По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Linux поддерживает множество файловых систем, таких как ext4, ZFS, XFS, Btrfs, Reiser4 и другие. Различные типы файловых систем решают разные проблемы, и их использование зависит от приложения. Что такое файловая система Linux Почти каждый бит данных и программ, необходимых для загрузки системы Linux и поддержания ее работы, сохраняется в файловой системе. Например, сама операционная система, компиляторы, прикладные программы, разделяемые библиотеки, файлы конфигурации, файлы журналов, точки монтирования мультимедиа и т.д. Файловые системы работают в фоновом режиме. Как и остальная часть ядра операционной системы, они практически невидимы при повседневном использовании. Файловая система Linux обычно представляет собой встроенный уровень операционной системы Linux, используемый для управления данными хранилища. Он контролирует, как данные хранятся и извлекаются. Он управляет именем файла, размером файла, датой создания и другой информацией о файле. Файловая система ext4 В 1992 году была запущена файловая Extended File System или ext специально для операционной системы Linux. Она уходит своими корнями в операционную систему Minix. В 1993 году было выпущено обновление под названием Extended File System 2 или ext2, которое в течение многих лет было файловой системой по умолчанию во многих дистрибутивах Linux. К 2001 году ext2 была обновлена до ext3, которая ввела журналирование для защиты от повреждений в случае сбоев или сбоев питания. Ext4 была представлена в 2008 году и является файловой системой Linux по умолчанию с 2010 года. Она была разработана как прогрессивная версия файловой системы ext3 и преодолевает ряд ограничений в ext3. Она имеет значительные преимущества перед своим предшественником, такие как улучшенный дизайн, лучшая производительность, надежность и новые функции. В настоящее время ext4 является файловой системой по умолчанию в большинстве дистрибутивов Linux. Она может поддерживать файлы и файловые системы размером до 16 терабайт. Она также поддерживает неограниченное количество подкаталогов (файловая система ext3 поддерживает только до 32 000). Кроме того, ext4 обратно совместима с ext3 и ext2, что позволяет монтировать эти старые версии с драйвером ext4. Есть причина, по которой ext4 является выбором по умолчанию для большинства дистрибутивов Linux. Она опробована, протестирована, стабильна, отлично работает и широко поддерживается. Если вам нужна стабильность, ext4 - лучшая файловая система Linux для вас. Однако несмотря на все свои функции, ext4 не поддерживает прозрачное сжатие, прозрачное шифрование или дедупликацию данных. Файловая система XFS XFS - это высокомасштабируемая файловая система, разработанная Silicon Graphics и впервые развернутая в операционной системе IRIX на базе Unix в 1994 году. Это файловая система с журналированием которая отслеживает изменения в журнале перед фиксацией изменений в основной файловой системе. Преимущество заключается в гарантированной целостности файловой системы и ускоренном восстановлении в случае сбоев питания или сбоев системы. Первоначально XFS была создана для поддержки чрезвычайно больших файловых систем с размерами до 16 эксабайт и размером файлов до 8 эксабайт. Она имеет долгую историю работы на больших серверах и массивах хранения. Одной из примечательных особенностей XFS является гарантированная скорость ввода-вывода. Это позволяет приложениям зарезервировать пропускную способность. Файловая система рассчитывает доступную производительность и корректирует свою работу в соответствии с существующими резервированиями. XFS имеет репутацию системы, работающей в средах, требующих высокой производительности и масштабируемости, и поэтому регулярно оценивается как одна из самых производительных файловых систем в больших системах с корпоративными рабочими нагрузками. Сегодня XFS поддерживается большинством дистрибутивов Linux и теперь стала файловой системой по умолчанию в Red Hat Enterprise Linux, Oracle Linux, CentOS и многих других дистрибутивах. Лучшие варианты использования файловой системы XFS У вас большой сервер? У вас большие требования к хранилищу или у вас есть локальный медленный диск SATA? Если и ваш сервер, и ваше устройство хранения большие и нет необходимости уменьшать размер файловой системы, XFS, вероятно, будет лучшим выбором. XFS - отличная файловая система, которая хорошо масштабируется для больших серверов. Но даже с меньшими массивами хранения XFS работает очень хорошо, когда средние размеры файлов велики, например, размером в сотни мегабайт. Файловая система btrfs Btrfs - это файловая система Linux общего назначения нового поколения, которая предлагает уникальные функции, такие как расширенное интегрированное управление устройствами, масштабируемость и надежность. Он распространяется под лицензией GPL и открыт для внесения вклада кем угодно. Для файловой системы используются разные имена, в том числе «Butter FS», «B-tree FS» и «Better FS». Разработка Btrfs началась в Oracle в 2007 году. Она была объединена с основным ядром Linux в начале 2009 года и дебютировала в версии Linux 2.6.29. Btrfs не является преемником файловой системы ext4 по умолчанию, используемой в большинстве дистрибутивов Linux, но предлагает лучшую масштабируемость и надежность. Btrfs - это файловая система с копированием при записи (Copy-on-Write - CoW), предназначенная для устранения различных недостатков в текущих файловых системах Linux. Основное внимание уделяется отказоустойчивости, самовосстановлению и простоте администрирования. Btrfs может поддерживать до 16 эксбибайт раздела и файл того же размера. Если вас смущают цифры, все, что вам нужно знать, это то, что Btrfs может поддерживать до шестнадцати раз больше данных Ext4. Как работает Copy-on-Write и зачем вам это нужно В традиционной файловой системе при изменении файла данные считываются, изменяются, а затем записываются обратно в то же место. В файловой системе с копией при записи он считывает данные, изменяет их и записывает в новое место. Это предотвращает потерю данных во время транзакции чтения-изменения-записи, поскольку данные всегда находятся на диске. Поскольку вы не «перенаправляете» до тех пор, пока новый блок не будет полностью записан, если пропадет питание или выйдет из строя в середине записи, вы получите либо старый блок, либо новый блок, но не наполовину записанный поврежденный блокировать. Таким образом, вам не нужно проверять файловые системы при запуске, и вы снижаете риск повреждения данных. Вы можете сделать снимок файловой системы в любой момент, создав запись снимка в метаданных с текущим набором указателей. Это защищает старые блоки от последующего сбора мусора и позволяет файловой системе представить том в том виде, в котором он был во время моментального снимка. Другими словами, у вас есть возможность мгновенного отката. Вы даже можете клонировать этот том, чтобы сделать его доступным для записи на основе снимка. Особенности Btrfs Copy-on-Write и создание снепшотов - Сделайте инкрементное резервное копирование безболезненным даже из файловой системы в процессе работы или виртуальной машины (VM). Контрольные суммы на уровне файла - метаданные для каждого файла включают контрольную сумму, которая используется для обнаружения и исправления ошибок. Сжатие - файлы можно сжимать и распаковывать "на лету", что увеличивает скорость чтения. Автоматическая дефрагментация - файловые системы настраиваются фоновым потоком, пока они используются. Подтомы - файловые системы могут совместно использовать единый пул пространства вместо того, чтобы помещаться в свои собственные разделы. RAID - Btrfs выполняет свои собственные реализации RAID, поэтому LVM или mdadm не требуются для наличия RAID. В настоящее время поддерживаются RAID 0, 1 и 10. RAID 5 и 6 считаются нестабильными. Разделы необязательны - хотя Btrfs может работать с разделами, он может напрямую использовать необработанные устройства (/dev/<device>). Дедупликация данных - поддержка дедупликации данных ограничена; однако дедупликация со временем станет стандартной функцией Btrfs. Это позволяет Btrfs экономить место, сравнивая файлы через двоичные файлы diff. Хотя это правда, что Btrfs все еще считается экспериментальным и в настоящее время находится в активной разработке, время, когда Btrfs станет файловой системой по умолчанию для систем Linux, приближается. Некоторые дистрибутивы Linux уже начали переходить на него в своих текущих выпусках. Файловая система ZFS ZFS (Zettabyte File System) остается одной из наиболее технически продвинутых и полнофункциональных файловых систем с момента ее появления в октябре 2005 года. Это локальная файловая система (например, ext4) и менеджер логических томов (например, LVM), созданные Sun Microsystems. ZFS публиковалась под лицензией с открытым исходным кодом, пока Oracle не купила Sun Microsystems и не закрыла лицензию. Вы можете думать о ZFS как о диспетчере томов и как о RAID-массиве одновременно, что позволяет добавлять дополнительные диски к вашему тому ZFS, что позволяет одновременно добавить дополнительное пространство в вашу файловую систему. В дополнение к этому ZFS обладает некоторыми другими функциями, которых нет в традиционных RAID. ZFS сильно зависит от памяти, поэтому для запуска вам потребуется не менее 8 ГБ. На практике используйте столько, сколько можете получить в соответствии с вашим аппаратным обеспечением или бюджетом. ZFS обычно используется сборщиками данных, пользователями NAS и другими гиками, которые предпочитают полагаться на собственную избыточную систему хранения, а не на облако. Это отличная файловая система для управления несколькими дисками с данными, которая может соперничать с некоторыми из лучших конфигураций RAID. ZFS похожа на другие подходы к управлению хранилищем, но в некотором смысле радикально отличается. ZFS обычно не использует Linux Logical Volume Manager (LVM) или разделы диска, и обычно удобно удалять разделы и структуры LVM перед подготовкой носителя для zpool. Zpool - это аналог LVM. Zpool охватывает одно или несколько устройств хранения, а члены zpool могут быть нескольких различных типов. Основные элементы хранения - одиночные устройства, зеркала и raidz. Все эти элементы хранения называются vdevs. ZFS может обеспечить целостность хранилища намного лучше, чем любой RAID-контроллер, поскольку он досконально знает структуру файловой системы. Безопасность данных - важная особенность конструкции ZFS. Все блоки, записанные в zpool, тщательно проверяются контрольной суммой для обеспечения согласованности и правильности данных. Для использования на сервере, где вы хотите почти полностью исключить любую возможность потери данных и стабильности, вы можете изучить ZFS. Возможности ZFS Бесконечная масштабируемость. Что ж, технически она не бесконечна, но это 128-битная файловая система, способная управлять зеттабайтами (одним миллиардом терабайт) данных. Поэтому независимо от того, сколько у вас места на жестком диске, ZFS подойдет для управления им. Максимальная целостность. Все, что вы делаете внутри ZFS, использует контрольную сумму для обеспечения целостности файла. Вы можете быть уверены, что ваши файлы и их резервные копии не испытают скрытого повреждения данных. Кроме того, пока ZFS незаметно проверяет целостность ваших данных, она будет выполнять автоматическое восстановление в любое время. Объединение дисков. Создатели ZFS хотят, чтобы вы думали об этом как о том, как ваш компьютер использует оперативную память. Когда вам нужно больше памяти на вашем компьютере, вы вставляете другую карту, и все готово. Точно так же с ZFS, когда вам нужно больше места на жестком диске, вы вставляете другой жесткий диск, и все готово. Не нужно тратить время на разбиение на разделы, форматирование, инициализацию или что-то еще с вашими дисками. Если вам нужен «пул» хранилища большего размера, просто добавьте диски. RAID. ZFS поддерживает множество различных уровней RAID, обеспечивая при этом производительность, сравнимую с производительностью аппаратных RAID-контроллеров. Это позволяет сэкономить деньги, упростить настройку и получить доступ к превосходным уровням RAID, которые были улучшены в ZFS. Файловая система Reiser4 ReiserFS - это файловая система общего назначения с журналированием, первоначально разработанная и реализованная командой Namesys во главе с Хансом Райзером. Представленная в версии 2.4.1 ядра Linux, это была первая файловая система с журналированием, включенная в стандартное ядро. За исключением обновлений безопасности и исправлений критических ошибок, Namesys прекратила разработку ReiserFS. Reiser4 является преемницей файловой системы ReiserFS. Добавилось шифрование, улучшил производительность и многое другое. Reiser4 обеспечивает наиболее эффективное использование дискового пространства среди всех файловых систем во всех сценариях и рабочих нагрузках. ReiserFS предлагает преимущества перед другими файловыми системами, особенно когда дело доходит до обработки большого количества небольших файлов. Она поддерживает ведение журнала для быстрого восстановления в случае возникновения проблем. Структура файловой системы основана на деревьях. Кроме того, Reiser4 потребляет немного больше ресурсов ЦП, чем другие файловые системы. Reiser4 обладает уникальной способностью оптимизировать дисковое пространство, занимаемое небольшими файлами (менее одного блока). Они полностью хранятся в своем индексном дескрипторе, без выделения блоков в области данных. Помимо реализации традиционных функций файловой системы Linux, reiser4 предоставляет пользователям ряд дополнительных возможностей: прозрачное сжатие и шифрование файлов, полное ведение журнала данных, а также практически неограниченную (с помощью архитектуры подключаемых модулей) расширяемость. Однако в настоящее время нет поддержки прямого ввода-вывода (началась работа по реализации), квот и POSIX ACL.
img
Основная цель любого проекта по разработке ПО – получить прибыль за счет автоматизации бизнес-процессов. Чем быстрее вы начнете выпускать новые версии, тем лучше для компании. Но как же научиться выпускать новые версии максимально быстро? Конечно же, все можно делать вручную. Например, подключить удаленный сервер через SSH, клонировать клонировать репозиторий с новым кодом, собрать его и запустить через командную строку. Да, такой способ работает, но он малоэффективен. Сегодня мы поговорим об автоматизации процесса разработки и выхода новых версий. CI и CD – это два сокращения, которые означают Continuous Integration (Непрерывная интеграция) и Continuous Delivery (Непрерывное развертывание). CI CI описывает процесс добавления изменений в репозиторий. Ниже схематически представлен простой пример коллективной разработки. Одновременно может работать целая группа людей, но все изменения передаются в главную ветку master поэтапно. Хотя даже в такой простой схеме возникает несколько вопросов. Как мы узнаем, что код, который идет в ветку master, компилируется? Мы хотим, чтобы разработчики писали тесты для кода. Как быть уверенными в том, что тестовое покрытие не уменьшится? Все сотрудники команды должны форматировать код в соответствие с определенным стилем. Как отследить возможные нарушения? Конечно же, все это можно проверить вручную. Но такой подход весьма хаотичен. Кроме того, по мере разрастания команды выполнять подобные проверки становится сложнее. CI используется для автоматизации выше обозначенных пунктов. Начнем с первого пункта. Как можно проверить, что новые изменения не сломают сборку? Для этого нам потребуется еще один блок в схеме. Большинство CI-процессов можно описать по следующему алгоритму. При открытии каждого Pull Request (запроса на включение изменений) и отправке новых изменений, Git-сервер отправляет уведомление CI-серверу. CI-сервер клонирует репозиторий, проверяет исходную ветку (например bugfix/wrong-sorting) и сливает ее с основной веткой master. Затем запускается скрипт сборки. Например ./gradlew build. Если команда возвращает код «0», то сборка прошла успешно. Все остальные значения считаются ошибкой. CI-сервер отправляет запрос на Git-сервер с результатом сборки. Если сборка прошла без ошибок, то Pull Request разрешается слить. В противном случае он блокируется. Данный процесс гарантирует, что код, попадающий в ветку master, не сломает дальнейшие сборки. Проверка тестового покрытия Давайте немного усложним задачу. Предположим, нам захотелось установить минимальный охват тестового покрытия. Это означает, что в любой момент времени покрытие ветки master должно быть не менее 50%. Плагин Jacoco идеально справляется с этой задачей. Вы просто настраиваете его так, чтобы при охвате тестового покрытия ниже допустимого, сборка уходила в ошибку. Реализовать такой подход проще некуда. Но есть небольшая оговорка. Этот метод работает только при условии, что плагин настраивался на старте проекта. Представим ситуацию: вы работаете над проектом, которому уже 5 лет. С момента первого коммита никто не проверял тестовое покрытие. Разработчики добавляли тесты в случайном порядке и без какой-либо организации. Но вот однажды вы решаете увеличить количество тестов. Вы настраиваете плагин Jacoco на минимальную планку в 60%. Спустя какое-то время разработчик открывает новый Pull Request. Затем разработчики вдруг понимают, что покрытие – всего лишь 30%. Так что для успешного закрытия задачи нужно покрыть не менее 30% кода продукта. Как вы можете догадаться, для проекта 5-летней давности – это практически неразрешимая проблема. Но что, если будут проверяться только будущие изменения в коде, а не весь продукт? Если в Pull Request разработчик изменит 200 строк, то нужно будет охватить не менее 120 из них (при тестовом покрытии в 60%). Тогда не придется проходить по множеству модулей, которые не относятся к задаче. В принципе, проблема решаема. Но как применить все это к проекту? К счастью, есть решение. Отчет Jacoco отправляется на сервер тестового покрытия. Одно из самых популярных решений – SonarCloud. Сервер хранит статистику по предыдущим вычислениям. Это очень удобно: вычислять тестовое покрытие не только всего кода, но и будущих изменений. Затем результат анализа отправляется на CI-сервер, который перенаправляет его на Git-сервер. Такая рабочая модель позволяет применять культуру обязательного тестирования на любой стадии развития продукта, поскольку проверяется лишь часть изменений. Если говорить о стиле оформления кода, то отличий практически нет. Можете попробовать плагин Checkstyle. Он автоматически отклоняет сборку, которая нарушает любое из заявленных требований. Например, в коде есть неиспользованный импорт. Кроме того, вы можете присмотреться к облачным сервисам, которые выполняют анализ кода и визуально отображают результаты в виде графиков (SonarCloud это тоже умеет). CD CD описывает процесс автоматического развертывания новой версии продукта. Давайте еще немного подкорректируем схему CI. Вот так конвейерный процесс CI/CD мог бы выглядеть в реальном проекте. Первое отличие – теперь CI-сервер называется CI/CD-сервером. Дело в том, что зачастую оба процесса (CI и CD) выполняются одним и тем же диспетчером задач. Так что мы будем рассматривать именно этот случай. Но так бывает не всегда. Например, задачи по интеграции могут делегироваться на GitLab CI, а задачи по доставке – отдаваться в Jenkins. Правая часть схемы изображает CI. Мы обсудили ее выше. Слева показана CD. Задача по CD создает проект (или повторно использует артефакты, полученные на стадии CI) и развертывает его на конечном сервере. Стоит отметить, что сервер в нашем случае – это понятие абстрактное. Например, развертывание может выполняться в кластер Kubernetes. Так что самих серверов может быть несколько. Обычно после стадии развертывания на почту приходят сообщения о выполнении. Например, CD-сервер может уведомлять подписчиков об успешном развертывании/ошибках. В любом случае, возникает важный вопрос. В какой момент мы должны запускать задачи по CD? Триггеры могут быть разными. Развертывание после каждого слияния Pull Request. Развертывание по расписанию. Развертывание после каждого слияния Pull Request с определенной веткой. Сочетание нескольких вариантов. В первом пункте процесс выстроен так, что задачи по CI и CD всегда выполняются последовательно. Данный подход весьма популярен при разработке программ с исходным кодом. Библиотека Semantic Release помогает настроить проект для прозрачной интеграции данной модели. Важно помнить о трактовке понятия deploy (развертывание). Это не всегда «что-то где-то запустить». Например, при разработке библиотеки, нет никакого запуска. В данном случае процесс развертывания означает выпуск новой версии библиотеки. Второй пункт не зависит от процесса CI, ведь проект развертывается по определенному расписанию. Например, ежедневно в 01:00. Третий пункт аналогичен первому, но с небольшими отличиями. Предположим, в репозитории у нас есть 2 основные ветки: develop и master. В develop содержатся самые последние изменения, а в master – только релизы версий. Если мы хотим развертывать только ветку master, то не нужно вызывать CD-задачу по слиянию в develop. Последний пункт – это сочетание подходов. Например, ветку develop можно развертывать по расписанию в среду разработки. А ветку master – в реальную среду по каждому слиянию Pull Request. Инструменты На рынке доступно множество решений по автоматизации процессов CI/CD. Ниже представлено несколько продуктов. Jenkins. Один из самых востребованных инструментов CI/CD в мире. Свою популярность он заслужил, благодаря политике открытого кода (open-source). То есть вам не нужно ни за что платить. В Jenkins вы можете императивно описывать конвейеры сборки с помощью Groovy. С одной стороны это достаточно гибкое решение, но с другой – требует более высокого уровня квалификации. GitHub Actions. Этот инструмент для CI/CD доступен для GitHub и GitHub Enterprise. В отличие от Jenkins, GitHub Actions предлагает декларативные сценарии сборки с YAML-конфигурацией. Кроме того, в данном решении доступна интеграция с различными системами обеспечения качества (например SonarCube). Таким образом, сборку можно описать в нескольких текстовых строках. GitLab CI. Во многом похож на GitHub Actions, но со своими особенностями. Например, GitLab CI может указывать на определенные тесты, вызывающие ошибку в сборке. Travis CI. Облачный CI/CD-сервис. Предлагает множество возможностей, не требующих сложных настроек. Например, шифрование данных, которые следует скрыть в публичном репозитории. Есть и приятный бонус в том, что Travis CI можно совершенно бесплатно использовать в публичных open-source проектах на GitHub, GitLab и BitBucket.
img
Вообще, трудно представить жизнь без Интернета. Почти в каждой квартире сегодня есть минимум один Интернет канал будь то оптика, ADLS, мобильный Интернет или даже спутниковый. Если раньше интернет был только на конце провода и, чтобы подключится к глобальной сети нужно было сидеть привязанным к розетке Ethernet кабеля, то сейчас эту проблему решила технология Wi-Fi. Правда, с кабелем было как-то безопаснее, а вот Wi-Fi, если его не настроить нужным образом, не обеспечит нужного уровня надёжности. Другая проблема - мощность сигнала. С кабелем такой проблемы почти нет, особенно на близких расстояниях, но радиоволны -другая природа: они очень капризны. В этом материале речь пойдёт о том, как решить вышеуказанные проблемы. Для начала разберёмся, как и где следует устанавливать Wi-Fi маршрутизатор. В силу того, что радиоволны не очень любят помехи, а в квартире они всегда есть, то здесь нужно найти точку, где сигнал наиболее мощный. Для этого есть и специализированное оборудование, и программы, а самый доступный способ - это ноутбук. Устанавливаете туда специальное ПО, коих полно в интернете, просто в поисковике набираете Wi-Fi analyser, а затем, перемещая Wi-Fi устройство, выбираете оптимальное для вас место. На больших площадях можно подключить ещё одну Wi-Fi точку доступа, но это другая тема. Нужно обратить внимание на то, чтобы рядом с Wi-Fi маршрутизатором не было микроволновок, Bluetooth устройств и другого оборудования, работающего на радиочастотах. Например, микроволновые печи и беспроводные гарнитуры работают на тех же частотах, что и Wi-Fi 2.4 гГц. Поэтому они потенциальная помеха для нормальной работы Wi-Fi. Также следует иметь ввиду, что в многоквартирных домах у соседей тоже стоит Wi-Fi оборудование и, при стандартных настройках рабочие каналы этих устройств пересекаются. Это происходит из-за принципов работы самого устройства Wi-Fi. Дело в том, что основная частота в Wi-Fi маршрутизаторах делится на 13 каналов по 22 MHz каждая, а расстояние между каналами 5MHz. Каждый канал имеет нижнюю, центральную и верхнюю частоты. Когда верхняя частота первого канала пересекается с нижней частотой второго, то получается так называемая интерференция. Но в 2.4 GHz полосе частот есть три канала, которые не пересекаются: 1, 6, 11. Канал Нижняя частота Центральная частота Верхняя частота 1 2.401 2.412 2.423 6 2.426 2.437 2.448 11 2.451 2.462 2.473 Как видно из таблицы, верхние и нижние частоты указанных каналов не имеют общих частот. Поэтому рекомендуется в настройка маршрутизатора вручную выставлять один из этих каналов. На маршрутизаторах TP-Link это делает во вкладке Беспроводной режим (внешний вид интерфейса может отличаться в зависимости от модели оборудования) : Здесь из выпадающего списка каналов выбирается один из указанных выше. По умолчанию стоит Авто. А теперь перейдём к настройкам подключения к Интернету и безопасности. Первым делом рекомендуем сменить имя пользователя и пароли по умолчанию. Это предотвращает несанкционированный доступ к вашему устройству. Делается это на вкладке Системные инструменты->Пароль: Сейчас поговорим о подключении к Интернету, затем опять вернёмся к настройкам безопасности. Почти любое оборудование предоставляет мастера настройки, который позволяет простым кликом мыши настроить доступ в глобальную сеть: Нажимаем Далее и выставляем нужные значения. Тип подключения зависит от провайдера: Здесь в зависимости от вида услуги отмечаете нужную опцию. Если ADSL подключение, то выбираем PPPoE/PPPoE Россия. PPPoE это сетевой протокол канального уровня. Вкратце, здесь организовывается Point-to-Point туннель поверх Ethernet, а уже в туннель инкапсулируется трафик разных протоколов, IP в том числе. Если выбрали Динамический IP-адрес, то мастер переходит к пункту клонирование MAC адреса. Это нужно если вы уже подключались к сети провайдера напрямую через ноутбук, а теперь нужно подключить маршрутизатор. Но чаще всего эта функция не используется: В остальных случаях нужно вводить дополнительные данные. В случае PPPoE это логин и пароль, которые вы получили у провайдера. Далее переходим к настройке беспроводного подключения: После этого мастер переходит к финальному пункту, где просто нужно нажать на кнопку Завершить и настройки начнут применяться. А теперь снова о безопасности. Далее нам нужно отключить WPS. Эта функция позволяет быстро добавлять новые устройства, но такие программы как Dumpper используют эту возможность для взлома беспроводной сети. На первом пункте вкладки Беспроводной режим убираем галочку перед Включить широковещание SSID. В этом случае маршрутизатор не будет вещать свой SSID (название Wi-Fi), тогда вам придётся вручную вводить кроме пароля еще и название сети. Больше движений, зато безопасно. Так как та же программа Dumpper не сможет обнаружить вашу сеть, что усложнит её взлом: На пункте Защита беспроводного режима вкладки Беспроводной режим настраиваются параметры шифрования. Так как на рисунках все подробно описано, не буду вдаваться в подробности каждого пункта. Здесь установлены рекомендуемые настройки для домашней сети (пароль выбираем посложнее) Фильтрация MAC-адресов позволяет ограничивать подключение чужих устройств к вашей беспроводной сети. Выбираем Разрешить доступ станциям, указанным во включённых списках. Затем добавляете MAC-адреса устройств, которым разрешено подключаться к сети. MAC-адреса устройств можно посмотреть в настройках самих устройств или же, если уже подключены к вашей сети, можно просмотреть на вкладке DHCP -> Список клиентов DHCP. На вкладке Безопасность настраиваем разрешения на локальное и удалённое управление Wi-Fi маршрутизатором. Локальное управление лучше ограничивать для устройств, подключенных по Wi-Fi и разрешить только для конкретного устройства и только через физическое подключение. Для этого, если у вас есть ноутбук или ПК узнаем его MAC-адрес. На Windows машинах легче всего сделать это через командную строку набрав команду getmac. Вписываете полученное значение в строку MAC-1: Нажимаем сохранить и всё. Следует быть внимательным если на выводе консоли несколько значений. Если нет никаких виртуальных машин, а вы подключены через Ethernet порт, то перед MAC адресом указывается device id. Ну а если возникнут трудности можете просмотреть через Центр управления сетями и общим доступом на Панели управления, выбрав нужный адаптер и кликнув на кнопке Подробнее в открывшемся окне. Физический адрес и есть MAC-адрес. Удалённое управление лучше отключить: На этом, пожалуй, всё. Это базовые настройки безопасности. При необходимости можно прописать ACL (в зависимости от модели), настроить гостевую сеть, включить родительский контроль. Удачи!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59