По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня подробно разберёмся в том, как настроить запись телефонных разговоров, проходящих через нашу IP-АТС Asterisk, с помощью графической оболочки FreePBX 13. Данная статья будет так же полезна тем, у кого, по каким то причинам, не записываются телефонные разговоры и они хотят это исправить. Заглянем в FreePBX Множество модулей во FreePBX позволяют включить запись телефонных разговоров напрямую, к таким относятся Extensions, Queues, Ring Groups, Inbound Routes. То есть, например, при создании нового внутреннего номера или ринг группы мы можем определить, записывать ли разговоры проходящие через них. Для этого, в каждом модуле, который позволяет настроить запись, есть раздел Recording Options или Call Recording, в котором доступно 5 режимов записи - Force, Yes, Don't Care, No и Never. Данные режимы, позволяют определить, как именно будет идти запись в течение "жизни вызова" или call flow. Вы можете спросить - "Зачем в модулях предусмотрено целых 5 режимов? Почему бы просто не оставить: Yes - есть запись, No - записи нет?" Все дело в том, что звонок может менять свое назначение, например, он может изначально поступить на телефон секретаря Extension, а потом его переведут, например, на отдел продаж Ring Group (цикл звонка и есть call flow), в одном модуле запись может быть включена, а в другом нет и вот чтобы определить, что будет записано и служат эти 5 режимов. Давайте разберёмся подробнее в их логике: Force и Never заменяют друг друга и имеют высший приоритет чем Yes и No Yes и No имеют одинаковый приоритет Когда один и больше Yes или No встречается в call flow, в приоритете всегда будет первое значение. Последующие опции Yes или No не переопределяют первую. Force и Never будут всегда переопределять опции, которые установлены ранее. Force и Never будут всегда заменять друг друга. Например если сначала был установлен Force, а потом встречается Never, то в приоритете будет Never Force и Never будут всегда заменять предустановленные опции Yes и No Yes и No никогда не заменять Force и Never Don’t Care не будет изменять предыдущую опцию. Чтобы было проще понять логику этих 5 режимов, каждый раз, когда встречается No представляйте себе такую фразу – «Я бы предпочел не записывать эту часть вызова, если раньше мне не говорили записать её», когда Yes, такую фразу – «Я хотел бы записать эту часть вызова, если только ранее я не был предупрежден не делать этого». Если встречаете Force, то представьте такую фразу – «Начать или продолжить запись сейчас же!», а если Never - «Закончить запись сейчас же!». И наконец, если встречаете Don’t Care - «Сейчас ничего менять не нужно» Следует отметить, что некоторые модули, такие как Conference не имеют опций Force, Don’t Care и Never, а имеют только Yes и No, а некоторые, например, Ring Group наоборот, имеют только опции Force, Don’t Care и Never. Ещё одной важной функцией записи телефонных разговоров, является запись по требованию - On Demand Recording. С помощью данной функции, администратор IP-АТС может настроить пользователю определенного внутреннего номера Extension, эксклюзивное право включать и выключать запись прямо во время разговора, используя программируемую кнопку на корпусе его телефона или специальный Feature Code, по умолчанию это *1. Для того, чтобы настроить данный функционал, необходимо открыть Applications → Extensions далее открыть вкладку Advanced, прокрутить меню до опции Recording Option и найти поле On Demand Recording Как видите, On Demand Recording имеет следующие режимы: Disable - Пользователь внутреннего номера не сможет использовать функцию записи по требованию, не зависимо от того, какой режим имеет вызов Force, Yes, Don't Care, No или Never.Если пользователь попробует ввести специальный Feature Code, то он услышит ответ “access denied” – “доступ запрещен” Enable - Функция записи по требованию доступна пользователю, но только если звонок имеет режим Yes,No или Don’t Care. Если звонок в режиме Force, или Never, то он услышит “доступ запрещен” Overrride - Пользователь всегда может включить или выключить запись по требованию, вне зависимости от режима Force, Yes, Don't Care, No или Never. Теперь, чтобы основательно закрепить материал, давайте рассмотрим пример вызова и посмотрим, как будет меняться режим записи в этом call flow: Допустим, мы имеем входящий звонок, в правилах входящего маршрута - Inbound Route которого установлен режим записи Yes. В результате генерируется файл записи и запись разговора начинается. По правилам этого входящего маршрута, вызов переходит в очередь Queue, режим записи которой - Don’t Care - запись продолжается. В очереди, звонок принимает оператор, в правилах внутреннего номера которого, стоит режим записи входящих звонков (Inbound External Calls) - No. Запись продолжается, потому что перед этим, в первом шаге, на входящем маршруте был установлен режим Yes и он имеет приоритет. Оператор нажимает *1, в настройках его внутреннего номера On Demand Recording установлен режим - Enable. Запись останавливается. Оператор переводит звонок на ринг-группу (Ring Group), режим записи которой - Force. Запись продолжается. В ринг группе, звонок принимает менеджер, в правилах внутреннего номера которого, стоит режим записи входящих звонков (Inbound Internal Calls) - Never. Запись снова остановлена. Менеджер хочет начать запись и нажимает *1 и слышит в трубке “доступ запрещен”, потому что функция записи по требованию заблокирована режимом Never Таким образом, если Вы вдруг заметили, что у вас отсутствуют записи каких-либо телефонных разговоров или отдельных их частей, а вы вроде как её включали в настройках, то рекомендуем Вам проследить call flow звонка, в котором нет записи и посмотреть – какой режим включается на каждом из этапов.
img
Новое в IPv6-это автоконфигурация, которая является почти "мини-DHCP" - сервером, и некоторые протоколы были удалены или изменены. Точно так же, как IPv4, хосты, настроенные на IPv6, должны узнать MAC-адрес других устройств, но мы больше не используем ARP, он был заменен протоколом под названием NDP (Neighbour Discovery Protocol). Теоретические основы Помимо изучения MAC-адресов, NDP используется для решения ряда задач: Router Discovery (обнаружение маршрутизаторов): NDP используется для изучения всех доступных маршрутизаторов IPv6 в подсети. Обнаружение MAC-адресов: после того, как хост выполнил проверку DAD и использует IPv6 адрес он должен будет обнаружить MAC адреса хостов с которыми он хочет общаться. DAD (обнаружение дубликатов адресов): каждый хост IPv6 будет ждать, чтобы использовать свой адрес, если только он не знает, что ни одно другое устройство не использует тот же адрес. Этот процесс называется DAD, и NDP делает это за нас. SLAAC: NDP используется, чтобы узнать, какой адрес и длину префикса должен использовать хост. Мы рассмотрим все задачи, чтобы увидеть, как они работают. Начнем с обнаружения маршрутизатора. Когда хост настроен на IPv6, он автоматически обнаруживает маршрутизаторы в подсети. Хост IPv6 может использовать NDP для обнаружения всех маршрутизаторов в подсети, которые могут использоваться в качестве шлюза по умолчанию. В принципе, хост отправляет сообщение с запросом, есть ли там какие-либо маршрутизаторы, и маршрутизаторы ответят. Используются два сообщения: RS (Router Solicitation), который отправляется на "все маршрутизаторы ipv6" FF02::2 multicast адрес. RA (Router Advertisement) отправляется маршрутизатором и включает в себя его link-local IPv6 адрес. Когда хост отправляет запрос маршрутизатору, маршрутизатор будет отвечать на одноадресный адрес хоста. Маршрутизаторы также будут периодически отправлять рекламные объявления маршрутизаторов для всех заинтересованных сторон, они будут использовать для этого адрес FF02:: 1 "все узлы". Большинство маршрутизаторов также будут иметь global unicast адрес, настроенный на интерфейсе, в этом случае хосты будут узнавать не только о link-local адресе, но и о префиксе, который используется в подсети. Этот префикс можно использовать для SLAAC. NPD также используется в качестве замены ARP. Для этого он использует два вида сообщений: NS (Neighbor Solicitation) NA (Neighbor Advertisement) Запрос соседа работает аналогично запросу ARP, он запрашивает определенный хост для своего MAC-адреса, и объявление соседа похоже на ответ ARP, поскольку оно используется для отправки MAC-адреса. В основном это выглядит так: Всякий раз, когда хост посылает запрос соседу, он сначала проверяет свой кэш, чтобы узнать, знает ли он уже MAC-адрес устройства, которое он ищет. Если его там нет, он пошлет соседу запрос. Эти соседние запрашивающие сообщения используют solicited-node multicast адрес запрашиваемого узла. Помимо обнаружения MAC-адресов, сообщения NS и NA также используются для обнаружения дубликатов IPv6-адресов. Прежде чем устройство IPv6 использует одноадресный адрес, оно выполнит DAD (обнаружение дубликатов адресов), чтобы проверить, не использует ли кто-то другой тот же IPv6-адрес. Если адрес используется, хост не будет его использовать. Вот как это выглядит: Host1 был настроен с IPv6-адресом 2001:1:1:1::2, который уже используется Host2. Он будет посылать запрос соседства, но поскольку host2 имеет тот же IPv6-адрес, он ответит объявлением соседа. Host1 теперь знает, что это дубликат IPv6-адреса. Эта проверка выполняется для всех одноадресных адресов, включая link-local адреса. Это происходит, когда вы настраиваете их и каждый раз, когда интерфейс находится в состоянии "up". Последний NPD, который мы рассмотрим, - это SLAAC, которая позволяет хостам автоматически настраивать свой IPv6-адрес. Для IPv4 мы всегда использовали DHCP для автоматического назначения IP-адреса, шлюза по умолчанию и DNS-сервера нашим хостам, и эта опция все еще доступна для IPv6 (мы рассмотрим ее ниже). DHCP прекрасная "вещь", но недостатком является то, что вам нужно установить DHCP-сервер, настроить пул с диапазонами адресов, шлюзами по умолчанию и DNS-серверами. Когда мы используем SLAAC, наши хосты не получают IPv6-адрес от центрального сервера, но он узнает префикс, используемый в подсети, а затем создает свой собственный идентификатор интерфейса для создания уникального IPv6-адреса. Вот как работает SLAAC: Хост сначала узнает о префиксе с помощью сообщений NDS RS RA. Хост принимает префикс и создает идентификатор интерфейса, чтобы создать уникальный IPv6-адрес. Хост выполняет DAD, чтобы убедиться, что IPv6-адрес не используется никем другим. Маршрутизаторы Cisco будут использовать EUI-64 для создания идентификатора интерфейса, но некоторые операционные системы будут использовать случайное значение. Благодаря SLAAC хост будет иметь IPv6-адрес и шлюз, но один элемент все еще отсутствует...DNS-сервер. SLAAC не может помочь нам с поиском DNS-сервера, поэтому для этого шага нам все еще требуется DHCP. DHCP для IPv6 называется DHCPv6 и поставляется в двух формах: Stateful Stateless Мы рассмотрим DHCPv6 чуть позже, но для SLAAC нам нужно понять, что такое stateless DHCPv6. Обычно DHCP-сервер отслеживает IP-адреса, которые были арендованы клиентами, другими словами, он должен сохранять "состояние" того, какие IP-адреса были арендованы и когда они истекают. Сервер stateless DHCPv6 не отслеживает ничего для клиентов. Он имеет простую конфигурацию с IPv6-адресами нескольких DNS-серверов. Когда хост IPv6 запрашивает у сервера DHCPv6 IPv6-адрес DNS-сервера, он выдает этот адрес, и все. Поэтому, когда вы используете SLAAC, вам все еще нужен stateless DHCPv6, чтобы узнать о DNS-серверах. Теперь вы узнали все задачи, которые NPD выполняет для нас: Router Discovery MAC Address Discovery Duplicate Address Detection Stateless Address Autoconfiguration Настройка на Cisco Давайте посмотрим на NPD на некоторых маршрутизаторах, чтобы увидеть, как он работает в реальности. Будет использоваться следующая топология для демонстрации: Будем использовать OFF1 в качестве хоста, который будет автоматически настраиваться с помощью SLAAC и OFF2 в качестве маршрутизатора. 2001:2:3:4//64 это префикс, который мы будем использовать. Давайте сначала настроим OFF2: OFF2(config)#ipv6 unicast-routing Прежде чем OFF2 будет действовать как маршрутизатор, нам нужно убедиться, что включена одноадресная маршрутизация IPv6. Теперь давайте настроим IPv6 адрес на интерфейсе: OFF2(config)#interface fa0/0 OFF2(config-if)#no shutdown OFF2(config-if)#ipv6 address 2001:2:3:4::1/64 Перед настройкой OFF1 мы включим отладку NPD на обоих маршрутизаторах, чтобы могли видеть различные сообщения: OFF1#debug ipv6 nd ICMP Neighbor Discovery events debugging is on OFF2#debug ipv6 nd ICMP Neighbor Discovery events debugging is on Команда debug ipv6 nd очень полезна, так как она будет показывать различные сообщения, которые использует NPD. Давайте теперь настроим OFF1: OFF1(config)#interface fa0/0 OFF1(config-if)#no shutdown OFF1(config-if)#ipv6 address autoconfig OFF1 будет настроен для использования SLAAC с командой ipv6 address autoconfig. При включенной отладке вы увидите на своей консоли следующие элементы: OFF1# ICMPv6-ND: Sending NS for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: FE80::C000:6FF:FE7C:0 is unique. Он посылает NS для своего собственного IPv6-адреса, и когда никто не отвечает, он понимает, что это единственный хост, использующий этот адрес. Вы также можете видеть, что OFF1 отправляет объявление соседства в сторону OFF2: OFF1# ICMPv6-ND: Sending NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 OFF2# ICMPv6-ND: Received NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 Мы можем просмотреть базу данных с информацией L2 и L3 следующим образом: OFF2#show ipv6 neighbors IPv6 Address Age Link-layer Addr State Interface FE80::C000:6FF:FE7C:0 21 c200.067c.0000 STALE Fa0/0 show ipv6 neighbors покажет вам IPv6-адреса и MAC-адреса. OFF1 также отправит запрос маршрутизатора, а OFF2 в ответ отправит объявление маршрутизатора: OFF1# ICMPv6-ND: Sending RS on FastEthernet0/0 OFF2# ICMPv6-ND: Received RS on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 ICMPv6-ND: Sending solicited RA on FastEthernet0/0 ICMPv6-ND: Sending RA from FE80::C001:6FF:FE7C:0 to FF02::1 on FastEthernet0/0 ICMPv6-ND: MTU = 1500 ICMPv6-ND: prefix = 2001:2:3:4::/64 onlink autoconfig ICMPv6-ND: 2592000/604800 (valid/preferred) OFF1# ICMPv6-ND: Received RA from FE80::C001:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Selected new default router FE80::C001:6FF:FE7C:0 on FastEthernet0/0 Если вы хотите увидеть все маршрутизаторы, о которых знает ваш хост, вы можете использовать следующую команду: OFF1#show ipv6 routers Router FE80::C001:6FF:FE7C:0 on FastEthernet0/0, last update 0 min Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500 HomeAgentFlag=0, Preference=Medium Reachable time 0 msec, Retransmit time 0 msec Prefix 2001:2:3:4::/64 onlink autoconfig Valid lifetime 2592000, preferred lifetime 604800 Поскольку OFF1 настроен для SLAAC он будет использовать префикс в объявлении маршрутизатора для настройки самого себя: OFF1# ICMPv6-ND: Prefix Information change for 2001:2:3:4::/64, 0x0 - 0xE0 ICMPv6-ND: Adding prefix 2001:2:3:4::/64 to FastEthernet0/0 ICMPv6-ND: Sending NS for 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Autoconfiguring 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: 2001:2:3:4:C000:6FF:FE7C:0 is unique. Он будет использовать префикс и автоматически настраивать IPv6-адрес. Прежде чем он использует адрес, он будет использовать DAD, чтобы убедиться, что адрес уникален. Давайте посмотрим IPv6-адрес: OFF1#show ipv6 int brief FastEthernet0/0 [up/up] FE80::C000:6FF:FE7C:0 2001:2:3:4:C000:6FF:FE7C:0 Как вы видите, OFF1 использовал 2001:2:3:4::/64 префикс для настройки самого себя. Это вся информация о NPD для вас сейчас, давайте продолжим изучение материала обратив подробное внимание на DHCPv6! Статусный DHCPv6 работает аналогично DHCP для IPv4. Мы все еще используем его для предоставления адресов, шлюзов по умолчанию, DNS-серверов и некоторых других опций клиентам, но одним из ключевых отличий являются сообщения, которые мы теперь используем. DHCP для IPv4 использует сообщения Discover, Offer, Request и ACK. DHCPv6 использует Solicit, Advertise, Request и Reply message. Время получения сообщения, похожие на сообщения обнаружения. Хост будет использовать это сообщение, когда он ищет IPv6-адрес сервера DHCPv6. Сообщение advertise используется для предоставления хосту IPv6-адреса, шлюза по умолчанию и DNS-сервера. Сообщение запроса используется хостом, чтобы спросить, можно ли использовать эту информацию, и ACK отправляется сервером для подтверждения этого. Аналогично, как и для DHCP IPv4, когда ваш DHCP-сервер не находится в той же подсети, вам потребуется DHCP relay для пересылки сообщений DHCP на центральный DHCP-сервер.
img
В данной статье рассмотрим ещё один полезный модуль из базового функционала FreePBX 13 - Set CallerID. Данный модуль позволяет влиять на идентификатор вызывающего абонента (CID- СallerID) в рамках процесса установления вызова. Например, если у вас несколько провайдеров по-разному отдают CallerID, в данном модуле можно привести их к общему виду для корректного отображения в CDR или добавить к определенным входящим звонкам уникальный префикс. Пошаговое видео Настройка модуля Set CID Перейдём к настройке. Традиционно, для всех примеров, будем использовать FreePBX версии 13. Для того, чтобы попасть в модуль Set CallerID, с главной страницы, переходим по следующему пути: Applications -> Set CallerID. По умолчанию, данная вкладка пустая, нажимаем на кнопку Add Откроется следующее окно добавления нового CID, в котором необходимо заполнить следующие пункты. Рассмотрим подробнее каждый из пунктов: Description - Предлагается ввести описательное название нового CID, которое поможет определить его назначение. Например: “Sales CID” CallerID Name - Здесь настраивается на что будет заменено имя звонящего (caller ID name). Если предполагается изменение текущего имени, то необходимо включить соответствующие переменные. Если же оставить данное поле пустым, то имя звонящего останется пустым. CallerID Number - Здесь настраивается на что будет заменён номер звонящего (caller ID number). Если предполагается изменение текущего номера, то необходимо включить соответствующие переменные. Если же оставить данное поле пустым, то номер звонящего останется пустым. Destination - Здесь выбирается назначение для продолжения звонка. Звонок будет перенаправлен по данному назначению с новыми именем и номером (CallerID Name/ Number) Пример модификации Caller ID Name Давайте рассмотрим несколько примеров, чтобы понять, как работает данный модуль, а заодно и принципы работы с переменными. Допустим, мы хотим добавить некий префикс к номерам, которые маршрутизируются с нашего IVR. Мы знаем, что на нашем IVR настроен маршрут для соединения с отделом продаж по клавише “3” и хотим, чтобы у всех звонков, отправленных по данному маршруту был префикс “Sales” перед номером. Для этого, сначала создаём новый шаблон в модуле. В поле Description пишем “Sales CID” В поле CallerID Name пишем “Sales:” перед ${CALLERID(name)}, это действие и добавляет необходимый префикс. Поле CallerID Number оставляем без изменений Наконец, в поле Destination, выбираем назначение для данного шаблона – внутренний номер менеджера по продажам (7771 Sales Manager) Не забываем нажимать Submit и Apply Config Далее, отправляемся в модуль IVR и настраиваем соответствующее правило. Готово, теперь все абоненты, попавшие на IVR и нажавшие клавишу “3” на телефоне, попадут на менеджера по продажам, но их номера на дисплее телефона менеджера, будут иметь префикс “Sales”, так менеджер поймёт, что звонок поступил с IVR. Если Вы хотите подробнее ознакомиться с возможностями модуля IVR, прочитайте нашу соответствующую статью о настройке модуля IVR во FreePBX 13. Пример модификации Caller ID Number Рассмотрим другой пример. Допустим, наш провайдер отдаёт нам callerID в формате 8ХХХХХХХХХХ. Но звонить в город мы должны через префикс “9”. Если нам придёт звонок с номера 8ХХХХХХХХХХ, мы должны будем сначала набрать “9”, чтобы дозвониться. Данную задачу можно решить с помощью модуля Set CallerID. Создадим новый шаблон. В поле Description пишем “Outbound Prefix 9” Поле CallerID Name оставляем без изменений В CallerID Number Наконец, в поле Destination, выбираем назначение для данного шаблона, например ринг-группа - (4543 Managers) Готово, теперь, при поступлении внешнего звонка на ринг-группу Managers, к номеру звонящего автоматически будет добавлен необходимый префикс “9”, таким образом, все участники из ринг-группы, смогут очень просто сразу вызвать абонента заново. Если Вы хотите побольше узнать о группах вызова, прочитайте нашу соответствующую статью о настройке модуля Ring Groups во FreePBX 13. Синтаксис Обобщим все вышесказанное и сведем в таблицу принципы формирования переменных: Пример Описание ${переменная:n} убирает одну цифру спереди. Например, если звонок приходит вам с Caller ID Number +74951234567, то запись вида ${CALLERID(num):1} преобразует его в 74951234567 ${переменная:-n} тоже самое, только цифры буду удаляться с конца. Например, при записи ${CALLERID(num):-2} номер +74951234567 будет преобразован в +749512345 ${переменная:s:n} Данную запись следуют интерпретировать так: начиная с символа s удалить n символов. Например, запись вида ${CALLERID(num):3:2} преобразует номер +74951234567 в +741234567
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59