По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Десятая часть тут. Вы входите в комнату и кричите: «Игорь!» Ваш коллега Игорь оборачивается и начинает разговор о будущем IT-индустрии. Эта способность использовать один носитель (воздух, по которому движется ваш голос) для обращения к одному человеку, даже если многие другие люди используют этот же носитель для других разговоров в одно и то же время, в сетевой инженерии называется мультиплексированием. Более формально: Мультиплексирование используется, чтобы позволить нескольким объектам, подключенным к сети, обмениваться данными через общую сеть. Почему здесь используется слово объекты, а не хосты? Возвращаясь к примеру «разговор с Игорем", представьте себе, что единственный способ общения с Игорем — это общение с его ребенком-подростком, который только пишет (никогда не говорит). На самом деле Игорь-член семьи из нескольких сотен или нескольких тысяч человек, и все коммуникации для всей этой семьи должны проходить через этого одного подростка, и каждый человек в семье имеет несколько разговоров, идущих одновременно, иногда на разные темы с одним и тем же человеком. Бедный подросток должен писать очень быстро, и держать много информации в голове, например: "Игорь имеет четыре разговора с Леной", и должен держать информацию в каждом разговоре совершенно отдельно друг от друга. Это ближе к тому, как на самом деле работает сетевое мультиплексирование- рассмотрим: К одной сети могут быть подключены миллионы (или миллиарды) хостов, и все они используют одну и ту же физическую сеть для связи друг с другом. Каждый из этих хостов на самом деле содержит много приложений, возможно, несколько сотен, каждое из которых может связываться с любым из сотен приложений на любом другом хосте, подключенном к сети. Каждое из этих приложений может фактически иметь несколько разговоров с любым другим приложением, запущенным на любом другом хосте в сети. Если это начинает казаться сложным, то это потому, что так оно и есть. Вопрос, на который должен ответить эта лекция, заключается в следующем: Как эффективно мультиплексировать хосты через компьютерную сеть? Далее рассматриваются наиболее часто используемые решения в этом пространстве, а также некоторые интересные проблемы, связанные с этой основной проблемой, такие как multicast и anycast. Адресация устройств и приложений Компьютерные сети используют ряд иерархически расположенных адресов для решения этих проблем. Рисунок 1 иллюстрирует это. На рисунке 1 показаны четыре уровня адресации: На уровне физического канала существуют адреса интерфейсов, которые позволяют двум устройствам обращаться к конкретному устройству индивидуально. На уровне хоста существуют адреса хостов, которые позволяют двум хостам напрямую обращаться к конкретному хосту. На уровне процесса существуют номера портов, которые в сочетании с адресом хоста позволяют двум процессам обращаться к конкретному процессу на конкретном устройстве. На уровне диалога (разговора) набор порта источника, порта назначения, адреса источника и адреса назначения может быть объединен, чтобы однозначно идентифицировать конкретный разговор или поток. Эта схема и объяснение кажутся очень простыми. В реальной жизни все гораздо запутаннее. В наиболее широко развернутой схеме адресации - интернет-протоколе IP отсутствуют адреса уровня хоста. Вместо этого существуют логические и физические адреса на основе каждого интерфейса. Идентификаторы (адреса) мультиплексирования и мультиплексирование иерархически расположены друг над другом в сети. Однако есть некоторые ситуации, в которых вы хотите отправить трафик более чем на один хост одновременно. Для этих ситуаций существуют multicast и anycast. Эти два специальных вида адресации будут рассмотрены в следующих лекциях. О физических каналах, Broadcasts, и Failure Domains Простая модель, показанная на рисунке 1, становится более сложной, если принять во внимание концепцию широковещательных доменов и физического подключения. Некоторые типы мультимедиа (в частности, Ethernet) разработаны таким образом, что каждое устройство, подключенное к одной и той же физической линии связи, получает каждый пакет, передаваемый на физический носитель—хосты просто игнорируют пакеты, не адресованные одному из адресов, связанных с физическим интерфейсом, подключенным к физическому проводу. В современных сетях, однако, физическая проводка Ethernet редко позволяет каждому устройству принимать пакеты любого другого устройства. Вместо этого в центре сети есть коммутатор, который блокирует передачу пакетов, не предназначенных для конкретного устройства, по физическому проводу, подключенному к этому хосту. В этих протоколах, однако, есть явные адреса, отведенные для пакетов, которые должны передаваться каждому хосту, который обычно получал бы каждый пакет, если бы не было коммутатора, или что каждый хост должен был получать и обрабатывать (обычно это некоторая форма версия адреса все 1 или все 0). Это называется трансляцией (broadcasts). Любое устройство, которое будет принимать и обрабатывать широковещательную рассылку, отправленную устройством, называется частью широковещательной рассылки устройства. Концепция широковещательного домена традиционно тесно связана с областью сбоев, поскольку сбои в сети, влияющие на одно устройство в широковещательном домене, часто влияют на каждое устройство в широковещательном домене. Не удивляйтесь, если вы найдете все это довольно запутанным, потому что на самом деле это довольно запутанно. Основные понятия широковещания и широковещательных доменов все еще существуют и по-прежнему важны для понимания функционирования сети, но значение этого термина может измениться или даже не применяться в некоторых ситуациях. Будьте осторожны при рассмотрении любой ситуации, чтобы убедиться, что вы действительно понимаете, как, где и, что такие широковещательные домены действительно существуют, и как конкретные технологии влияют на отношения между физической связью, адресацией и широковещательными доменами.
img
В первой статье серии EIGRP мы познакомились с функциями EIGRP, рассмотрели пример базовой конфигурации и набор команд проверки. Сегодня, в этой статье, мы углубимся в понимание того, как EIGRP устанавливает соседство, изучает маршрут к сети, определяет оптимальный маршрут к этой сети, и пытается ввести этот маршрут в таблицу IP-маршрутизации маршрутизатора. Предыдущие статьи из цикла про EIGRP: Часть 1. Понимание EIGRP: обзор, базовая конфигурация и проверка Следующие статьи из цикла: Часть 2.2. Установка K-значений в EIGRP Часть 3. Конвергенция EIGRP – настройка таймеров Часть 4. Пассивные интерфейсы в EIGRP Часть 5. Настройка статического соседства в EIGRP Часть 6. EIGRP: идентификатор роутера и требования к соседству Операции EIGRP могут быть концептуально упрощены в три основных этапа: Этап 1. Обнаружение соседей: посредством обмена приветственными сообщениями EIGRP-спикер маршрутизаторы обнаруживают друг друга, сравнивают параметры (например, номера автономной системы, K-значения и сетевые адреса) и определяют, должны ли они образовывать соседство. Этап 2. Обмен топологиями: если соседние EIGRP маршрутизаторы решают сформировать соседство, они обмениваются своими полными таблицами топологии друг с другом. Однако после установления соседства между маршрутизаторами передаются только изменения существующей топологии. Этот подход делает EIGRP намного более эффективным, чем протокол маршрутизации, такой как RIP, который объявляет весь свой список известных сетей через определенные интервалы времени. Этап 3. Выбор маршрутов: как только таблица топологии EIGRP маршрутизатора заполнена, процесс EIGRP проверяет все изученные сетевые маршруты и выбирает лучший маршрут к каждой сети. EIGRP считает, что сетевой маршрут с самой низкой метрикой является лучшим маршрутом к этой сети. Очень важно, что в когда вы читаете вышеописанные этапы, подробно описывающее обнаружение соседей EIGRP, обмен топологией и выбор маршрута, должны понимать, что в EIGRP, в отличие от OSPF, нет понятия назначенного маршрутизатора (DR) или резервного назначенного маршрутизатора (BDR). Обнаружение соседей и обмен топологиями Чтобы лучше понять, как маршрутизатор EIGRP обнаруживает своих соседей и обменивается информацией о топологии с этими соседями, рассмотрим рисунок ниже. Шесть шагов, изображенных на рисунке выше, выполняются следующим образом: Шаг 1. Маршрутизатор OFF1 хочет видеть, есть ли какие-либо EIGRP-спикер маршрутизаторы вне его интерфейса Gig 0/1, с которым он мог бы, возможно, сформировать соседство. Таким образом, он осуществляет многоадресную рассылку приветственного сообщения EIGRP (EIGRP Hello) на хорошо известный EIGRP multicast-адрес 224.0.0.10 с просьбой к любым EIGRP-спикер маршрутизаторам, идентифицировать себя. Шаг 2. После получения приветственного сообщения маршрутизатора OFF1 маршрутизатор OFF2 отправляет одноадресное сообщение обновления (unicast Update message)обратно на IP-адрес маршрутизатора OFF1 10.1.1.1. Это сообщение обновления содержит полную таблицу топологии EIGRP маршрутизатора OFF2. Шаг 3. Маршрутизатор OFF1 получает обновление маршрутизатора OFF2 и отвечает одноадресным сообщением подтверждения (Acknowledgement (ACK), отправленным на IP-адрес маршрутизатора OFF2 10.1.1.2. Шаг 4. Затем процесс повторяется, и роли меняются местами. В частности, маршрутизатор OFF2 отправляет приветственное сообщение на адрес многоадресной рассылки EIGRP 224.0.0.10. Шаг 5. Маршрутизатор OFF1 отвечает на приветственное сообщение маршрутизатора OFF2 одноадресным обновлением (unicast Update), содержащим полную таблицу топологии EIGRP маршрутизатора OFF1. Это unicast Update достигается IP-адрес маршрутизатора OFF2 10.1.1.2. Шаг 6. Маршрутизатор OFF2 получает информацию о маршрутизации маршрутизатора OFF1 и отвечает одноадресным сообщением ACK, отправленным на IP-адрес маршрутизатора OFF1 10.1.1.1. На этом этапе было установлено соседство EIGRP между маршрутизаторами OFF1 и OFF2. Маршрутизаторы будут периодически обмениваться приветственными сообщениями, чтобы подтвердить, что сосед каждого маршрутизатора все еще присутствует. Однако это последний раз, когда маршрутизаторы обмениваются своей полной информацией о маршрутизации. Последующие изменения топологии объявляются через частичные обновления, а не полные обновления, используемые во время создания соседства. Кроме того, обратите внимание, что сообщения обновления во время установления соседа были отправлены как одноадресные сообщения. Однако будущие сообщения обновления отправляются как многоадресные сообщения, предназначенные для 224.0.0.10. Это гарантирует, что все EIGRP-спикер маршрутизаторы на сегменте получают сообщения об обновлении. EIGRP имеет преимущество перед OSPF в том, как он отправляет свои сообщения об обновлении. В частности, сообщения об обновлении EIGRP отправляются с использованием надежного транспортного протокола ( Reliable Transport Protocol (RTP). Это означает, что, в отличие от OSPF, если сообщение обновления будет потеряно при передаче, он будет повторно отправлено. Примечание: аббревиатура RTP также относится к Real-time Transport Protocol (RTP), который используется для передачи голосовых и видеопакетов. Выбор маршрута Маршруты, показанные в таблице топологии EIGRP, содержат метрическую информацию, указывающую, насколько "далеко" она находится от конкретной целевой сети. Но как именно рассчитывается эта метрика? Расчет метрики EIGRP немного сложнее, чем с RIP или OSPF. В частности, метрика EIGRP по умолчанию является целочисленным значением, основанным на пропускной способности и задержке. Также, вычисление метрики может включать и другие компоненты. Рассмотрим формулу вычисления метрики EIGRP: Обратите внимание, что расчет метрики включает в себя набор K-значений, которые являются константами, принимающие нулевые значения или некоторые положительные целые числа. Расчет также учитывает пропускную способность, задержку, нагрузку и надежность (bandwidth, delay, load, reliability). Интересно, что большая часть литературы по EIGRP утверждает, что метрика также основана на Maximum Transmission Unit (MTU). Однако, как видно из формулы расчета метрики, MTU отсутствует. Так в чем же дело? Учитывает ли EIGRP MTU интерфейса или нет? В самом начале разработки EIGRP, MTU был обозначен как Тай-брейкер, если два маршрута имели одинаковую метрику, но разные значения MTU. В такой ситуации был бы выбран маршрут с более высоким MTU. Таким образом, хотя сообщение об обновлении EIGRP действительно содержит информацию MTU, эта информация непосредственно не используется в расчетах метрик. Далее, давайте рассмотрим каждый компонент расчета метрики EIGRP и tiebreaking MTU: Bandwidth (Пропускная способность): значение пропускной способности, используемое в расчете метрики EIGRP, определяется путем деления 10 000 000 на пропускную способность (в Кбит / с) самого медленного канала вдоль пути к целевой сети. Delay (Задержка): в отличие от полосы пропускания, которая представляет собой "самое слабое звено", значение задержки является кумулятивным. В частности, это сумма всех задержек, связанных со всеми интерфейсами, которые используются чтобы добраться до целевой сети. Выходные данные команды show interfaces показывают задержку интерфейса в микросекундах. Однако значение, используемое в расчете метрики EIGRP, выражается в десятках микросекунд. Это означает, что вы суммируете все задержки выходного интерфейса, как показано в выводе show interfaces для каждого выходного интерфейса, а затем делите на 10, чтобы получить единицу измерения в десятки микросекунд. Reliability (Надежность): надежность-это значение, используемое в числителе дроби, с 255 в качестве ее знаменателя. Значение дроби указывает на надежность связи. Например, значение надежности 255 указывает на то, что связь надежна на 100 процентов (то есть 255/255 = 1 = 100 процентов). Load (Нагрузка): как и надежность, нагрузка-это значение, используемое в числителе дроби, с 255 в качестве ее знаменателя. Значение дроби указывает, насколько занята линия. Например, значение нагрузки 1 указывает на то, что линия загружена минимально (то есть 1/255 = 0,004 1%) MTU: хотя он не отображается в Формуле вычисления метрики EIGRP, значение MTU интерфейса (которое по умолчанию составляет 1500 байт) переносится в сообщение обновления EIGRP, которое будет использоваться в случае привязки (например, два маршрута к целевой сети имеют одну и ту же метрику, но разные значения MTU), где предпочтительно более высокое значение MTU. Для улучшения запоминания используйте следующий алгоритм Big Dogs Really Like Me. Где B в слове Big ассоциируется с первой буквой в слове Bandwidth. Буква D в слове Dogs соответствует первой букве D в слове Delay, и так далее. Однако по умолчанию EIGRP имеет большинство своих K-значений равными нулю, что значительно упрощает расчет метрики, учитывая только пропускную способность и задержку. В частности, значения K по умолчанию являются: K1 = 1 K2 = 0 K3 = 1 K4 = 0 K5 = 0 Если мы подставим эти дефолтные значения K в расчет метрики EIGRP, то значение каждой дроби будет равно нулю, что сводит формулу к следующему: Чтобы закрепить знания по вычислению метрики, давайте проведем расчет метрики и посмотрим, соответствует ли она нашей таблице топологии EIGRP. Рассмотрим топологию, показанную на рисунке ниже. Предположим, что мы хотим вычислить метрику для сети 198.51.100.0/24 от роутера OFF1 для маршрута, который идет от OFF1 до OFF2, а затем выходит в целевую сеть. Из топологии мы можем определить, что нам нужно будет выйти с двух интерфейсов маршрутизатора, чтобы добраться от маршрутизатора OFF1 до сети 198.51.100.0 /24 через маршрутизатор OFF2. Эти два выходных интерфейса являются интерфейсами Gig0/1 на маршрутизаторе OFF1 и интерфейсом Gig0/3 на маршрутизаторе OFF2. Мы можем определить пропускную способность и задержку, связанные с каждым интерфейсом, изучив выходные данные команд show interfaces, приведенных в следующем примере. Определение значений пропускной способности и задержки интерфейса на маршрутизаторах OFF1 и OFF2 Из приведенного выше примера мы видим, что оба выходных интерфейса имеют пропускную способность 1 000 000 Кбит/с (то есть 1 Гбит/с). Кроме того, мы видим, что каждый выходной интерфейс имеет задержку в 10 микросекунд. Значение пропускной способности, которое мы вводим в нашу формулу вычисления метрики EIGRP, - это пропускная способность самого медленного канала на пути к целевой сети, измеряемая в Кбит/с. В нашем случае оба выходных интерфейса имеют одинаковую скорость соединения, то есть мы говорим, что наша "самая медленная" связь составляет 1 000 000 Кбит/с. Для примера ниже показаны общие значения по умолчанию для пропускной способности и задержки на различных типах интерфейсов маршрутизатора Cisco. Общие значения по умолчанию для пропускной способности и задержки интерфейса: Наше значение задержки может быть вычислено путем сложения задержек выходного интерфейса (измеренных в микросекундах) и деления на 10 (чтобы дать нам значение, измеренное в десятках микросекунд). Каждый из наших двух выходных интерфейсов имеет задержку в 10 микросекунд, что дает нам суммарную задержку в 20 микросекунд. Однако мы хотим, чтобы наша единица измерения была в десятках микросекунд. Поэтому мы делим 20 микросекунд на 10, что дает нам 2 десятка микросекунд. Теперь у нас есть два необходимых значения для нашей формулы: пропускная способность = 1 000 000 Кбит/с и задержка = 2 десятка микросекунд. Теперь давайте добавим эти значения в нашу формулу: Вычисленное значение показателя EIGRP составляет 3072. Теперь давайте посмотрим, является ли это фактической метрикой, появляющейся в таблице топологии EIGRP маршрутизатора OFF1. Выходные данные команды show ip eigrp topology, выведенные на маршрутизаторе OFF1, показаны в следующем примере. Проверка метрики EIGRP для сети 198.51.100.0/24 на маршрутизаторе OFF1 Как и предполагалось, метрика (также известная как допустимое расстояние) от маршрутизатора OFF1 до Сети 198.51.100.0 /24 через маршрутизатор OFF2 составляет 3072. Напомним, что в этом примере мы использовали значения K по умолчанию, что также является обычной практикой в реальном мире. Однако для целей проектирования мы можем манипулировать K-значениями. Например, если мы обеспокоены надежностью каналом связи или нагрузкой, которую мы могли бы испытать на линии, мы можем манипулировать нашими K-значениями таким образом, чтобы EIGRP начал бы рассматривать надежность и/или нагрузку в своем метрическом расчете. В следующей статье мы рассмотрим, как мы можем изменить эти K - значения в EIGRP по умолчанию.
img
Как очень популярный язык программирования, Java используется для разработки чего угодно, от легких мобильных приложений до настольных приложений. Java JDK (Java Development Kit) - это среда разработки программного обеспечения, используемая для разработки Java-приложений. JDK - это набор инструментов программирования, в частности JRE (Java Runtime Environment - среда выполнения Java), Java (приложение Loader for Java), Javac (компилятор), Jar (архиватор) и так далее. Эта статья поможет вам установить Oracle Java 11 на CentOS 8 или RHEL 8. JDK или JRE, OpenJDK или Oracle Java Разработчики приложений, которые плохо знакомы с Java, часто путают Java Development Kit с Java Runtime Environment. JDK - это пакет инструментов для разработки приложений Java, тогда как JRE - это пакет инструментов для запуска приложений Java. JRE входит в JDK. Есть два способа установки Java 11: Установка Oracle Java SE Development Kit 11 (JDK 11) Установка OpenJDK 11 Отличие в том Oracle Java имеет дополнительные коммерческие функций и разрешает только некоммерческое использование ПО, для личного использования. А OpenJDK, в свою очередь - это реализация платформы Java с открытым исходным кодом. Технической разницы между OpenJDK и Oracle JDK нет Установка OpenJDK 11 Для установки нужно выполнить всего лишь одну команду: sudo yum install java-11-openjdk-devel Проверим что все установилось корректно при помощи следующей команды: java -version Получим вывод: openjdk 11-ea 2018-09-25 OpenJDK Runtime Environment (build 11-ea+28) OpenJDK 64-Bit Server VM (build 11-ea+28, mixed mode, sharing) Либо c помошью команды which: which java Мы должны увидеть такой вывод: /usr/bin/java Готово! Мы успешно установили Java! Чтобы установить более старую версию LTS, OpenJDK 8, используйте следующую команду: sudo yum install java-1.8.0-openjdk-devel Установка OpenJRE Если вы не разрабатываете на Java, но по-прежнему должны запускать приложения Java, вы можете пропустить установку JDK и настроить среду выполнения Java (JRE). JRE представляет собой комбинацию виртуальной машины Java (JVM) и библиотек, необходимых для выполнения кода во время выполнения. Это минимальное требование для запуска любого Java-приложения. Как и в случае с комплектом разработчика, существует две версии среды выполнения LTS - JRE 8 и JRE 11. Примечание: помните - вам не нужно устанавливать OpenJRE, если у вас уже есть OpenJDK. Среда выполнения поставляется с Java Development Kit по умолчанию. Чтобы установить JRE 11, запустите: sudo yum install java-11-openjdk Чтобы установить JRE 8, используйте команду: sudo yum install java-1.8.0-openjdk Установка OpenJDK Headless Как и OpenJRE, Java Headless является частью OpenJDK и не должна устанавливаться поверх него. Headless - это минимальная среда выполнения, без графического интерфейса, более подходящая для серверных приложений. Она использует минимальные системные ресурсы и не включает поддержку клавиатуры или мыши. Установите OpenJDK 11 Headless, введя следующее: sudo yum установить java-11-openjdk-headless Для OpenJDK 8 Headless: sudo yum установить java-1.8.0-openjdk-headless Установка Oracle Java SE Development Kit 11 (JDK 11) Официальный Oracle JDK недоступен для загрузки из локального репозитория. Вы должны загрузить пакет .rpm со страницы загрузок Java SE. Java SE (Standard Edition) является стандартной версией программного обеспечения, в основном используемой для разработки портативных настольных приложений. Альтернативой Java SE является Java Enterprise Edition (Java EE), более подходящая для разработки на уровне энтерпрайза. Прокрутите вниз, чтобы увидеть разные версии Java SE и найти ту, которая вам нужна. В этой статье мы придерживаемся релиза LTS - Java 11. Раздел Java SE 11.0.5 (LTS) имеет кнопку загрузки для установки Oracle JDK (Java Development Kit). В отличие от предыдущих версий, в этом выпуске нет возможности загрузить Oracle JRE (Java Runtime Environment) в виде отдельного пакета. После завершения загрузки вы можете установить пакет с помощью команды: sudo yum install /home/user/Downloads/jdk-11.0.5-linux-x64.rpm Замените user фактическим именем пользователя. Кроме того, если ваше имя файла отличается, используйте имя файла вашей загрузки. Проверяем установку так же при помощи команды -version java -version java version "11.0.1" 2018-10-16 LTS Java(TM) SE Runtime Environment 18.9 (build 11.0.1+13-LTS) Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.1+13-LTS, mixed mode) Установить версию Java по умолчанию Используйте команду alternatives, чтобы установить версию Java по умолчанию. alternatives --config java Если ваша система имеет несколько версий Java, то приведенная выше команда выдаст список всех версий Java, как показано ниже. There are 3 programs which provide 'java'. Selection Command ----------------------------------------------- 1 java-1.8.0-openjdk.x86_64 (/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.212.b04-1.el8_0.x86_64/jre/bin/java) 2 java-11-openjdk.x86_64 (/usr/lib/jvm/java-11-openjdk-11.0.2.7-2.el8.x86_64/bin/java) *+ 3 /usr/java/jdk-12.0.2/bin/java Enter to keep the current selection[+], or type selection number: 2 Введите число ниже столбца выбора, чтобы установить версию Java по умолчанию. В нашем примере мы выбрали второй вариант. Установка переменной окружения JAVA_HOME Приложения Java часто требуют, чтобы переменные окружения JAVA были установлены в системе. Создайте новый файл в каталоге /etc/profile.d. vi /etc/profile.d/java.sh Установите переменные в зависимости от местоположения и версии Java (эти данные мы ранее находили с помошью команды alternatives): export PATH=$PATH:/usr/lib/jvm/java-11-openjdk-11.0.2.7-2.el8.x86_64/bin/ export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-11.0.2.7-2.el8.x86_64/ export J2SDKDIR=/usr/lib/jvm/java-11-openjdk-11.0.2.7-2.el8.x86_64/ Загрузите окружения в текущий сеанс: source /etc/profile.d/java.sh Чтобы установить переменные среды для конкретного пользователя, поместите указанные выше переменные в файл ~/.bash_profile. Готово. Теперь, мы знаем как установить Java на сервер.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59