По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Если вы начинающий веб-разработчик, возможно вы уже знаете, как работает всемирная сеть, по крайней мере, на базовом уровне. Но когда начинаете кому-то объяснять принцип работы веб-сайта, то терпите неудачу. Что такое IP-адрес? Как работает модель «клиент-сервер» на самом деле? В наши дни есть достаточно мощные фреймворки, которые можно использовать в своих проектах. Настолько мощные, что начинающие разработчики легко могут запутаться в принципах работы веб. Базовый веб-поиск Начнем с того места, где мы все были раньше: введите «www.github.com» в адресную строку браузера и просмотрите загрузку страницы. С первого взгляда может показаться, что тут происходит какая-то магия. Но давайте заглянем глубже. Определение частей web Из-за обилия жаргонных слов, понимание работы интернета поначалу пугает. Но к сожалению, для дальнейшего погружения в тему, придется разобраться с ними. Клиент: Приложение, например, Chrome или Firefox, которое запущено на компьютере и подключено к Интернету. Его основная роль состоит в том, чтобы принимать пользовательские команды и преобразовывать их в запросы к другому компьютеру, называемому веб-сервером. Хотя мы обычно используем браузер для доступа к Интернету, вы можете считать весь ваш компьютер «клиентом» модели клиент-сервер. Каждый клиентский компьютер имеет уникальный адрес, называемый IP-адресом, который другие компьютеры могут использовать для идентификации. Сервер: Компьютер, который подключен к Интернету и также имеет IP-адрес. Сервер ожидает запросов от других машин (например, клиента) и отвечает на них. В отличие от вашего компьютера (т.е. клиента), который также имеет IP-адрес, на сервере установлено и работает специальное серверное программное обеспечение, которое подсказывает ему, как реагировать на входящие запросы от вашего браузера. Основной функцией веб-сервера является хранение, обработка и доставка веб-страниц клиентам. Существует множество типов серверов, включая веб-серверы, серверы баз данных, файловые серверы, серверы приложений и многое другое. Подробнее про сервера можно прочитать тут IP-адрес: Internet Protocol Address. Числовой идентификатор устройства (компьютера, сервера, принтера, маршрутизатора и т.д.) в сети TCP/IP. Каждый компьютер в Интернете имеет IP-адрес, который он использует для идентификации и связи с другими компьютерами. IP-адреса имеют четыре набора чисел, разделенных десятичными точками (например, 244.155.65.2). Это называется «логический адрес». Для определения местоположения устройства в сети логический IP-адрес преобразуется в физический адрес программным обеспечением протокола TCP/IP. Этот физический адрес (т.е. MAC-адрес) встроен в оборудование. Подробнее про IP-адрес можно прочитать тут Интернет-провайдер: Интернет-провайдер. Интернет-провайдер - посредник между клиентом и серверами. Для типичного домовладельца ИП обычно является «кабельной компанией». Когда браузер получает от вас запрос на переход к www.github.com, он не знает, где искать www.github.com. Это задание поставщика услуг Интернета - выполнить поиск DNS (системы доменных имен), чтобы спросить, на какой IP-адрес настроен сайт, который вы пытаетесь посетить. DNS: система доменных имен. Распределенная база данных, которая хранит соответствие доменных имен компьютеров и их IP-адресов в Интернете. Не беспокойтесь о том, как сейчас работает «распределенная база данных»: просто знайте, что DNS существует, чтобы пользователи могли вводить www.github.com вместо IP-адреса. Подробнее про DNS можно прочитать тут Имя домена: используется для идентификации одного или нескольких IP-адресов. Пользователи используют доменное имя (например, www.github.com) для доступа к веб-сайту в Интернете. При вводе имени домена в обозреватель DNS использует его для поиска соответствующего IP-адреса данного веб-сайта. TCP/IP: Наиболее широко используется протокол связи. «Протокол» - это просто стандартный набор правил для чего-либо. TCP/IP используется в качестве стандарта для передачи данных по сетям. Подробнее про TCP/IP можно прочитать тут Номер порта: 16-разрядное целое число, которое идентифицирует определенный порт на сервере и всегда связано с IP-адресом. Он служит способом идентификации конкретного процесса на сервере, на который могут пересылаться сетевые запросы. Хост: Компьютер, подключенный к сети - это может быть клиент, сервер или любой другой тип устройства. Каждый хост имеет уникальный IP-адрес. Для веб-сайта, как www.google.com, хост может быть веб-сервером, который обслуживает страницы для веб-сайта. Часто между хостом и сервером происходит какая-то путаница, но заметьте, что это две разные вещи. Серверы - это тип хоста - это конкретная машина. С другой стороны, хост может ссылаться на всю организацию, которая предоставляет службу хостинга для обслуживания нескольких веб-серверов. В этом смысле можно запустить сервер с хоста. HTTP: протокол передачи гипертекста. Протокол, используемый веб-браузерами и веб-серверами для взаимодействия друг с другом через Интернет. URL: URL-адреса идентифицируют конкретный веб-ресурс. Простой пример https://github.com/someone. URL указывает протокол («https»), имя хоста (github.com) и имя файла (чья-то страница профиля). Пользователь может получить веб-ресурс, идентифицированный по этому URL-адресу, через HTTP от сетевого хоста, доменное имя которого github.com. Подробнее про URL можно прочитать тут Переход от кода к веб-странице Теперь у нас есть необходимая база, чтобы разобраться, что происходит за кулисами, когда мы вводим в строку поиска адрес Github: 1) Введите URL-адрес в браузере 2) Браузер анализирует информацию, содержащуюся в URL. Сюда входят протокол («https»), доменное имя («github.com») и ресурс («/»). В этом случае после «.com» нет ничего, что указывало бы на конкретный ресурс, поэтому браузер знает, как получить только главную (индексную) страницу. 3) Браузер связывается с поставщиком услуг Интернета, чтобы выполнить DNS-поиск IP-адреса для веб-сервера, на котором размещен веб-сервер www.github.com. Служба DNS сначала свяжется с корневым сервером имен, который просматривает https://www.github.com и отвечает IP-адресом сервера имен для домена верхнего уровня .com. Получив этот адрес служба DNS выполняет еще один запрос на сервер имен, который отвечает за домен .com и запрашивает адрес https://www.github.com. 4) Получив IP-адрес сервера назначения, Интернет-провайдер отправляет его в веб-браузер. 5) Ваш браузер берет IP-адрес и заданный номер порта из URL (протокол HTTP по умолчанию - порт 80, а HTTPS - порт 443) и открывает TCP-сокет. На этом этапе связь между веб-браузером и веб-сервер наконец-то установлена. 6) Ваш веб-браузер отправляет HTTP-запрос на веб-сервер главной HTML-страницы www.github.com. 7) Веб-сервер получает запрос и ищет эту HTML-страницу. Если страница существует, веб-сервер подготавливает ответ и отправляет его обратно в браузер. Если сервер не может найти запрошенную страницу, он отправляет сообщение об ошибке HTTP 404 (тот самый Error 404 Not Found), которое означает «Страница не найдена». 8) Ваш веб-браузер берет HTML-страницу, которую он получает, а затем анализирует ее, делая полный обзор, чтобы найти другие ресурсы, которые перечислены в ней: это адреса изображений, CSS файлов, JavaScript файлов и т.д. 9) Для каждого перечисленного ресурса браузер повторяет весь указанный выше процесс, делая дополнительные HTTP-запросы на сервер для каждого ресурса. 10) После того, как браузер закончит загрузку всех других ресурсов, перечисленных на странице HTML, страница будет загружена в окно браузера и соединение будет закрыто. Пересечение Интернет-пропасти Стоит отметить, как информация передается при запросе информации. Когда вы делаете запрос, эта информация разбивается на множество крошечных порций, называемых пакетами. Каждый пакет маркируется заголовком TCP, который включает в себя номера портов источника и назначения, и заголовком IP, который включает в себя IP-адреса источника и назначения. Затем пакет передается через сеть Ethernet, WiFi или сотовую сеть. Пакет может перемещаться по любому маршруту и проходить столько транзитных участков, сколько необходимо для того, чтобы добраться до конечного пункта назначения. И пакеты передаются отнюдь не в том, порядке, в котором они сформировались. Например, первый пакет может прийти третьим, а последний первым. Нам на самом деле все равно, как пакеты туда попадут - важно только то, что они доберутся до места назначения в целости и сохранности! Как только пакеты достигают места назначения, они снова собираются и доставляются как единое целое. Так как же все пакеты знают, как добраться до места назначения без потери? Ответ: TCP/IP. TCP/IP - это двухкомпонентная система, функционирующая как фундаментальная «система управления» Интернета. IP означает Интернет-протокол; его задачей является отправка и маршрутизация пакетов на другие компьютеры с использованием заголовков IP (т.е. IP-адресов) каждого пакета. Вторая часть, протокол управления передачей (TCP), отвечает за разбиение сообщения или файла на меньшие пакеты, маршрутизацию пакетов к соответствующему приложению на целевом компьютере с использованием заголовков TCP, повторную отправку пакетов, если они теряются в пути, и повторную сборку пакетов в правильном порядке, как только они достигают другого конца. Получение финальной картины Но подождите - работа еще не закончена! Теперь, когда ваш браузер имеет ресурсы, составляющие веб-сайт (HTML, CSS, JavaScript, изображения и т.д.), он должен пройти несколько шагов, чтобы представить вам ресурсы в виде читабельной для нас с вами веб-страницы. В браузере имеется механизм визуализации, отвечающий за отображение содержимого. Обработчик рендеринга получает содержимое ресурсов в небольших фрагментах. Затем существует алгоритм синтаксического анализа HTML, который сообщает браузеру, как анализировать ресурсы. После анализа создается древовидная структура элементов DOM. DOM (Document Object Model) обозначает объектную модель документа и является условным обозначением для представления объектов, расположенных в HTML-документе. Этими объектами - или «узлами» - каждого документа можно управлять с помощью таких языков сценариев, как JavaScript. После построения дерева DOM анализируются таблицы стилей, чтобы понять, как определить стиль каждого узла. Используя эту информацию, браузер проходит вниз по узлам DOM и вычисляет стиль CSS, положение, координаты и т.д. для каждого узла. После того как в браузере появятся узлы DOM и их стили, он наконец готов соответствующим образом нарисовать страницу на экране. Результат – все, что вы когда-либо просматривали в интернете. Итог Интернет - это комплексная вещь, но вы только что закончили сложную часть! О структуре веб-приложений мы расскажем в нашей следующей статье.
img
Десятая часть тут. Вы входите в комнату и кричите: «Игорь!» Ваш коллега Игорь оборачивается и начинает разговор о будущем IT-индустрии. Эта способность использовать один носитель (воздух, по которому движется ваш голос) для обращения к одному человеку, даже если многие другие люди используют этот же носитель для других разговоров в одно и то же время, в сетевой инженерии называется мультиплексированием. Более формально: Мультиплексирование используется, чтобы позволить нескольким объектам, подключенным к сети, обмениваться данными через общую сеть. Почему здесь используется слово объекты, а не хосты? Возвращаясь к примеру «разговор с Игорем", представьте себе, что единственный способ общения с Игорем — это общение с его ребенком-подростком, который только пишет (никогда не говорит). На самом деле Игорь-член семьи из нескольких сотен или нескольких тысяч человек, и все коммуникации для всей этой семьи должны проходить через этого одного подростка, и каждый человек в семье имеет несколько разговоров, идущих одновременно, иногда на разные темы с одним и тем же человеком. Бедный подросток должен писать очень быстро, и держать много информации в голове, например: "Игорь имеет четыре разговора с Леной", и должен держать информацию в каждом разговоре совершенно отдельно друг от друга. Это ближе к тому, как на самом деле работает сетевое мультиплексирование- рассмотрим: К одной сети могут быть подключены миллионы (или миллиарды) хостов, и все они используют одну и ту же физическую сеть для связи друг с другом. Каждый из этих хостов на самом деле содержит много приложений, возможно, несколько сотен, каждое из которых может связываться с любым из сотен приложений на любом другом хосте, подключенном к сети. Каждое из этих приложений может фактически иметь несколько разговоров с любым другим приложением, запущенным на любом другом хосте в сети. Если это начинает казаться сложным, то это потому, что так оно и есть. Вопрос, на который должен ответить эта лекция, заключается в следующем: Как эффективно мультиплексировать хосты через компьютерную сеть? Далее рассматриваются наиболее часто используемые решения в этом пространстве, а также некоторые интересные проблемы, связанные с этой основной проблемой, такие как multicast и anycast. Адресация устройств и приложений Компьютерные сети используют ряд иерархически расположенных адресов для решения этих проблем. Рисунок 1 иллюстрирует это. На рисунке 1 показаны четыре уровня адресации: На уровне физического канала существуют адреса интерфейсов, которые позволяют двум устройствам обращаться к конкретному устройству индивидуально. На уровне хоста существуют адреса хостов, которые позволяют двум хостам напрямую обращаться к конкретному хосту. На уровне процесса существуют номера портов, которые в сочетании с адресом хоста позволяют двум процессам обращаться к конкретному процессу на конкретном устройстве. На уровне диалога (разговора) набор порта источника, порта назначения, адреса источника и адреса назначения может быть объединен, чтобы однозначно идентифицировать конкретный разговор или поток. Эта схема и объяснение кажутся очень простыми. В реальной жизни все гораздо запутаннее. В наиболее широко развернутой схеме адресации - интернет-протоколе IP отсутствуют адреса уровня хоста. Вместо этого существуют логические и физические адреса на основе каждого интерфейса. Идентификаторы (адреса) мультиплексирования и мультиплексирование иерархически расположены друг над другом в сети. Однако есть некоторые ситуации, в которых вы хотите отправить трафик более чем на один хост одновременно. Для этих ситуаций существуют multicast и anycast. Эти два специальных вида адресации будут рассмотрены в следующих лекциях. О физических каналах, Broadcasts, и Failure Domains Простая модель, показанная на рисунке 1, становится более сложной, если принять во внимание концепцию широковещательных доменов и физического подключения. Некоторые типы мультимедиа (в частности, Ethernet) разработаны таким образом, что каждое устройство, подключенное к одной и той же физической линии связи, получает каждый пакет, передаваемый на физический носитель—хосты просто игнорируют пакеты, не адресованные одному из адресов, связанных с физическим интерфейсом, подключенным к физическому проводу. В современных сетях, однако, физическая проводка Ethernet редко позволяет каждому устройству принимать пакеты любого другого устройства. Вместо этого в центре сети есть коммутатор, который блокирует передачу пакетов, не предназначенных для конкретного устройства, по физическому проводу, подключенному к этому хосту. В этих протоколах, однако, есть явные адреса, отведенные для пакетов, которые должны передаваться каждому хосту, который обычно получал бы каждый пакет, если бы не было коммутатора, или что каждый хост должен был получать и обрабатывать (обычно это некоторая форма версия адреса все 1 или все 0). Это называется трансляцией (broadcasts). Любое устройство, которое будет принимать и обрабатывать широковещательную рассылку, отправленную устройством, называется частью широковещательной рассылки устройства. Концепция широковещательного домена традиционно тесно связана с областью сбоев, поскольку сбои в сети, влияющие на одно устройство в широковещательном домене, часто влияют на каждое устройство в широковещательном домене. Не удивляйтесь, если вы найдете все это довольно запутанным, потому что на самом деле это довольно запутанно. Основные понятия широковещания и широковещательных доменов все еще существуют и по-прежнему важны для понимания функционирования сети, но значение этого термина может измениться или даже не применяться в некоторых ситуациях. Будьте осторожны при рассмотрении любой ситуации, чтобы убедиться, что вы действительно понимаете, как, где и, что такие широковещательные домены действительно существуют, и как конкретные технологии влияют на отношения между физической связью, адресацией и широковещательными доменами.
img
Как и множество других инструментов для управления и автоматизации на рынке программного обеспечения, Ansible был изначально open – source проектом (с открытым исходным кодом), который предназначался для автоматизации настройки и деплоймента (развертывания) ПО в сетевых контурах компаний. Чего скрывать, продукт «стрельнул» - когда компания AnsibleWorks это поняла, начала активную монетизацию через коммерческую поддержку продукта для корпоративных заказчиков. /p> В настоящее время их продуктовая линейка состоит из двух направлений - Ansible и Ansible Tower, причем последний обладает полноценным интерфейсом управления (UI) и возможностью реализации дашбордов. Ansible - новые ребята в DevOps направлении, по сравнению, например, с Chef или Puppet, но успели круто зарекомендовать себя в сообществе профессионалов за простоту и скоуп возможностей. Его playbooks понятны и легко читаемы, даже без особых знаний. Так к чему это все? В «правильных руках», где присутствует полное понимание плюсов и минусов продукта Ansible может работать еще круче :) Поэтому, хотим рассказать про 5 лучших и 5 худших свойств Ansible. Playbooks в Ansible это файл в формате YAML, который содержит последовательность состояния ресурсов системы, задач, которые позволяет запустить то или состояние сервера. Что такое DevOps, что нужно знать и сколько получают DevOps - специалисты? 5 лучших качеств Ansible Легкость в изучении По правде говоря, это одно из самых крутых качеств Ansible – изучить его можно за один вечер и уже запускать веб – сервер из YAML, например. Ansible задачи запускаются последовательно, что сильно облегчает траблшутинг конфигураций. Например, можно сделать Playbook для Ansible, который позволит получить минимальный веб сервер примерно так: Создаем файл формата .yml и наполняем командами; Установить через yum apache; Запустить apache как сервис в операционной системе; Скопировать в корень веб – сервера html страничку с заглушкой («Мы готовим информацию по сайту, скоро здесь все будет, бла бла бла..»); Скорректировать iptables, открыв порты и сохранить конфигурацию; Не сложно, не правда ли? Написан на Python Я, как автор статьи, подметил следующее: если мы возьмем 10 программистов, вероятность, что кто-то из них знает Python гораздо выше, чем то, что кто – то из них знает Ruby. Именно это делает Ansible крутым – он написан на питоне в отличие от Ruby – based конкурентов. Так же отмечу, что Python библиотека, обычно, по умолчанию присутствует в любом Linux дистрибутиве, чего не сказать о Ruby. Продолжая экскурсию – Ansible поддерживает написание модулей на любом языке программирования. Единственное требование – формат ответа. Это должен быть JSON. Не нужно ставить клиента (агента) на машину Для управления узлами, Ansible обрабатывает все коммуникации между мастер – узлами и узлами – агентами по стандартному SSH, или через модуль Paramiko, который является частью Python SSH второй версии. Не нужно ставить агентское ПО на удаленные машины – только SSH подключение. Как следствие, упрощение обслуживания и траблшутинга. YAML плейбуки Как мы писали ранее, плейбуки в Ансибл невероятно просты и читаемы. Все DevOps инженеры, с которыми мы обсуждали его, освоили их за один вечер. Они даже проще чем JSON :) Портал Ansible Galaxy Портал, на котором вы наверняка найдете решение для своей задачи. Это объединение Ansible сообщества, где люди делятся наработками и решениями той или иной задачи. Знаете, это как ответ на мэйл.ру - чтобы вам не пришло реализовать на Ансибл, то как правило, кто – то эту задачу уже решил :). Тонны плейбуков, фреймворков, дистрибутивов и сопутствующего ПО. 5 худших качеств Ansible Настало время хорошенько пройтись по Ansible и выделить минусы продукта. Пожестим. Проблемы с интерфейсом (UI) Изначально Ansible разработан для работы с командной строкой. Первые наметки в сторону визуализации конфигурации Ансибл начались через AWX – графический интерфейс пользователя, который являлся первой попыткой упрощения конфигураций через интерфейсную составляющую. В последствии, AWX превратился в Anbile Tower, который дает возможность через GUI управлять Ansible, рисовать workflow и так далее. Несмотря на улучшение Tower перед AWX, он все равно позволяет делать только 85% рабочего функционала Ansible, который можно делать через командную строку. В добавок, конфигурации внесенный через интерфейс зачастую не синхронизируются с CLI – конфигами. Ansible Tower находится на стадии разработки и пока весьма сыроват. Нет работы с состоянием машин/процессов Если сравнивать с тем же Puppet, Ansible не имеет понятия «состояние» и, соответственно, не отслеживает его. Ансибл не смотрит на зависимости, а просто выполняет последовательный ряд задач/процессов. Для кого – то это нормально и удовлетворяет поставленным задачам, но есть и другие пользователи, у которых от такой работы, мягко говоря, «подгорает» :) Слабая поддержка совместимости с Windows С версии 1.7 Ansible умеет работать с Unix и Windows узлами, но надо признаться, работа с первыми реализована гораздо лучше. Взаимодействие с Windows машинами происходит через PowerShell, и, что важно, вам все равно потребуется Linux хост (управляющая тачка) для такой коммуникации. Ждем, когда Ansible разрабы разгребут бэклог по работе продукта с Windows. Поддержка крупного бизнеса Ansible Enterprise Tower и Premiun Tower имеют 8х5х4 и 24х7х2 SLA соответственно, но имеют меньше опыта поддержки крупняков, в сравнении, например, с Chef и Puppet. Новизна продукта Ansible находится на рынке меньше своих конкурентов и, само собой, баги будут всплывать. К тому же, комьюнити Ансибл только растет и развивается, в отличие от более крупных игроков, упомянутых в этой статье. Итоги Подведем черту: Ansible это просто, гибкий и мощный инструмент, для управления конфигами и автоматизацией. Ansible Tower имеет графический веб – интерфейс, REST API, с помощью которого вы можете интегрировать свой сторонние приложения и поддержку, которая только учится и осваивает азы сопровождения крупного энтерпрайза. Ansible – новинка, которая имеет своих ранних последователей, противников, сторонников. Сочетая в себе большое количество плюсов, он, конечно, имеет ряд недостатков или так сказать «ранних болезней», через которые уже прошли более крупные конкуренты. Но кто знает, что покажет нам Ansible завтра?
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59