По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Третья часть тут Поскольку трафик в реальном времени начал передаваться по сетям с коммутацией пакетов, QoS стал серьезной проблемой. Передача голоса и видео полагается на то, что сеть способна быстро переносить трафик между хостами (с низкой задержкой) и с небольшими колебаниями межпакетного разнесения (jitter). Дискуссии вокруг QoS фактически начались в первые дни сети с коммутацией пакетов, но достигли высшей точки примерно в то время, когда рассматривался ATM. На самом деле, одним из главных преимуществ ATM была возможность тщательно контролировать способ, которым обрабатывались пакеты, когда они передавались по сети с коммутацией пакетов. С провалом ATM на рынке, появились два направления идей о приложениях, которые требуют сильного контроля над jitter и delay: Эти приложения никогда не будут работать в сетях с коммутацией пакетов. Такого рода приложения всегда должны запускаться в отдельной сети. Это просто поиск правильного набора элементов управления QoS, чтобы позволить таким приложениям работать в сетях с коммутацией пакетов. Основное, что больше всего волновало большинство провайдеров и инженеров, была голосовая связь, и основной вопрос сводился к следующему: можно ли обеспечить приличную голосовую связь по сети, также передающей большие файлы и другой "nonreal - time" трафик? Были изобретены сложные схемы, позволяющие классифицировать и маркировать пакеты (называемые QoS-маркировкой), чтобы сетевые устройства знали, как правильно их обрабатывать. Картографические системы были разработаны для переноса этих маркировок QoS из одного типа сети в другой, и много времени и усилий было вложено в исследование механизмов массового обслуживания-порядка, в котором пакеты отправляются по интерфейсу. На рис. 1 показана примерная диаграмма одной системы QoS, и сопоставления между приложениями и маркировками QoS будет достаточно, чтобы проиллюстрировать сложность этих систем. Увеличение скорости связи оказывают двойной эффект на обсуждение QoS: Более быстрые каналы связи будут (это очевидно) нести больше данных. Поскольку любой отдельный голосовой и видеопоток становится сокращающейся частью общего использования полосы пропускания, необходимость строго сбалансировать использование полосы пропускания между различными приложениями стала менее важной. Время, необходимое для перемещения пакета из памяти в провод через микросхему, уменьшается с каждым увеличением пропускной способности. По мере того, как доступная пропускная способность увеличивалась, потребность в сложных стратегиях массового обслуживания для противодействия jitter становилась все менее значимой. Это увеличение скорости было дополнено новыми системами массового обслуживания, которые гораздо эффективнее управляют различными видами трафика, уменьшая необходимость маркировки и обработки трафика детализированным способом. Такое увеличение пропускной способности часто обеспечивалось переходом от медного волокна к стекловолокну. Оптоволокно не только обеспечивает большую полосу пропускания, но и более надежную передачу данных. Способ построения физических связей также эволюционировал, делая их более устойчивыми к поломкам и другим материальным проблемам. Вторым фактором, увеличивающим доступность полосы пропускания, стал рост Интернета. По мере того, как сети становились все более распространенными и более связанными, отказ одного канала оказывал меньшее влияние на объем доступной полосы пропускания и на потоки трафика по сети. Поскольку процессоры стали быстрее, появилась возможность разрабатывать системы, в которых отброшенные и задержанные пакеты будут иметь меньшее влияние на качество потока в реальном времени. Увеличение скорости процессора также позволило использовать очень эффективные алгоритмы сжатия, уменьшая размер каждого потока. На стороне сети более быстрые процессоры означали, что control plane могла быстрее вычислять набор loop-free путей через сеть, уменьшая как прямые, так и косвенные последствия сбоев связи и устройств. В конечном счете, хотя QoS все еще важен, его можно значительно упростить. Четырех-шести очередей часто бывает достаточно для поддержки даже самых сложных приложений. Если требуется больше, некоторые системы теперь могут либо проектировать потоки трафика через сеть, либо активно управлять очередями, чтобы сбалансировать сложность управления очередями и поддержки приложений. Централизованный Control Plane - есть ли смысл? В 1990-х годах, чтобы решить многие из предполагаемых проблем с сетями с коммутацией пакетов, таких как сложные плоскости управления и управление QoS, исследователи начали работать над концепцией, называемой активной сетью. Общая идея состояла в том, что плоскость управления для сети с коммутацией пакетов может и должна быть отделена от устройств пересылки, чтобы позволить сети взаимодействовать с приложениями, запущенными поверх нее. Базовая концепция более четкого разделения плоскостей управления и данных в сетях с коммутацией пакетов была вновь рассмотрена при формировании рабочей группы по переадресации и разделению элементов управления (ForCES) в IETF. Эта рабочая группа в основном занималась созданием интерфейса, который приложения могли бы использовать для установки пересылки информации на сетевые устройства. Рабочая группа была в конечном итоге закрыта в 2015 году, и ее стандарты никогда не применялись широко. В 2006 году исследователи начали эксперимент с плоскостями управления в сетях с коммутацией пакетов без необходимости кодирования модификаций на самих устройствах- особая проблема, поскольку большинство этих устройств продавались поставщиками как неизменяемые устройства (или black boxes). Конечным результатом стал OpenFlow, стандартный интерфейс, который позволяет приложениям устанавливать записи непосредственно в таблицу пересылки (а не в таблицу маршрутизации). Исследовательский проект был выбран в качестве основной функции несколькими поставщиками, и широкий спектр контроллеров был создан поставщиками и проектами с открытым исходным кодом. Многие инженеры считали, что технология OpenFlow позволила бы реконструировать инженерные сети за счет централизации управления. В реальности, все будет по-иному-то, что, скорее всего, произойдет в мире сетей передачи данных: лучшие части централизованной control plane будут поглощены существующими системами, а полностью централизованная модель будет выброшена на обочину, оставив на своем пути измененные представления о том, как control plane взаимодействует с приложениями и сетью в целом.
img
Привет! Начнем: в первую очередь необходимо подключить прибор ТИС-Е1 к компьютеру. Установка на ПК программного обеспечения TIS-Soft-E1 Если на ПК еще не установлено ПО TIS-Soft-E1, то это можно сделать следующим образом. Найти файл установщика программы TIS-Soft-E1 на диске с ПО, поставляемым в комплекте с прибором и запустить его. В запустившемся мастере установки в диалоговом окне несколько раз подряд нажать кнопку <Далее>, и затем кнопку <Установить>. Мастер оповестит о том, что ПО успешно установлено и предложит запустить приложение. На этом установка окончена, ПО готово к использованию. Подключение прибора к ПК Порт RS-232 прибора с помощью кабеля, входящего в комплект, необходимо подключить к свободному COM-порту компьютера. Во избежание выхода из строя COM-порта компьютера, рекомендуется, чтобы прибор ТИС-Е1 был выключен во время подключений/отключений порта RS-232. Следует иметь ввиду, что ПО TIS-Soft-E1 позволяет использовать COM-порты с номерами от 1 до 4, поэтому если подключить прибор к порту COM5, то связь с прибором установить не удастся. Подключить адаптер питания к разъему 9-15В на задней стенке прибора и включить его в сеть. Включить питание прибора тумблером на боковой панели. Перевести управление прибором в режим "УДАЛЕННОЕ". Для этого: Нажать кнопку "Меню" на приборе. Стрелками ↑ или ↓ выбрать пункт <Установки>, нажать кнопку "Ввод" В появившемся окне выбрать пункт <Режим работы>, нажать кнопку "Ввод" Выбрать пункт <управление>. Изначально режим управления установлен <МЕСТНОЕ>. Нажать кнопку >> для перевода прибора в режим <УДАЛЕННОЕ>. При этом на дисплее установится надпись "Режим управления от внешней ЭВМ", и кроме кнопок >> и <<, позволяющих перейти в режим <МЕСТНОЕ>, в этом режиме более клавиатура прибора не работает. Запустить программу TIS-Soft-E1 с помощью ярлыка на рабочем столе Или <Пуск/ Все программы/ TIS-Soft-E1/ TIS-Soft-E1 >. Внешний вид окна программы TIS-Soft-E1 представлено на рисунке. Окно программы делится на три области ОБЩЕЕ, ПРИЕМ и РЕЗУЛЬТАТЫ. Область ОБЩЕЕ при нажатии на кнопку "Передача" в верхней части программы меняется на область ПЕРЕДАЧА. Первоначально необходимо выбрать COM-порт компьютера, к которому подключен прибор. Для этого в верхней строке выбрать меню <Прибор> и выбрать из выпадающего списка нужный порт. Далее необходимо осуществить соединение программы с прибором, для чего необходимо нажать кнопку <Связь> в верхней правой части окна программы. Если программа выдала сообщение "Нет ответа от прибора", то, вероятно, существует проблема подключения прибор не включен, не переведен в режим удаленного управления, неправильно выбран com-порт компьютера. Если программа выдает сообщение об ошибке открытия порта, то вероятно данный порт в данный момент используется другой программой или выбран неправильно. Если прибор включен, подключен к ПК и COM-порт выбран правильно, то программа выдает сообщение, что будут загружены конфигурация и данные из прибора. Нажать кнопку "ОК". В течение нескольких секунд данные из прибора загрузятся в ПК. Кнопка <Связь> поменяет свое название на <Разъединить>, кнопка <Старт> станет активной. На этом подключение прибора к ПК закончено. Теперь все управление прибором осуществляется с помощью окна программы на ПК. Подключение измеряемого оборудования к прибору ТИС-Е1 На задней стенке прибора имеются гнезда: "Выход испытательного сигнала" - выход прибора: "Вход испытательного сигнала" - вход прибора: Вход внешней синхронизации: А так же выход внешней синхронизации и заземление. При проведении измерений с перерывом связи и постановкой "заворота" на удаленном конце, необходимо проделать следующее: Выход прибора ТИС-Е1 необходимо подключить на вход оборудования, выход оборудования - на вход прибора. На удаленном конце на измеряемом потоке необходимо установить шлейф. При правильном подключении прибора и при наличии "заворота" (шлейфа) на удаленном конце, в окне прибора должна отсутствовать аварийная сигнализация. Аварийные сигналы выведены в крайней левой части области "РЕЗУЛЬТАТЫ": Как правило, возникают следующие аварии: LOS отсутствие входного сигнала. Необходимо проверить соединение ВЫХОД оборудования ВХОД прибора (кабель, разъемы, контакт на кроссовом оборудовании), правильность подключения, работоспособность оборудования. AIS индикация удаленной аварии. Отсутствует входной сигнал или присутствует какая-либо другая авария на удаленном конце. LOF потеря цикловой синхронизации. PL несоответствие входного сигнала выходному. Сигнал на входе прибора не соответствует испытательному сигналу на выходе прибора. Может означать, что на удаленном конце не установлен шлейф или неправильное соединение ВЫХОД прибора ВХОД оборудования. После правильного подключения прибора к оборудованию необходимо настроить параметры измерений. Настройка параметров прибора При запуске программы открыто окно общих параметров измерений, к которым относятся: Параметры испытательного сигнала Период измерений Совместная/раздельная настройка параметров приема/передачи. Интервал записи промежуточных данных в память Вид измеряемых ошибок Параметры испытательного сигнала - установить переключатель в положение ПСП (псевдослучайная последовательность), параметры последовательности оставить по умолчанию (2^15 -. Период проведения измерений. Выбрать <Оперативное>, в следующей строке установить переключатель в положение <За>, в активировавшемся окне нажать кнопку с многоточием, в новом окне указать период измерений. Для оперативных измерений обычно достаточно 15-ти минут. Так же, при необходимости, можно проводить измерения до определенного времени, для чего нужно установить указанный выше переключатель в положение <До>, и , как и в предыдущем случае, установить время завершения измерений. Следующий переключатель позволяет настраивать параметры приема/передачи совместно или раздельно. В нашем случае, при проведении измерений с перерывом связи, по шлейфу на удаленном конце, необходимо выбрать режим <совместно> Интервал записи в память. Определяет, с каким интервалом будут записаны в память промежуточные результаты. Параметр имеет только три предопределенных значения: 1 минута, 10 минут, 1 час. При относительно малом периоде измерений (15 минут), устанавливаем параметр <1 минута>. Тип измеряемых ошибок. Прибор позволяет измерять кодовые и бинарные ошибки. Необходимо выбрать <бинарные>. При проведении измерений без перерыва связи параллельным включением прибора необходимо установить Счет ошибок <кодовые>. Если в параметрах передачи задать формирование цикла, то появляется возможность измерять <цикловые> ошибки. Далее, необходимо настроить параметры передачи. Для этого в левой верхней части окна необходимо нажать кнопку "ПЕРЕДАЧА". После этого окно программы поменяет свой вид кнопка <Передача> поменяет название на <Общее>, окно примет следующий вид: Параметры частоты сигнала <2048> и <Номинал>, установленные по умолчанию, оставляют без изменений. Ниже выбирается код, который используется в оборудовании HDB-3 или AMI. Эти данные можно узнать из технического описания оборудования. Как правило, используется код HDB-3. Далее задается формирование цикла, установкой флага <цикл>. При этом появятся параметры цикла. Если ранее, в окне общих параметров, установлен переключатель, определяющий совместное изменение параметров приема/передачи, то в соседнем окне <ПРИЕМ> параметры приема будут изменяться автоматически, и изменить их в таком режиме невозможно. В данном режиме возможно заполнение сигналом любого количества канальных интервалов, передача синусоидального сигнала по любому выбранному каналу с заданной частотой и уровнем и другие параметры. Измерения можно проводить как с формированием цикла, так и без него. Проведение измерений После того, как все параметры настроены, можно приступить к началу измерений. Для этого необходимо нажать кнопку <Сброс> в области программы "РЕЗУЛЬТАТЫ", и затем нажать кнопку <СТАРТ> в верхней правой части окна программы, на вопрос программы "Начать измерения?" нажать кнопку "ОК". На приборе загорится зеленый светодиод, свидетельствующий о том, что процесс измерений запущен. Когда измерения не производятся, на приборе горит красный светодиод. В области "РЕЗУЛЬТАТЫ" в реальном времени отображаются результаты измерений, а так же аварийные сигналы, если такие есть в наличии. В нижней части окна отображается оставшееся до конца сеанса измерений время или, если сеанс уже окончен, сообщение "измерено" и время окончания последнего сеанса измерений. После окончания измерений результаты отображаются в нижней части программы в области "РЕЗУЛЬТАТЫ". Сохранение результатов Для более подробного отображения результатов измерений (с расшифровкой по минутам) для последующего анализа, для передачи по электронной почте или для распечатки на бумажном носителе протокол измерений необходимо передать и сохранить на ПК. Для этого необходимо проделать следующие действия: В окне программы выбрать меню "файл", далее пункт "протокол" (в верхней части скриншота ниже). В открывшемся окне установить флаги ("галочки") на всех параметрах, которые должны быть отображены в протоколе. Если отметить флаг "Комментарии", то в окне появляется дополнительное пустое поле, в котором можно указать краткий комментарий, например, условия проведения измерений, или участок. Внесенный текст также будет сохранен в протоколе измерений. Нажать кнопку <Сохранить>, в раскрывшемся окне указать путь к папке, где необходимо сохранить файл, и имя файла и нажать кнопку <Сохранить> еще раз. Папка для сохранения результатов по умолчанию C:Program FilesTIS Soft E1 Нажать кнопку "Выход" в нижней части диалогового окна. Окно сохранения результатов закроется автоматически. Протоколы измерений сохраняются в файле программы "Блокнот" (расширение .txt), который может быть открыт в любом текстовом редакторе на ПК. Протокол содержит информацию о дате и времени проведения измерений, при условии, что дата и время правильно установлены в приборе. Но рекомендуется указать в имени файла принадлежность потока и дату проведения измерений. После завершения измерений, программу TIS-Soft-E1 можно закрыть как любое приложение Windows. Сам прибор можно выключить тумблером на боковой панели. Пример протокола измерений, полученного с помощью прибора ТИС-Е1 ***** П Р О Т О К О Л И З М Е Р Е Н И Й ***** Создан: 06.11.2008 10:13:36 *** Р Е З У Л Ь Т А Т Ы И З М Е Р Е Н И Я *** Ошибки: 1 Коэффициент: 5,42E-10 Джиттер: 0,03 Джиттер ВЧ: 0,00 ==== АВАРИЙНЫЕ СЕКУНДЫ ==== Нет входа: 0 Прием СИАС: 0 Потеря цикла: 0 ==== РЕЗУЛЬТАТЫ ПО G826 ==== ES: 1 SES: 0 ESR: 1,11E-03 SESR: 0,00E+00 BBER: 1,11E-06 *** ТАБЛИЦА РЕЗУЛЬТАТОВ ПО ИНТЕРВАЛАМ ИЗМЕРЕНИЯ *** Измеряемые ошибки: Бинарные Количество интервалов: 15 Начало измерения: 06.11.2008 9:53:00 Окончание измерения: 06.11.08 10:08:00 N п/п Время Ошибки Коэфф. Джит. Джит.ВЧ Аварии 1 06-09:54 0 0,00E+00 0,04 0,00 2 06-09:55 0 0,00E+00 0,04 0,00 3 06-09:56 0 0,00E+00 0,04 0,00 4 06-09:57 0 0,00E+00 0,04 0,00 5 06-09:58 0 0,00E+00 0,04 0,00 6 06-09:59 0 0,00E+00 0,04 0,00 7 06-10:00 0 0,00E+00 0,04 0,00 8 06-10:01 0 0,00E+00 0,04 0,00 9 06-10:02 0 0,00E+00 0,04 0,00 10 06-10:03 0 0,00E+00 0,04 0,00 11 06-10:04 0 0,00E+00 0,04 0,00 12 06-10:05 0 0,00E+00 0,05 0,00 13 06-10:06 1 8,14E-09 0,04 0,00 14 06-10:07 0 0,00E+00 0,04 0,00 15 06-10:08 0 0,00E+00 0,05 0,00
img
Управление компьютерными сетями - дело непростое. В последние годы всеобщая компьютеризация вызвала огромный скачок в расширении компьютерных сетей. Это добавило работы системному администратору. Ведь если ранее были распространены небольшие сети, то добавление и настройка новых устройств, либо обновление ПО на уже находящихся требовали ручной настройки операционной системы, а то и установки на каждом из них. Это требовало времени и нервов администратора. Сейчас же, когда сети насчитывают сотни, а то и тысячи машин, ручная настройка требует либо участия многих специалистов (а это порождает проблему плохой совместимости согласно человеческому фактору, каждый админ мыслит по-своему), либо очень долгого времени, если этим будет заниматься один специалист. Такая проблема, с учетом технического прогресса, породила решение об автоматизации. На сегодняшний день существует специализированное программное обеспечение, которое позволяет присоединиться к удаленным машинам, и в автоматическом режиме произвести настройки операционной системы для корректной работы сети. Однако, как быть, если на нужных компьютерах в рамках одной сети установлены разные операционные системы? Ведь сейчас компьютеры под Linux, FreeBSD и Windows, объединенные в одну сеть - далеко не редкость. Поэтому одним из требований к управляющей программе стала кроссплатформенность. В этом случае одним из самых эффективных решений является такая программа, как Puppet. Puppet это один из самых нужных инструментов сетевого администратора. Это приложение создано специально для управления конфигурацией операционных систем внутри одной сети. Оно имеет клиент-серверную архитектуру, то есть администратор, находящийся за сервером, может отправлять данные конфигурации на периферийные машины, на которых установлена клиентская часть. На этих рабочих станциях система в автоматическом режиме сконфигурирует себя в соответствии с присланными с сервера настройками. Важным моментом является кроссплатформенность. Простота настройки и управления самыми распространенными операционными системами делает Puppet одним из самых актуальных решений по управлению компьютерными сетями на сегодняшний день. Как же работает Puppet? Разберем подробнее. Для начала, на сервер нужно установить серверную часть программы. Поскольку приложение написано на Ruby, на серверной рабочей станции обязательно должна быть установлена нужная программная среда. Серверная часть программы создана для хранения манифестов так в программной терминологии Puppet называются файлы с настройками конфигурации. В процессе работы сервер принимает обращения с клиентских машин и автоматически отсылает им обновленные файлы конфигурирования ОС для работы в сети. На клиентских компьютерах также должно быть установлено программное обеспечение Puppet, уже в виде клиентской части. Как правило, данные установочные пакеты включаются в саму операционную систему, что позволяет быстро развертывать компьютерную сеть, однако, в случае их отсутствия, придется скачивать необходимую сборку с сайта разработчика. Дополнительное удобство данного решения в том, что один администратор с помощью сервера может осуществить настройку и управление сотен и тысяч машин, объединенных в сеть. Если возникнут какие-то проблемы, то отклик с мест позволит админу быстро поправить код и устранить их. Хотя в данном случае возрастают требования к внимательности админа - одна неверно написанная строка кода конфигурации может привести к неполадкам по всей сети. Хотя, если разобраться, в данном случае можно запустить работающий манифест предыдущей сборки и восстановить все достаточно оперативно.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59