит/с. Коммутатор использует дуплекс IEEE по умолчанию, основанный на скорости 100 Мбит/с (полудуплекс). ПК2: коммутатор использует те же действия, что и при анализе работы с ПК1, за исключением того, что коммутатор выбирает использование полного дуплекса, потому что скорость составляет 1000 Мбит / с. ПК3: пользователь установил самую низшую скорость (10 Мбит/с) и не самый лучший режим дуплекса (half). Однако коммутатор Cisco определяет скорость без использования автосогласования IEEE и затем использует стандарт IEEE duplex по умолчанию для каналов 10 Мбит / с (half duplex). ПК1.Итог работы этой связки: дуплексное несоответствие. Оба узла используют скорость 100 Мбит/с, поэтому они могут обмениваться данными. Однако ПК1, используя полный дуплекс, не пытается использовать carrier sense multiple access (CSMA) для обнаружения столкновений (CSMA / CD) и отправляет кадры в любое время. В свою очередь интерфейс коммутатора F0/1 (в режиме half duplex), использует CSMA / CD. Отчего порт коммутатора F0/1 будет считать, что на канале происходят коллизии, даже если физически они не происходят. Порт остановит передачу, очистит канал, повторно отправит кадры и так до бесконечности. В результате связь будет установлена, но работать она будет нестабильно.
img
Операционная система Microsoft Windows невероятно распространена и каждому администратору приходится с ней сталкиваться. Поэтому мы решили собрать список основных команд для командной строки CMD которые пригодятся при настройке и траблшутинге сети. Команды CMD Ping - Конечно же пинг! Самая используемая утилита, отправляющая ICMP пакеты для проверки доступности узла на другой стороне. Показывает ответы, время за которое пакеты были доставлены и TTL (Time To Live), а по окончанию показывает статистику. По умолчанию высылается 4 пакета, и увеличить их количество можно добавив в строку –n число_пакетов, либо запустив непрерывный пинг набрав –t. Помимо этого есть параметр –l размер_пакета, позволяющий изменить размер отправляемого пакета. Пример: ping 192.168.1.1 -t Подробную информацию обо всех параметрах, которые можно использовать с командой можно узнать, введя /? после самой команды. Это работает и для других команд. ping /? Tracert - Trace route как и ping позволяет определить доступность удаленного узла, однако она отображает в выводе все маршрутизаторы, через которые проходил пакет. При выполнении этой команды высылается ICMP пакет, с TTL=1, и после того как первый маршрутизатор отбросит пакет, будет выслан пакет с TTL увеличенным на 1, и так далее, пока не будет достигнет пункт назначения, либо пока TTL не станет равным 30. Пример: tracert wiki.merionet.ru Pathping - Эта команда аналогично команде tracert выполняет трассировку, дополнительно показывая статистику по задержкам и потерям на промежуточных узлах. Пример: pathping www.merionet.ru Ipconfig - Эта команда отображает текущие настройки протокола TCP/IP – IP адрес, маску, шлюз. Для отображения полной информации сетевого адаптера нужно добавить после команды параметр /all – теперь можно узнать mac-адрес, адрес DHCP сервера и многое другое. Для просмотра всех ключей можно воспользоваться параметром /?. Так же могут быть полезными параметры /release для отмены сетевых настроек, полученных по DHCP, /renew для обновления конфигурации сетевого адаптера по DHCP и /flushdns для очистки DNS кэша. ipconfig /all Getmac – эта команда используется для определения MAC-адреса компьютера. Использование этой команды отображает MAC-адрес сетевых адаптеров устройства. Nslookup - Name Server Lookup. Используется для того чтобы определить IP-адрес по доменному имени. Пример: nslookup www.merionet.ru Netstat – эта команда показывает состояние входящих и исходящих TCP соединений. Если мы используем команду с параметром –r, то она выведет нам таблицы маршрутизации, а использовав параметр –s мы получим статистику по протоколам Netsh – Net Shell, сетевая оболочка. Используется для локальной или удаленной настройки сетевых параметров. После ввода команды строка переходит в режим оболочки, внутри которой можно ввести /? и увидеть все доступные настройки. Внутри каждой команды таким способом можно посмотреть список доступных подкоманд. Возможности этой команды действительно обширны. Мы можем при помощи нее конфигурировать ip-адреса, маски, шлюзы, dns и wins сервера, включать и отключать сетевые интерфейсы, просматривать сетевые настройки, а также сохранять и восстанавливать конфигурацию сетевых интерфейсов Например, мы можем указать статический адрес для интерфейса: netsh interface ip set address local static 192.168.1.10 255.255.255.0 Net view – отображает имена компьютеров в текущем домене Arp – команда для просмотра записей в arp таблице. Для просмотра текущих записей используется ключ –a. Для удаления записи из таблицы используется ключ –d интернет_адрес [адрес_интерфейса] . Если нужно удалить все записи, то вместо адреса нужно поставить звездочку (*). Пример: arp - a Hostname – показывает имя компьютера. NbtStat - отображение статистики протокола и текущих подключений TCP/IP с помощью NBT (NetBIOS через TCP/IP). Route – команда для обработки таблиц сетевых маршрутов. Показывает текущую таблицу, имеется возможность добавлять и удалять маршруты. Чтобы вывести все содержимое таблицы маршрутизации нужно набрать команду route print. Telnet – клиент сервера Telnet для подключения к удаленным хостам. Внимание: по умолчанию telnet не установлен. Чтобы установить его из командной строки нужно выполнить команду pkgmgr /iu:"TelnetClient" Для подключения используем команду так: telnet ip-адрес порт Пример: telnet 192.168.1.20 5150 Также эту команду можно использовать для проверки доступности порта на узле – если команда выдает ошибку, то значит порт закрыт, а если появляется приглашение или окно становится пустым – то открыт. На этом все! Мы что-то упустили или вы хотите о чем-то прочитать поподробнее? Напишите об этом в комментариях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59