По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
База данных временных рядов, она же Time Series Database (TSDB), оптимизирована для меток времени или данных временных рядов. Данные временных рядов - это средние измерения или события, которые прослежены, собраны, или объединены в течение определенного времени. Это могут быть данные, собранные из контрольных сигналов датчиков движения, метрики JVM из java-приложений, данные рыночной торговли, сетевые данные, ответы API, время безотказной работы процесса и т.д. Базы данных временных рядов полностью настраиваются с данными временных меток, которые индексируются и эффективно записываются таким образом, что можно вставить данные временных рядов. Эти данные временных рядов можно запрашивать гораздо быстрее, чем из реляционной базы данных или базы данных NoSQL. В последнее время она приобрела большую популярность. А почему нет? Это замечательный инструмент для мониторинга бизнеса и ИТ-операций. Хорошая новость в том, что есть множество вариантов выбора, и большинство из них - с открытым исходным кодом. 1. InfluxDB InfluxDB является одной из самых популярных баз данных временных рядов среди DevOps, которая написана в Go. InfluxDB была разработана с самого начала, с целью обеспечить высокомасштабируемый механизм приема и хранения данных. Он очень эффективен при сборе, хранении, запросе, визуализации и выполнении действий с потоками данных временных рядов, событий и метрик в реальном времени. Она предоставляет политики понижающей дискретизации и хранения данных для поддержания высокой ценности, высокой точности данных в памяти и более низкой ценности данных на диске. Он построен на основе "облачной" технологии для обеспечения масштабируемости в нескольких топологиях развертывания, включая локальную облачную среду и гибридные среды. InfluxDB - это решение с открытым исходным кодом и готовое для развертывания на предприятии. Он использует InfluxQL, который очень похож на язык SQL, для взаимодействия с данными. Последняя версия содержит агенты, панели мониторинга, запросы и задачи в наборе инструментов. Это универсальный инструмент для панели мониторинга, визуализации и оповещения. Особенности Высокая производительность для данных временных рядов с высоким уровнем приема и запросов в реальном времени InfluxQL для взаимодействия с данными, которые схож с языком запросов SQL. Основной компонент стека TICK (Telegraf, InfluxDB, Chronograf и Kapacitor) Поддержка плагинов для таких протоколов, как collectd, Graphite, OpenTSDB для приема данных Может обрабатывать миллионы точек данных всего за 1 секунду Политики хранения для автоматического удаления устаревших данных Так как это открытый исходный код, вы можете загрузить и поднять его на своем сервере. Тем не менее, они предлагают InfluxDB Cloud на AWS, Azure и GCP. 2. Prometheus Prometheus - это решение для мониторинга с открытым исходным кодом, используемое для анализа данных метрик и отправки необходимых предупреждений. Он имеет локальную базу данных временных рядов на диске, которая хранит данные в пользовательском формате на диске. Модель данных Prometheus многомерна на основе временных рядов; он сохраняет все данные в виде потоков значений с временной меткой. Это очень полезно при работе с полностью числовым временным рядом. Сбор данных о микросервисах и их запрос - одна из сильных сторон Prometheus. Он плотно интегрируется с Grafana для визуализации. Особенности Имеет многомерную модель, в которой использовались пары "имя метрики" и "ключ-значение" (метки) PromQL используется для запроса данных временных рядов для создания таблиц, оповещений и графиков Adhoc Использует режим HTTP pull для сбора данных временных рядов Использует промежуточный шлюз для передачи временных рядов У Prometheus есть сотни экспортеров для экспорта данных из Windows, Linux, Java, базы данных, API, веб-сайта, серверного оборудования, PHP, обмена сообщениями и т.д. 3. TimescaleDB TimesterDB - реляционная база данных с открытым исходным кодом, которая делает SQL масштабируемым для данных временных рядов. Эта база данных построена на PostgreSQL. Он предлагает два продукта - первый вариант - это бесплатное издание, которое вы можете установить на свой сервер. Второй вариант - TimesterDB Cloud, где вы получаете полностью размещенную и управляемую инфраструктуру в облаке для вашего развертывания. Он может использоваться для мониторинга DevOps, понимания показателей приложений, отслеживания данных с устройств Интернета вещей, понимания финансовых данных и т.д. Можно измерять журналы, события Kubernetes, метрики Prometheus и даже пользовательские метрики. Владельцы продуктов могут использовать его для понимания производительности продукта с течением времени, что помогает принимать стратегические решения для роста. Особенности Выполнение запросов 10-100X быстрее, чем PostgreSQL, MongoDB Возможность горизонтального масштабирования до петабайт и записи миллионов точек данных в секунду Очень похож на PostgreSQL, что облегчает работу с ним разработчиков и администраторов. Сочетание функций реляционных баз данных и баз данных временных рядов для создания мощных приложений. Встроенные алгоритмы и функции производительности для защиты от больших затрат. 4. Graphite Graphite - это универсальное решение для хранения и эффективной визуализации данных в реальном времени. Графит может выполнять две функции: хранить данные временных рядов и визуализировать графики по требованию. Но она не собирает данные для вас; для этого можно использовать такие инструменты, как collectd, Ganglia, Sensu, telegraf и т. д. Он имеет три компонента - Carbon, Whisper и Graphite-Web. Carbon получает данные временных рядов, агрегирует их и сохраняет на диске. Whisper - это хранилище базы данных временных рядов, в котором хранятся данные. Graphite-Web - это интерфейс для создания панелей мониторинга и визуализации данных. Особенности Graphite: Формат метрик, в котором передаются данные, прост. Комплексный API для визуализации данных и создания диаграмм, панелей мониторинга, графиков Предоставляет богатый набор статистических библиотек и функций преобразования Связывает несколько функций визуализации для создания целевого запроса. 5. QuestDB QuestDB - это реляционная база данных, ориентированная на столбцы, которая может выполнять анализ данных временных рядов в реальном времени. Он работает с SQL и некоторыми расширениями для создания реляционной модели для данных временных рядов. QuestDB был создан с нуля и не имеет зависимостей, повышающих его производительность. QuestDB поддерживает реляционные соединения и соединения временных рядов, что помогает сопоставлять данные. Самый простой способ начать работу с QuestDB - развернуть его внутри контейнера Docker. Функции QuestDB: Интерактивная консоль для импорта данных с помощью перетаскивания и запроса Поддерживается работа как на облачных технологиях (AWS, Azure, GCP), так и локально. Поддерживает такие корпоративные возможности, как работа с Active Directory, обеспечение высокой доступности, корпоративная безопасность, кластеризация Предоставляет информацию в режиме реального времени с использованием оперативной и прогнозируемой аналитики 6. AWS Timestream Как AWS может отсутствовать в списке? AWS Timestream - это служба базы данных временных рядов без сервера, которая является быстрой и масштабируемой. Он используется главным образом для приложений Интернета вещей, чтобы хранить триллионы событий в день и в 1000 раз быстрее при 1/10 стоимости реляционных баз данных. С помощью специализированного механизма запросов можно одновременно запрашивать последние данные и архивные сохраненные данные. Она предоставляет множество встроенных функций для анализа данных временных рядов для поиска полезной информации. Функции Amazon Timestream: Нет серверов для управления или экземпляров для выделения; все обрабатывается автоматически. Экономичный, платите только за то, что вы принимаете, храните и запрашиваете. Способен ежедневно принимать триллионы событий без снижения производительности Встроенная аналитика со стандартными функциями SQL, интерполяции и сглаживания для определения тенденций, шаблонов и аномалий Все данные шифруются с помощью системы управления ключами AWS (KMS) с ключами управления клиента (CMK) 7. OpenTSDB OpenTSDB - масштабируемая база данных временных рядов, написанная поверх HBase. Он способен хранить триллионы точек данных при миллионах операций записи в секунду. Данные в OpenTSDB можно хранить вечно с его исходной меткой времени и точным значением, чтобы не потерять данные. Имеет демон временных рядов (TSD) и утилиты командной строки. Демон временных рядов отвечает за хранение данных в HBase или их извлечение из нее. С TSD можно общаться с помощью HTTP API, telnet или простого встроенного графического интерфейса. Для сбора данных из различных источников в OpenTSDB нужны такие инструменты, как flume, collectd, vacuumetrix и т.д. Функции OpenTSBD: Может агрегировать, фильтровать, понижать метрики на огромной скорости Хранение и запись данных с точностью до миллисекунды Работает на Hadoop и HBase и легко масштабируется, добавляя узлы в кластер Использование графического интерфейса для создания графиков Заключение Поскольку в наши дни используются все больше и больше IoT или умных устройств, на веб-сайтах с миллионами событий в день в реальном времени генерируется огромный трафик, увеличивается торговля на рынке, что и привело к созданию база данных временных рядов! Базы данных временных рядов являются обязательным элементом производственного стека для мониторинга. Большая часть вышеперечисленной базы данных временных рядов доступна для бесплатного использования, поэтому получите облачную виртуальную машину и попробуйте посмотреть, что подойдет именно вам.
img
Мессенджеры с каждым днем все больше и больше интегрируются в нашу жизнь. Это невольно наводит на мысль о «бесшовной» интеграции мгновенных сообщений и бизнес инструментов. Размышляя на этот счет, под наш исследовательский порыв попал популярный в России мессенджер Telegram и CRM Битрикс24. Нам захотелось присылать информацию о созданном лиде в Битриксе в групповой чат Telegram. Мы написали небольшой скрипт на .php и адаптировали его на Linux – машине. Что из этого получилось, спешим рассказать :) Попробовать Битрикс24 Бот в Телеграме Итак, первым делом создаем бота в Телеграме. В нашей базе уже есть пошаговый материал по созданию бота, поэтому, нажмите на кнопку ниже и пройдите по ссылке. Выполните все шаги, которые указаны в пункте «Создание бота в Telegram» - это займет примерно 5 минут. Как сделаете, переходим к следующему пункту. Создание бота Скрипт обработки Все ли получилось на этапе ранее? У вас должен быть токен вида 331754110:AAHkMNalOz5I_Schh2kvj7ONhRcE8HuKV-c и ID (идентификатор) группового чата. Если все на месте, то вашему вниманию предлагается сам скрипт (комментарии по ходу скрипта после двойного слеша //): <?php $token = "Ваш_токен"; // тут вводим ваш токен; $chat_id = "ID_чата"; // указываем идентификатор группового чата $lead_name=$_GET['name']; //получает методом GET название лида, ответственного, источник и его идентификатор; $lead_respons=$_GET['respons']; $lead_source=$_GET['source']; $lead_link=$_GET['link']; $lead_link1 = "https://ваш_домен_битрикс.bitrix24.ru/crm/lead/show/$lead_link/"; // данную конструкцию мы используем для того, чтобы корректно сформировать и отправить ссылку на лида в Telegram; #Оправляем в телеграм $hello = "<b>Здравствуйте, коллеги!</b>"; // формируем элементы массива (сообщения), который будем отправлять в сторону Telegram – API; $hello_1 = ""; $message = "В CRM Битрикс24 добавлен новый лид - "; $repons = "Ответственный - "; $src= "Источник - "; $link = "Ссылка - "; $arr = array( // формируем сам массив; $hello => $hello_1, $message => $lead_name, $repons => $lead_respons, $src => $lead_source, $link => $lead_link1, ); foreach($arr as $key => $value) { if ($key == "Ссылка - ") { $txt .= "".$key." ".$value."%0A";} else { $txt .= "".$key." ".$value."%0A"; }}; fopen("https://api.telegram.org/bot{$token}/sendMessage?chat_id={$chat_id}&parse_mode=html&text={$txt}","r"); // отправляем данные в сторону API Телеграма; Скачать скрипт После загрузки скрипта по ссылке, смените его расширение на .php Подставляем свои данные, сохраняем скрипт как bitrixtelegram.php и закидываем его в WEB - директорию вашего сервера (сервера в вашей сети). На нашем сервере мы используем web – сервер Apache на базе CentOS – наша директория /var/www/html/. Важно! Скрипт должен быть доступен по web из внешней сети (Битрикс24 будет обращаться к нему из бизнес – процесса). Мы рекомендуем использовать https, засекьюрить директорию, внутри которой будет находиться скрипт (например, дать ей имя v2I7TD9w3zo9QR7vg6ApNwDVvJOj9XbO61OJKdIyxI6d0. Тем самым, полный путь до директории будет /var/www/html/v2I7TD9w3zo9QR7vg6ApNwDVvJOj9XbO61OJKdIyxI6d0). Помимо этого, рекомендуем ограничить подключение к этой директории фильтрацией по IP (на уровне web – сервера и фаервола/маршрутизатора на уровне L3). После этого, в консоли сервера, в случае Linux, даем команды (путь к файлу скрипта у вас может отличаться): chmod 755 /var/www/html/v2I7TD9w3zo9QR7vg6ApNwDVvJOj9XbO61OJKdIyxI6d0/bitrixtelegram.php dos2unix /var/www/html/v2I7TD9w3zo9QR7vg6ApNwDVvJOj9XbO61OJKdIyxI6d0/bitrixtelegram.php Адаптация в бизнес – процесс в Битрикс24 Да – да, мы будем использовать вебхуки (Webhook). Это отличное средство, которое позволяет внедрять кастомные сценарии в обработку любой сущности в рамках Битрикс24. По факту, Битрикс просто будет кидать GET - запрос. Переходим к настройке. Открываем CRM → Настройки → Автоматизация → Бизнес - процессы → Лид → Добавить шаблон: Даем имя шаблону и указываем параметры запуска – «При добавлении». Внутри самого бизнес процесса, из правой палитры инструментов перетаскиваем элемент Webhook: В настройка вебхука, в поле в хендлер копируем следующую конструкцию: https://telegram.merionet.ru/ v2I7TD9w3zo9QR7vg6ApNwDVvJOj9XbO61OJKdIyxI6d0/ bitrixtelegram.php?name={=Document:TITLE}&respons={=Document:ASSIGNED_BY_PRINTABLE}&source={=Document:SOURCE_ID}&link={=Document:ID} Где: https://telegram.merionet.ru - хостовая часть, на которой расположился наш скрипт; v2I7TD9w3zo9QR7vg6ApNwDVvJOj9XbO61OJKdIyxI6d0 - директория в корне web – сервера, в которой лежит скрипт; bitrixtelegram.php - сам скрипт; ?name={=Document:TITLE}&respons={=Document:ASSIGNED_BY_PRINTABLE}&source={=Document:SOURCE_ID}&link={=Document:ID} - параметры, которые мы будем передавать в скрипт, а именно – имя лида, источник, ответственный и ID - лида; Проверяем :) Вручную добавляем лид в CRM: И вот что ждет нас в Telegram:
img
Третья часть тут Поскольку трафик в реальном времени начал передаваться по сетям с коммутацией пакетов, QoS стал серьезной проблемой. Передача голоса и видео полагается на то, что сеть способна быстро переносить трафик между хостами (с низкой задержкой) и с небольшими колебаниями межпакетного разнесения (jitter). Дискуссии вокруг QoS фактически начались в первые дни сети с коммутацией пакетов, но достигли высшей точки примерно в то время, когда рассматривался ATM. На самом деле, одним из главных преимуществ ATM была возможность тщательно контролировать способ, которым обрабатывались пакеты, когда они передавались по сети с коммутацией пакетов. С провалом ATM на рынке, появились два направления идей о приложениях, которые требуют сильного контроля над jitter и delay: Эти приложения никогда не будут работать в сетях с коммутацией пакетов. Такого рода приложения всегда должны запускаться в отдельной сети. Это просто поиск правильного набора элементов управления QoS, чтобы позволить таким приложениям работать в сетях с коммутацией пакетов. Основное, что больше всего волновало большинство провайдеров и инженеров, была голосовая связь, и основной вопрос сводился к следующему: можно ли обеспечить приличную голосовую связь по сети, также передающей большие файлы и другой "nonreal - time" трафик? Были изобретены сложные схемы, позволяющие классифицировать и маркировать пакеты (называемые QoS-маркировкой), чтобы сетевые устройства знали, как правильно их обрабатывать. Картографические системы были разработаны для переноса этих маркировок QoS из одного типа сети в другой, и много времени и усилий было вложено в исследование механизмов массового обслуживания-порядка, в котором пакеты отправляются по интерфейсу. На рис. 1 показана примерная диаграмма одной системы QoS, и сопоставления между приложениями и маркировками QoS будет достаточно, чтобы проиллюстрировать сложность этих систем. Увеличение скорости связи оказывают двойной эффект на обсуждение QoS: Более быстрые каналы связи будут (это очевидно) нести больше данных. Поскольку любой отдельный голосовой и видеопоток становится сокращающейся частью общего использования полосы пропускания, необходимость строго сбалансировать использование полосы пропускания между различными приложениями стала менее важной. Время, необходимое для перемещения пакета из памяти в провод через микросхему, уменьшается с каждым увеличением пропускной способности. По мере того, как доступная пропускная способность увеличивалась, потребность в сложных стратегиях массового обслуживания для противодействия jitter становилась все менее значимой. Это увеличение скорости было дополнено новыми системами массового обслуживания, которые гораздо эффективнее управляют различными видами трафика, уменьшая необходимость маркировки и обработки трафика детализированным способом. Такое увеличение пропускной способности часто обеспечивалось переходом от медного волокна к стекловолокну. Оптоволокно не только обеспечивает большую полосу пропускания, но и более надежную передачу данных. Способ построения физических связей также эволюционировал, делая их более устойчивыми к поломкам и другим материальным проблемам. Вторым фактором, увеличивающим доступность полосы пропускания, стал рост Интернета. По мере того, как сети становились все более распространенными и более связанными, отказ одного канала оказывал меньшее влияние на объем доступной полосы пропускания и на потоки трафика по сети. Поскольку процессоры стали быстрее, появилась возможность разрабатывать системы, в которых отброшенные и задержанные пакеты будут иметь меньшее влияние на качество потока в реальном времени. Увеличение скорости процессора также позволило использовать очень эффективные алгоритмы сжатия, уменьшая размер каждого потока. На стороне сети более быстрые процессоры означали, что control plane могла быстрее вычислять набор loop-free путей через сеть, уменьшая как прямые, так и косвенные последствия сбоев связи и устройств. В конечном счете, хотя QoS все еще важен, его можно значительно упростить. Четырех-шести очередей часто бывает достаточно для поддержки даже самых сложных приложений. Если требуется больше, некоторые системы теперь могут либо проектировать потоки трафика через сеть, либо активно управлять очередями, чтобы сбалансировать сложность управления очередями и поддержки приложений. Централизованный Control Plane - есть ли смысл? В 1990-х годах, чтобы решить многие из предполагаемых проблем с сетями с коммутацией пакетов, таких как сложные плоскости управления и управление QoS, исследователи начали работать над концепцией, называемой активной сетью. Общая идея состояла в том, что плоскость управления для сети с коммутацией пакетов может и должна быть отделена от устройств пересылки, чтобы позволить сети взаимодействовать с приложениями, запущенными поверх нее. Базовая концепция более четкого разделения плоскостей управления и данных в сетях с коммутацией пакетов была вновь рассмотрена при формировании рабочей группы по переадресации и разделению элементов управления (ForCES) в IETF. Эта рабочая группа в основном занималась созданием интерфейса, который приложения могли бы использовать для установки пересылки информации на сетевые устройства. Рабочая группа была в конечном итоге закрыта в 2015 году, и ее стандарты никогда не применялись широко. В 2006 году исследователи начали эксперимент с плоскостями управления в сетях с коммутацией пакетов без необходимости кодирования модификаций на самих устройствах- особая проблема, поскольку большинство этих устройств продавались поставщиками как неизменяемые устройства (или black boxes). Конечным результатом стал OpenFlow, стандартный интерфейс, который позволяет приложениям устанавливать записи непосредственно в таблицу пересылки (а не в таблицу маршрутизации). Исследовательский проект был выбран в качестве основной функции несколькими поставщиками, и широкий спектр контроллеров был создан поставщиками и проектами с открытым исходным кодом. Многие инженеры считали, что технология OpenFlow позволила бы реконструировать инженерные сети за счет централизации управления. В реальности, все будет по-иному-то, что, скорее всего, произойдет в мире сетей передачи данных: лучшие части централизованной control plane будут поглощены существующими системами, а полностью централизованная модель будет выброшена на обочину, оставив на своем пути измененные представления о том, как control plane взаимодействует с приложениями и сетью в целом.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59