По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Domain Name System DNS - это сетевая система, содержащая информацию о каждом web-сайте в Интернете. Каждый сайт имеет свой уникальный IP-адрес, имеющий вид 111.222.111.222, а также доменное имя, например merionet.ru. Человеку гораздо проще запомнить доменное имя сайта, нежели набор цифр входящих в IP-адрес. Для этих целей и была разработана система DNS. Подобно записной книжке, в ней хранится таблица соответствия доменного имени сайта и его IP-адреса. В DNS используется иерархическая древовидная структура серверов и имен. Самый верхний уровень это “root”, представляющий из себя точку (.) и следующий за ним домен верхнего уровня (Top Level Domain). Эти домены бывают двух типов: Generic Top Level Domain (gTLD) Например: .com (коммерческие web-сайты), .net(web-сайты сетевых структур), .org (вэб- сайты организаций), .edu (web-сайты образовательных структур) Country Code Top Level Domain (ccTLD) Например: .ru (Россия), .us (США), .uk (Великобритания), .in (Индия) Данные, которые сообщают веб-серверу, как ответить на ваш запрос называются DNS записи или Zone Files. Каждая запись содержит информацию о конкретном объекте. DNS-сервер использует записи, чтобы отвечать на запросы хостов из определенной доменной зоны. Например, запись address mapping (A) отвечает за связку host name и IP-адреса, а запись reverse-lookup pointer (PTR), за связку IP-адреса и host name. Стоит отметить, что в терминологии DNS очень много различных записей, мы же приведем основные: A Record - Содержит информацию об определенном доменном имени и соответствующем IP-адресе. DNS-сервер обращается к данной записи, чтобы ответить на запрос, содержащий доменное имя. Ответом будет IP-адрес, указанный в записи. PTR Record - Связывает IP-адрес с определенным доменным именем. NS (Name Server) Record - Связывает доменное имя со списком DNS-серверов, отвечающих за данный домен. MX (Mail Exchange) Record - Связывает доменное имя со списком серверов почтового обмена для данного домена. Например, при отправке письма на адрес example@merionet.ru, данное письмо будет перенаправлено на сервер, указанный в MX записи. Типы запросов DNS В терминологии DNS существует три типа запросов: Recursive – Такие запросы можно представить так: “Какой IP-адрес у a.merionet.ru?” При получении recursive запроса, DNS-сервер выполняет следующие действия: Хост отправляет локальному DNS-серверу запрос “Какой IP-адрес у a.merionet.ru?” DNS-сервер проверяет наличие записи a.merionet.ru в локальных таблицах и не находит ее. DNS-сервер отправляет запрос IP-адреса a.merionet.ru к root-серверу Root-сервер отвечает, что надо обратиться к TLD серверу, отвечающий за домен .ru DNS-сервер, получив ответ от root-сервера, отправляет recursive запрос одному из ccTLD-серверов, отвечающих за домен .ru TLD-сервер отвечает, что нужно обратиться к серверу, отвечающему за домен merionet.ru DNS-сервер отправляет запрос IP-адреса a.merionet.ru к серверу, отвечающему за домен merionet.ru Сервер обращается к A Record и находит там соответствующий IP-адрес для a.merionet.ru Таким образом, хост получает запрашиваемую страницу по адресу a.merionet.ru Второй тип DNS-запросов – это Iterative запросы. Данные запросы передаются между DNS-серверами, когда один из них не имеет соответствующих записей. Таким образом, инициатор запроса будет контактировать с сервером, который имеет нужную запись Последний тип запросов – Inverse. Собственно из названия данного запроса понятно, что они работают по инверсному принципу, то есть при известном IP-адресе запрашивается информация о доменном имени.
img
Основной причиной серьезных атак является предоставление доступа к таким активам, которые не должен быть открыты для всех. Одной из цифровых инфраструктур, где часто встречаются проблемы с безопасностью является Kubernetes. "Облачное" программное обеспечение, развернутое на устаревших центрах обработки данных, требует от конечных пользователей и администраторов своевременного обнаружения и устранения некорректных настроек, в виде предоставление привилегий высокого уровня программам и людям, которым они вовсе не нужны. IBM Study пришла к выводу, что в 95% случаям нарушения безопасности, которые они исследовали, содействовали или были вызваны человеческими ошибками, в том числе и разработчиками программного обеспечения. Остальные же были, главным образом, из-за технической оплошности. В последующих исследованиях, касающихся нарушений безопасности, также приводились аналогичные выводы с цифровыми инструментами всех видов. В Kubernetes привилегии часто предоставляются с помощью ролевых средств управления доступом. Он может ошибочно разрешить административные разрешения для всего кластера, даже если это не требуется. Тот факт, что Kubernetes может включать крупномасштабные и автоматизированные разрешения на инфраструктуру, также создает почву для атаки на контейнеры, приложения и злоупотребления разрешениями. Проблемы также включают множество встроенных функций безопасности, но не все они включены в инструменте по умолчанию. Поскольку Kubernetes способствует быстрому развертыванию и разработке приложений, управление может помешать быстрому развертыванию инфраструктуры. После окончательного развертывания приложений, делая их доступными для пользователей, неверно сделанные конфигурации безопасности увеличивают возможные риски. Стратегии безопасности для облачных инструментов Для защиты облачных средств с помощью контейнеров необходима другая стратегия, отличная от стратегии, используемой для устаревших инфраструктурных систем. С ростом внедрения облачных инструментов существуют два подхода к обеспечению безопасности, главным образом, Kubernetes-ориентированный и контейнерный. В ориентированном на контейнеры подходе к обеспечению безопасности основное внимание уделяется обеспечению безопасности среды выполнения контейнеров и образов. Для управления связью между контейнерами используются такие методы управления, как shim специально написанный интерфейс и встроенные прокси-серверы. С другой стороны, подход, ориентированный на Kubernetes, использует встроенную масштабируемость и гибкость Kubernetes. Она работает на уровнях Kubernetes и продвигает свои принудительные политики. Следовательно, вы должны позволить ему контролировать как вашу инфраструктуру, так и безопасность. Что делает встроенное средство безопасности Kubernetes? Характеристики, которые делают средство безопасности Kubernetes-ориентированным или Kubernetes-native, представляют собой сочетание того, что они выполняют и как. Во-первых, необходимо интегрировать инфраструктуру и рабочие нагрузки с API Kubernetes и оценить уязвимости. Убедитесь, что функции безопасности основаны на ресурсах Kubernetes, включая службы, развертывания, модули и пространства имен. Также необходимо использовать встроенные функции безопасности Kubernetes. Такая глубокая интеграция охватывает все аспекты среды Kubernetes, включая управление уязвимостями, управление конфигурацией, сегментацию сети, реагирование на инциденты, соответствие нормативным требованиям и обнаружение угроз. Почему инструменты, ориентированные на Kubernetes, превосходят контейнеры? Платформы безопасности, ориентированные на Kubernetes, считаются превосходными, если вы работаете с контейнерами. Причину можно сформулировать тремя способами. Во-первых, они обеспечивают лучшую защиту с помощью богатого понимания принципов работы контейнеров и самого Kubernetes. Они также используют декларативные данные для контекстуализации рисков и информирования о них. Во-вторых, платформы безопасности Kubernetes обеспечивают повышенную операционную эффективность, что позволяет быстро обнаруживать угрозы, а также оценивать риски на приоритетном уровне. Он позволяет всем членам вашей команды находиться на одной странице для устранения неполадок и более быстрой работы. В-третьих, ваш операционный риск может быть снижен с помощью встроенных средств управления Kubernetes, облегчающих масштабируемость и адаптируемость. Кроме того, между оркестратором и внешними элементами управления не может возникнуть никакого конфликта. Таким образом, собственные возможности Kubernetes в области безопасности могут лучше защитить контейнерные экосистемы. Если вашим специалистам по безопасности инфраструктуры и DevOps удается использовать весь потенциал этих инструментов, вы можете продолжать обнаруживать угрозы и останавливать их, когда у вас есть время.
img
С чего начинается Linux? LPI (Linux Professional Institute) считает, что изучение необходимо начинать с темы "Обнаружение и настройка комплектующих". Это работа с "железом", это работа с комплектующими вся аппаратная часть, то что мы видим и настраиваем. На сайте LPI (www.lpi.org) мы можем найти, что должен знать обучающийся Linux. Включение и отключение встроенного "железа" Настройка системы с помощью или без помощи внешних устройств. Разница между устройствами хранения информации Разница между устройствами, поддерживающими "Горячую замену" Выделение аппаратных ресурсов для устройств Инструменты и утилиты для просмотра списка оборудования Инструменты и утилиты для работы с USB Разбор понятий sysfs, udev, dbus. Далее. Возьмем для простоты Ubuntu 20.04 Директория /sys Содержится вся информация об подключенных устройствах. В данную директорию монтируется файловая система sysfs. В данной директории есть определенных набор основных папок: devices/ - все устройства ядра bus/ - перечень шин drivers/ - каталог драйверов block/ - каталог блочных устройств class/ - группировка устройств по классам. Навигацию по папкам осуществляем с помощью команды cd. Учитывая вложенность папок переход на уровень вверх, т.е в родительскую папку используем cd .. , где двоеточие обозначает родительский каталог. А также переход в любую папку, например, cd /sys/bus. Следующий момент, если мы зайдем в папку с устройствами, то мы можем увидеть, как ОС наша видит устройства. Неудобно. Чтобы удобно было работать с устройствами, используется udev. Он позволяет ОС предоставлять устройства в удобно используемом виде, чтобы было понятно нам. Далее папка /proc - Она находится в корне нашей ОС и содержит информацию о всех запущенных процессах. Она создается в оперативной памяти при загрузке ПК. Количество фалов зависит от конфигурации данной системы. Для работы с файлами необходимы права суперпользователя. Внесённые изменения сохраняются только до конца сеанса. В данную папку монтируется виртуальная система procfs. В ней находится информация о состоянии ядра и вообще операционной системе в целом. Вот так выглядит данная папка. Мы можем посмотреть всю информацию, которая нам известна о процессоре. Данная информация содержится в файле cpuinfo. Для вывода информации, содержащейся в файле, используем команду cat имя_файла. Результат работы команды cat cpuinfo. Есть еще интересный файл mounts. Он показывает все смонтированные файловые системы. Результат вывода будет примерно такой. Можно увидеть, когда мы просматриваем содержимое каталога командой ls , то файлы подсвечиваются белым цветом, а каталоги синим. Переходим немного глубже по дереву каталогов файловой системы cd /prox/sys в данной папке все о настройках и процессах, происходящих с нашей текущей файловой системой. В данной директории есть несколько подпапок. И зайдем в подпапку, относящуюся к файловой системе fs. Посмотрим, например file-max в данном файле информация о том сколько файлов одновременно может открыть пользователь. В последней версии число таких фалов увеличилось. До версии 20.04, число файлов было по умолчанию 204394. Можно изменить число или данные, например, с помощью команды echo 10000000000> file-max Все изменения, которые мы делаем в данной директории они сохраняются только до перезагрузки! Это надо учитывать. Еще одна основная папка в корневой директории папка /dev она в себе содержит интерфейсы работы с драйверами ядра. /dev/sd буква - жесткий диск (в системах на ядре Linux) /dev/sd буква номер раздел диска /dev/sr номер (/dev/scd номер) CD-ROM /dev/eth номер Сетевой интерфейс Ethernet /dev/wlan номер Сетевой интерфейс Wireless /dev/lp номер Принтер /dev/video номер - устройство изображений, камеры, фотоаппараты. /dev/bus/usb/001/номер устройство номер на шине USB /dev/dsp звуковой вывод Набор оборудования Команды вывода перечня устройств. Lsmod информация о модуле ядра Lspci - информация об устройствах PCI Lspcmcia - информация об устройствах PCMCIA Lsusb - информация о шине USB Lshw детальная информация о комплектующих. Команда lsmod утилита которая показывает нам модули ядра. Модуль ядра - это объект, который содержит код позволяющий расширить функционал ядра. Вот так выглядит ее вывод. По сути, если проводить аналогию с ОС Windows это драйвера. Вывод команды lshw Данная команда сканирует все устройства и выводит подробную информацию по ним и достаточно детально. Утилиты для работы с модулем ядра или утилиты управления моделями ядра. Lsmod информация о модулях ядра Modinfo - информация о конкретном модуле Rmmod - удаление модуля ядра Insmod установка модуля ядра Modprobe деликатное удаление или добавление модуля ядра Фактически эти команды используются для добавления и удаления "драйверов" устройств в linux системе. В большинстве случаев ОС самостоятельно подключит устройство, но бывает такое, что устройство не стандартное и требуется добавить модель, для того чтобы ядро ОС, корректно работало с данным устройством. Rmmod и insmod - команды грубые и не умеют работать с зависимостями, поэтому необходимо использовать Modprobe с различными ключами. Взаимодействие с CPU, основные понятия IRQ - механизм прерываний IO адреса обмен информацией между устройствами и CPU DMA обращение к ОЗУ минуя CPU Выделение ресурсов. IRQ - механизм прерываний это система которая сообщает центральному процессору о наступлении какого либо события, на которое процессор должен отреагировать. Есть определенные адреса прерываний, их можно увидеть в биосе ПК. Есть стандартные номера прерываний. Ранее была необходимость при конфликте устройств назначать в ручном режиме данные прерывания, в настоящее время с появлением технологии Plug and Play, данная потребность исчезла. IO адреса это область памяти в которой процессор считывает информацию об устройствах и туда же ее записывает. Это выделенный диапазон. Вообще она бывает в памяти и адресация по портам. DMA- технология появилась относительно недавно и позволяет устройствам обращаться к памяти минуя процессор. Существенно повышает быстродействие. Все технологии настраиваются автоматически. Устройства хранения PATA параллельный интерфейс SATA - последовательный интерфейс SCSI - стандарт передачи данных SAS замена SCSI Современные SATA, SAS нужно понимать есть устройства, поддерживающие горячую замену и устройства, не поддерживающие горячую замену. Устройства, которые можно выдернуть из ПК, безболезненно, и это не обрушит систему, причем ОС не подвиснет, не перезагрузится, это устройства поддерживающие горячую замену, например, USB. Устройство, которое не поддерживает горячую замену, например, оперативная память. Если мы ее выдернем из материнской платы, ОС однозначно обрушится. Команда blkid показывает какие устройства у нас смонтированы. Нужно отметить, что у каждого устройства есть уникальный UUID, что udev умеет читать UUID, и он монтирует в понятном виде нам.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59