По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Из предыдущих статей (тут и тут) мы узнали, что очень немногие механизмы, учитывают изменения в топологии. Большинство этих решений ориентированы на вычисления loop-free пути через очевидно стабильную сеть. Но что происходит при изменении топологии? Как сетевые устройства создают таблицы, необходимые для пересылки пакетов по loop-free путям в сети? В этой серии статей мы рассмотрим очередную подзадачу этой всеобъемлющей проблемы и ответим на вопрос: Как плоскости управления обнаруживают изменения в сети и реагируют на них? На этот вопрос мы ответим, рассмотрев две составляющие процесса конвергенции в плоскости управления. Процесс конвергенции в сети может быть описан в четыре этапа. Рисунок 1 используется для справки при описании этих четырех стадий. Как только связь [C,E] выходит из строя, должны произойти четыре этапа: обнаружение, распространение, вычисление и установка. Обнаружение изменения: будь то включение нового устройства или линии связи, или удаление устройства или линии связи, независимо от причины, изменение должно быть обнаружено любыми подключенными устройствами. На рисунке 1 устройства C и E должны обнаруживать отказ канала [C, E]; когда линия восстанавливается, они также должны обнаружить включение этой (очевидно новой) линии связи в топологию. Распространение информации об изменении: каждое устройство, участвующее в плоскости управления, должно каким-то образом узнавать об изменении топологии. На рисунке 1 устройства A, B и D должны каким-то образом уведомляться о сбое канала [C, E]; когда линия будет восстановлена, они должны быть снова уведомлены о включении этой (очевидно новой) линии связи в топологию. Вычисление нового пути к пункту назначения без петель: на рисунке 1 B и C должны вычислить некоторый альтернативный путь, чтобы достичь пунктов назначения за пределы E (или, возможно, непосредственно самого E). Установка новой информации о пересылке в соответствующие локальные таблицы: На рисунке 1 B и C должны установить вновь вычисленные loop-free пути к пунктам назначения за пределами E в свои локальные таблицы пересылки, чтобы трафик мог коммутироваться по новому пути. Далее мы сосредоточимся на первых двух из четырех шагов, описанных в предыдущем списке, размышляя в начале об обнаружении изменений топологии. Будут рассмотрены некоторые примеры протоколов, специализирующихся на обнаружении изменений топологии. Распределение топологии и информации о достижимости будет рассмотрена в конце этой серии статей. Поскольку эта проблема, по сути, является проблемой распределенной базы данных, она будет решаться с этой точки зрения. Обнаружение изменений топологии Первым шагом в реакции на изменение топологии сети является обнаружение изменения. Вернемся к рисунку 1. Каким образом два устройства, подключенные к каналу, C и E, обнаруживают сбой канала? Решение этой проблемы не так просто, как может показаться на первый взгляд, по двум причинам: информационная перегрузка и ложные срабатывания. Информационная перегрузка возникает, когда плоскость управления получает так много информации, что просто не может распространять информацию об изменениях топологии и/или вычислять и устанавливать альтернативные пути в соответствующие таблицы на каждом устройстве достаточно быстро, чтобы поддерживать согласованное состояние сети. В случае быстрых, постоянно происходящих изменений, таких как отключение связи и подключение каждые несколько миллисекунд, плоскость управления может быть перегружена информацией, в результате чего сама плоскость управления потребляет достаточно сетевых ресурсов, чтобы вызвать сбой сети. Также возможно, что серия отказов вызовет петлю положительной обратной связи, и в этом случае плоскость управления “сворачивается” сама по себе, либо реагируя очень медленно, либо вообще отказывая. Решение проблемы информационной перегрузки состоит в том, чтобы скрыть истинное состояние топологии от плоскости управления до тех пор, пока скорость изменения не окажется в пределах, которые может поддерживать плоскость управления. Ложные срабатывания - это проблема второго типа. Если канал отбрасывает один пакет из каждых 100, и каждый раз отбрасывается единственный пакет, который оказывается пакетом плоскости управления, используемым для отслеживания состояния канала, будет казаться, что канал выходит из строя и довольно часто возобновляет работу - даже если другой трафик перенаправляется по каналу без проблем. Существует два широких класса решений проблемы обнаружения событий: Реализации могут периодически отправлять пакеты для определения состояния канала, устройства или системы. Это опрос (Polling). Реализации могут вызвать реакцию на изменение состояния канала или устройства в некотором физическом или логическом состоянии внутри системы. Это обусловлено событиями. Как всегда, есть разные компромиссы с этими двумя решениями и подкатегории каждого из них. Опрос (Polling) для обнаружения сбоев. Опрос может выполняться удаленно или вне диапазона, или локально, или в группе. Рисунок 2 демонстрирует это. На рисунке 2 A и B периодически отправляют приветствие или какой-либо другой пакет опроса по тому же каналу, через который они подключены, и по тому же каналу, по которому они пересылают трафик. Это внутриполосный опрос, который имеет преимущество отслеживания состояния канала, по которому пересылается трафик, передается информация о доступности и т. д. С другой стороны, D запрашивает у A и B некоторую информацию о состоянии канала [A, B] из другого места в сети. Например, D может периодически проверять состояние двух интерфейсов на канале [A, B] или, возможно, периодически отправлять пакет по пути [C, A, B, C] и т. д. Преимущество заключается в том, что информация о состоянии большого количества каналов может быть централизована, что упрощает управление сетью и устранение неполадок. Оба типа опроса часто используются в реальных сетевых развертываниях. Для работы механизмов опроса часто используются два отдельных таймера: Таймер для определения частоты передачи опроса. Он часто называется интервалом опроса в случае внеполосного опроса и часто называется таймером приветствия в случае внутриполосного опроса. Таймер, чтобы определить, как долго ждать, прежде чем объявить связь или устройство отключенным, или включить сигнал тревоги. Это часто называют мертвым интервалом или мертвым таймером в случае внутриполосного опроса. Цели внутриполосного и внеполосного опроса часто различаются. Внеполосный опрос для обнаружения изменений в состоянии сети часто (но не всегда - особенно в случае централизованной плоскости управления) используется для мониторинга состояния сети и позволяет централизованно реагировать на изменения в состоянии. Внутриполосный опрос наиболее часто используется (как и следовало ожидать) для локального обнаружения изменений состояния, чтобы управлять реакцией распределенных плоскостей управления. Обнаружение сбоев на основе событий Обнаружение сбоев на основе событий основывается на некотором локальном, измеримом событии для определения состояния конкретного канала или устройства. Рисунок 3 демонстрирует это. На рисунке 3, который показывает одну из возможных реализаций элементов архитектуры между физическим интерфейсом и протоколом маршрутизации, есть четыре шага: Связь между двумя микросхемами физического интерфейса (phy), расположенными на обоих концах связи, не работает. Микросхемы физического интерфейса обычно являются оптическими для электрических передач обслуживания. Большинство микросхем физического интерфейса также выполняют некоторый уровень декодирования входящей информации, преобразуя отдельные биты в сети в пакеты (десериализация) и пакеты в биты (сериализация). Информация кодируется физическим интерфейсом на носителе, который предоставляется двумя физическими микросхемами, подключенными к физическому носителю. Если канал не работает или один из двух интерфейсов отключен по какой-либо причине, микросхема физического интерфейса на другом конце канала увидит падение несущей почти в реальном времени - обычно в зависимости от скорости света и длины физического носителя. Это состояние называется потерей носителя. Микросхема физического интерфейса при обнаружении потери несущей отправляет уведомление в таблицу маршрутизации (RIB) на локальном устройстве. Это уведомление обычно запускается как прерывание, которое затем транслируется в некоторую форму вызова интерфейса прикладного программирования (API) в код RIB, что приводит к тому, что маршруты, доступные через интерфейс, и любая информация о следующем переходе через интерфейс помечаются как устаревшие или удаляются из таблицы маршрутизации. Этот сигнал может или не может проходить через базу пересылаемой информации (FIB) по пути, в зависимости от реализации. RIB будет уведомлять протокол маршрутизации о маршрутах, которые он только что удалил из локальной таблицы, на основе события отключения интерфейса. Протокол маршрутизации затем может удалить любых соседей, доступных через указанные интерфейсы (или, скорее, через подключенные маршруты). На рисунке 3 нет места, в котором бы присутствовал периодический процесс, проверяющий состояние чего-либо, а также не было бы пакетов, перемещающихся по сети. Весь процесс основан на том, что микросхема физического интерфейса теряет носитель на подключенной среде, следовательно, этот процесс управляется событиями. Часто бывает, что состояние, управляемое событиями, и статус опроса совмещаются. Например, на рисунке 3, если бы станция управления периодически опрашивала статус интерфейса в локальном RIB, процесс от набора микросхем физического интерфейса к RIB был бы управляемым событием, а процесс от RIB на станцию управления будет направлен опросом. Сравнение обнаружения на основе событий и на основе опроса Таблица 1 отображает преимущества и недостатки каждого механизма обнаружения событий. Внеполосный опросВнутриполосный опросУправляемый событиямиРаспределение статусовСтатус управляется централизованной системой; централизованная система имеет более полное представление об общем состоянии сетиСтатус определяется локальными устройствами; для получения более широкой картины состояния всей сети требуется сбор информации с каждого отдельного сетевого устройстваСтатус определяется локальными устройствами; для получения более широкой картины состояния всей сети требуется сбор информации с каждого отдельного сетевого устройстваСвязь состояния пересылки со связью или состоянием устройстваСообщение о состоянии связи и / или устройства может быть ложным; не проверяет возможность пересылки напрямуюСостояние канала и/или устройства может быть напрямую связано с возможностью пересылки (исключение сбоев в механизме проверки состояния)Состояние канала и/или устройства может быть напрямую связано с возможностью пересылки (исключение сбоев в механизме проверки состояния)Скорость обнаруженияПеред объявлением канала или устройства должен пройти некоторый интервал ожиданияне удалось предотвратить ложные срабатывания; замедляет сообщение об изменениях в сетиПеред объявлением канала или устройства должен пройти некоторый интервал ожиданияне удалось предотвратить ложные срабатывания; замедляет сообщение об изменениях в сетиНекоторый таймер перед сообщением о сбоях может быть желательным, чтобы уменьшить сообщение о ложных срабатываниях, но этот таймер может быть очень коротким и подкрепляться двойной проверкой состояния самой системы; как правило, гораздо быстрее при сообщении об изменениях сетиМасштабированиеДолжен передавать периодические опросы, потребляя пропускную способность, память и циклы обработки; масштабируется в этих пределахДолжен передавать периодические опросы, потребляя пропускную способность, память и циклы обработки; масштабируется в этих пределахНебольшие объемы текущего локального состояния; имеет тенденцию масштабироваться лучше, чем механизмы опроса Хотя может показаться, что обнаружение, управляемое событиями, всегда должно быть предпочтительным, есть некоторые конкретные ситуации, когда опрос может решить проблемы, которые не могут быть решены механизмами, управляемыми событиями. Например, одно из главных преимуществ систем, основанных на опросе, особенно при внутриполосном развертывании, заключается в том, чтобы «видеть» состояние невидимых блоков. Например, на рисунке 4 два маршрутизатора соединены через третье устройство, обозначенное на рисунке как ретранслятор. На рисунке 4 устройство B представляет собой простой физический повторитель. Все, что он получает по каналу [A, B], он повторно передает, как и получил, по каналу [B, C]. На этом устройстве нет какой-либо плоскости управления (по крайней мере, о том, что известно A и C). Ни A, ни C не могут обнаружить это устройство, поскольку оно не изменяет сигнал каким-либо образом, который мог бы измерить A или C. Что произойдет, если канал [A, B] выйдет из строя, если A и B используют управляемый событиями механизм для определения состояния канала? A потеряет несущую, конечно, потому что физический интерфейс в B больше не будет доступен. Однако C будет продолжать принимать несущую и, следовательно, вообще не обнаружит сбой соединения. Если A и C могут каким-то образом общаться с B, эту ситуацию можно разрешить. Например, если B отслеживает все запросы протокола разрешения адресов (ARP), которые он получает, он может, когда канал [A, B] разрывается, каким-то образом отправить «обратный ARP», уведомляющий B о том, что A больше недоступен. Другое решение, доступное в этой ситуации, - это своего рода опрос между A и C, который проверяет доступность по всему каналу, включая состояние B (даже если A и C не знают, что B существует). С точки зрения сложности, управляемое событиями обнаружение увеличивает поверхности взаимодействия между системами в сети, в то время как опрос имеет тенденцию сохранять состояние внутри системы. На рисунке 3 должен быть какой-то интерфейс между чипсетом физического интерфейса, RIB и реализацией протокола маршрутизации. Каждый из этих интерфейсов представляет собой место, где информация, которая может быть лучше скрыта через абстракцию, передается между системами, и интерфейс, который должен поддерживаться и управляться. Опрос, с другой стороны, часто может проводиться в рамках одной системы, полностью игнорируя существующие механизмы и технологии. Пример: обнаружение двунаправленной переадресации В этом подразделе будет изучен пример протокола, разработанного специально для определения состояния канала в сети. Ни один из этих протоколов не является частью более крупной системы (например, протокола маршрутизации), а скорее взаимодействует с другими протоколами через программные интерфейсы и индикаторы состояния. Обнаружение двунаправленной переадресации (Bidirectional Forwarding Detection - BFD) основано на одном наблюдении: на типичном сетевом устройстве работает множество плоскостей управления, каждая со своим собственным механизмом обнаружения сбоев. Было бы более эффективно использовать один общий механизм обнаружения для всех различных плоскостей управления. В большинстве приложений BFD не заменяет существующие протоколы приветствия, используемые в каждой плоскости управления, а скорее дополняет их. Рисунок 5 демонстрирует это. В модели BFD, скорее всего, будет по крайней мере два различных процесса опроса, работающих по одному и тому же логическому каналу (их может быть больше, если есть логические каналы, наложенные поверх других логических каналов, поскольку BFD также может использоваться в различных технологиях сетевой виртуализации). Опрос плоскости управления будет использовать приветствия (hellos) для обнаружения соседних устройств, выполняющих один и тот же процесс плоскости управления, для обмена возможностями, определения максимального блока передачи (MTU) и, наконец, для того, чтобы убедиться, что процесс плоскости управления на соседнем устройстве все еще работает. Эти приветствия проходят через соединение плоскости управления на рисунке 5, которое можно рассматривать как своего рода «виртуальный канал», проходящий через физический канал. Опрос BFD будет выполняться под соединением уровня управления, как показано на рисунке, проверяя работу физического соединения и плоскостей пересылки (переадресации) на двух подключенных устройствах. Этот двухуровневый подход позволяет BFD работать намного быстрее, даже в качестве механизма опроса, чем любой механизм обнаружения на основе протокола маршрутизации. BFD может работать в четырех различных режимах: Асинхронный режим: в этом режиме BFD действует как облегченный протокол приветствия. Процесс BFD в A, потенциально работающий в распределенном процессе (или даже в специализированной интегральной схеме [ASIC]), отправляет пакеты приветствия в C. Процесс BFD в C подтверждает эти пакеты приветствия. Это довольно традиционное использование опроса через hellos. Асинхронный режим с эхом: в этом режиме процесс BFD в A будет отправлять пакеты приветствия в C, поэтому пакеты приветствия будут обрабатываться только через путь пересылки, что позволяет опрашивать только путь пересылки. Для этого A отправляет пакеты приветствия в C, сформированные таким образом, что они будут переадресованы обратно в A. Например, A может отправить пакет C с собственным адресом A в качестве пункта назначения. C может забрать этот пакет и переслать его обратно к A. В этом режиме приветствия, передаваемые A, полностью отличаются от приветствий, передаваемых C. Подтверждения нет, только две системы посылают независимые приветствия, которые проверяют связь в двух направлениях с каждого конца. Режим запроса: В этом режиме два одноранговых узла BFD соглашаются отправлять приветствия только тогда, когда подключение должно быть проверено, а не периодически. Это полезно в том случае, когда существует какой-то другой способ определения состояния канала—например, если канал [A, C] является каналом Ethernet, что означает, что обнаружение несущей доступен для обнаружения сбоя канала, - но этот альтернативный метод не обязательно является надежным для обеспечения точного состояния соединения во всех ситуациях. Например, в случае «коммутатора посередине», где B отключен от A, но не C, C может послать BFD привет, отметив любую проблему с подключением, чтобы убедиться, что его соединение с A все еще есть. В режиме запроса некоторые события, такие как потерянный пакет, могут вызвать локальный процесс для запуска события обнаружения BFD. Режим запроса с эхом: этот режим похож на режим запроса - обычные приветствия не передаются между двумя устройствами, на которых работает BFD. Когда пакет передается, он отправляется таким образом, чтобы другое устройство переадресовало пакет приветствия обратно отправителю. Это снижает нагрузку на процессор на обоих устройствах, позволяя использовать гораздо более быстрые таймеры для приветствий BFD. Независимо от режима работы, BFD вычисляет различные таймеры опроса (hello) и обнаружения (dead) отдельно по каналу связи. Лучший способ объяснить этот процесс-на примере. Предположим, что A отправляет управляющий пакет BFD с предлагаемым интервалом опроса 500 мс, а C отправляет управляющий пакет BFD с предлагаемым интервалом опроса 700 мс. Для связи выбирается большее число или, скорее, более медленный интервал опроса. Объясняется это тем, что более медленная система должна быть в состоянии идти в ногу с интервалом опроса, чтобы предотвратить ложные срабатывания. Частота опроса изменяется при фактическом использовании, чтобы предотвратить синхронизацию пакетов приветствия в нескольких системах на одном и том же проводе. Если было четыре или пять систем, развертывающих Border Gateway Protocol (BGP) на одном канале множественного доступа, и каждая система устанавливает свой таймер для отправки следующего пакета приветствия на основе получения последнего пакета, все пять систем могут синхронизировать их передачу приветствия, чтобы все приветствия по сети передавались в один и тот же момент. Поскольку BFD обычно работает с таймерами длиной менее одной секунды, это может привести к тому, что устройство будет получать приветствия от нескольких устройств одновременно и не сможет обрабатывать их достаточно быстро, чтобы предотвратить ложное срабатывание. Конкретная используемая модификация заключается в джиттере пакетов. Каждый передатчик должен взять базовый таймер опроса и вычесть некоторое случайное количество времени, которое составляет от 0% до 25% от таймера опроса. Например, если таймер опроса составляет 700 мсек, как в приведенном примере, A и C будут передавать каждый пакет приветствия примерно между 562 и 750 мсек после передачи последнего приветствия. Последний момент, который следует учитывать, - это количество времени, в течение которого A и C будут ждать перед объявлением соединения (или соседа) отключенным. В BFD каждое устройство может вычислить свой собственный таймер отключения, обычно выраженный как кратное таймеру опроса. Например, A может решить считать канал (или C) отключенным после пропуска двух приветствий BFD, в то время как C может решить дождаться пропуска трех приветствий BFD.
img
В этом материале расскажем, как можно фильтровать маршруты, анонсируемые протоколом динамической маршрутизации EIGRP. Данный материал предполагает, что у читателя есть начальные навыки работы с сетью или как минимум знания на уровне CCNA. Поэтому о том, что такое динамическая маршрутизация в этом материале не будет рассказано, так как тема достаточно большая и займет не одну страницу. Теперь представим, что мы работаем в большой компании с сотнями серверов, десятками филиалов. Мы подняли сеть, настроили динамическую маршрутизацию и все счастливы. Пакеты ходят куда надо, как надо. Но в один прекрасный день, нам сказали, что на маршрутизаторах филиалов не должно быть маршрутов к сетям отдела производства. На рисунке ниже представлена упрощенная схема нашей вымышленной сети. Конфигурацию всех устройств из этой статьи (для каждой ноды) можно скачать в архиве по ссылке ниже. Скачать конфиги тестовой лаборатории Мы конечно можем убрать из-под EIGRP указанные сети, но в этом случае из сетей в головном офисе тоже не будет доступа к сетям отдела производства. Именно для таких случаев была придумана такая возможность, как фильтрация маршрутов. В EIGRP это делается командой distribute-list в конфигурации EIGRP. Принцип работы distribute-list (список распределения) прост: список распределения работает по спискам доступа (ACL), спискам префиксов (prefix-list) или карте маршрутов (route-map). Эти три инструмента определяют будут ли анонсироваться указанные сети в обновлениях EIGRP или нет. В команде distribute-list также можно указать направление обновлений: входящие или исходящие. Также можно указать конкретный интерфейс, где должны фильтроваться обновления. Полная команда может выглядеть так: distribute-list acl [in | out][interface-type interface-number] Фильтрация маршрутов с помощью списков доступа Первым делом рассмотрим фильтрацию с помощью ACL. Фильтрация маршрутов EIGRP с помощью списков ACL основан на разрешающих и запрещающих действиях списков доступа. То есть, чтобы маршрут анонсировался, в списке доступа он должен быть указан с действием permit, а deny, соответственно, запрещает анонсирование маршрута. При фильтрации, EIGRP сравнивает адрес источника в списке доступа с номером подсети (префиксом) каждого маршрута и принимает решение на основе действий, указанных в ACL. Чтобы лучше узнать принцип работы приведём примеры. Для фильтрации маршрутов, указанных на рисунке выше нужно создать ACL, где каждый указанный маршрут сопровождается командой deny, а в конце следует прописать permit any, чтобы остальные маршруты могли анонсироваться: access-list 2 deny 10.17.32.0 0.0.1.255 access-list 2 deny 10.17.34.0 0.0.0.255 access-list 2 deny 10.17.35.0 0.0.0.127 access-list 2 deny 10.17.35.128 0.0.0.127 access-list 2 deny 10.17.36.0 0.0.0.63 access-list 2 deny 10.17.36.64 0.0.0.63 access-list 2 permit any А на интерфейсе настройки EGRP прописываем: distribute-list 2 out s4/0 Проверим таблицу маршрутизации до и после применения указанных команд. Фильтрацию будем проводить на WAN маршрутизаторах. Как видим все маршруты до сети отдела Производства видны в таблице маршрутизации филиала. Теперь применим указанные изменения: И посмотрим таблицу маршрутов роутера филиала еще раз: Все маршруты в отдел производства исчезли из таблицы маршрутизации. Правда, можно было обойтись и одной командой в списке доступа, но для наглядности решили прописать все адреса. А более короткую версию можете указать в комментариях к этому посту. Кстати, фильтрацию в данном примере мы применили на один интерфейс, но можно применить и на все интерфейсы, на которых включен EIGRP. Для этого команду distribute-list нужно ввести без указания конкретного интерфейса. distribute-list 2 out Следует отметить, что для правильной работы фильтрации в нашей топологии на маршрутизаторе WAN2 нужно прописать те же настройки, что и на WAN1. Фильтрация маршрутов с помощью списка префиксов В Cisco IOS есть еще один инструмент, который позволяет осуществлять фильтрацию маршрутов prefix-list-ы. Может возникнуть вполне логичный вопрос: а чем не угодили списки доступа? Дело в том, что изначально ACL был разработан для фильтрации пакетов, поэтому для фильтрации маршрутов он не совсем подходит по нескольким причинам: списки IP-префиксов позволяют сопоставлять длину префикса, в то время как списки ACL, используемые командой EIGRP distribution-list, нет; Использование расширенных ACL может оказаться громоздким для конфигурирования; Невозможность определения совпадения маски маршрута при использовании стандартных ACL; Работа ACL достаточно медленна, так как они последовательно применяется к каждой записи в маршрутном обновлении; Для начала разберёмся в принципе работы списка префиксов. Списки IP префиксов позволяют сопоставлять два компонента маршрута: адрес сети (номер сети); длину префикса (маску сети); Между списками доступа и списками префиксов есть общие черты. Как и нумерованные списки доступа, списки префиксов могу состоять из одной и более команд, которые вводятся в режиме глобальной конфигурации и нет отдельного режима конфигурации. Как и в именованных списках доступа, в списках префиксов можно указать номер строки. В целом команда выглядит так: ip prefix-list list-name [ seq seq-value ] { deny | permit prefix / prefix-length } [ ge ge-value ] [ le le-value ] Коротко работу списка префиксов можно описать так: Адрес сети маршрута должен быть в пределах, указанных в команде ip prefix-list prefix/prefix-length. Маска подсети маршрута должна соответствовать значениям, указанным в параметрах prefix-length, ge, le. Первый шаг работает также как и списки доступа. Например, написав ip prefix-list TESTLIST 10.0.0.0/8 мы скажем маршрутизатору, что адрес сети должен начинаться с 10. Но списки префиксов всегда проверяют и на соответствие длины маски сети указанным значениям. Ниже приведено пояснение параметров списка IP-префиксов: Параметр prefix-list-а Значение Не указан 10.0.0.0/8; Маска сети должна быть равной длине, указанной в параметре prefix/prefix-length. Все маршруты, которые начинаются с 10. ge и le (больше чем, меньше чем) 10.0.0.0/8 ge 16 le 24 Длина маски должна быть больше 16, но меньше 24. А первый байт должен быть равен 10-ти. le меньше чем 10.0.0.0/8 le 24 Длина маски должна быть от восьми до 24-х включительно. ge больше чем 10.0.0.0/8 ge 24 Длина маски должна быть равна или больше 24 и до 32-х включительно. Учтите, что Cisco требует, чтобы параметры prefix-length, ge и le соответствовали следующему равенству: prefix-length <= ge-value <= le-value (8<=10<=24). А теперь перейдем непосредственно к настройке фильтрации с помощью списка префиксов. Для этого в интерфейсе конфигурации EIGRP прописываем distribute-list prefix prefix-name. Воспользуемся той же топологией и введём некоторые изменения в конфигурацию маршрутизатора WAN1, точно такую же конфигурацию нужно прописать и на WAN2. Итак, наша задача: отфильтровать маршруты в сети 10.17.35.0 и 10.17.36.0; отфильтровать маршруты сетей точка-точка так, чтобы маршрутизаторы в филиалах и на коммутаторах ядра (Core1 и Core2) не видели сети с длиной маски /30 бит. Так как трафик от пользователей в эти сети не идет, следовательно, нет необходимости анонсировать их в сторону пользователей. Для этого создаем prefix-list с названием FILTER-EIGRP и добавим нужные сети: ip prefix-list FILTER-EIGRP seq 5 deny 10.17.35.0/24 ge 25 le 25 ip prefix-list FILTER-EIGRP seq 10 deny 10.17.36.0/24 ge 26 le 26 ip prefix-list FILTER-EIGRP seq 15 deny 0.0.0.0/0 ge 30 le 30 ip prefix-list FILTER-EIGRP seq 20 permit 0.0.0.0/0 le 32 Удалим из конфигурации фильтрацию по спискам доступа и проверим таблицу маршрутизации: А теперь применим наш фильтр и затем еще раз проверим таблицу маршрутизации: Как видим из рисунка, маршрутов в сети 10.17.35.0, 10.17.36.0 и сети для соединений точка-точка между сетевыми устройствами в таблице уже нет. А теперь объясним что мы сказали маршрутизатору: ip prefix-list FILTER-EIGRP seq 5 deny 10.17.35.0/24 ge 25 le 25 Все сети, которые начинаются на 10.17.35 и имеют длину 25 бит запретить. Под это условие попадают сети 10.17.35.0/25 и 10.17.35.128/25. Длине префикса /25 соответствует маска 255.255.255.128. ip prefix-list FILTER-EIGRP seq 10 deny 10.17.36.0/24 ge 26 le 26 Все сети, которые начинаются на 10.17.36 и имеют длину 26 бит запретить. Под это условие попадают сети 10.17.36.0/26 и 10.17.36.64/26. Длине префикса /26 соответствует маска 255.255.255.192. ip prefix-list FILTER-EIGRP seq 15 deny 0.0.0.0/0 ge 30 le 30 Все сети, длина префикса которых равна 30 бит - запретить. В нашей топологии под это условие попадают сети 10.1.1.0/30, 10.1.1.4/30, 10.1.2.0/30, 10.1.2.4/30 все сети которые начинаются на 10.9.2. ip prefix-list FILTER-EIGRP seq 20 permit 0.0.0.0/0 le 32 Все сети, префикс которых имеет длину до 32-х бит разрешить. Под это условие попадают все остальные сети топологии. Фильтрация маршрутов с помощью route-map Далее пойдет речь о картах маршрутов или route-map-ах. В целом, в работе сети route-map-ы используются довольно часто. Этот достаточно гибкий инструмент дает возможность сетевому инженеру тонко настраивать маршрутизацию в корпоративной сети. Именно поэтому следует хорошо изучить принцип их работы, чем мы и займемся сейчас. А дальше покажем, как фильтровать маршруты с помощью этого инструмента. Route-map применяет логику похожую на логику if, else, then в языках программирования. Один route-map может включать в себя несколько команд route-map и маршрутизатор выполняет эти команды поочередно согласно номеру строки, который система добавляет автоматически, если не был указан пользователем. После того как, система нашла соответствие маршрута условию и определила разрешить анонсирование или нет, маршрутизатор прекращает выполнение команды route-map для данного маршрута, даже если дальше указано другое условие. Каждый route-map включает в себя критерии соответствия, который задается командой match. Синтаксис route-map выглядит следующим образом: route-map route-map-name {permit | deny} seq sequence-number match (1st set of criteria) Как и в случае с ACL или prefix-list, в route-map тоже можно указать порядковый номер строки для добавления или удаления соответствующего правила. В команде match можно указать ACL или prefix-list. Но тут может возникнуть недоразумение. А связано оно с тем, как обрабатываются route-map Cisco IOS. Дело в том, что решение о запрете или допуске маршрута основано на команде deny или permit команды route-map. Другими словами, маршрут будет обработан route-map-ом если в ACL или prefix-list-е данный маршрут сопровождается командой permit. Иначе, route-map проигнорирует данную запись и перейдет к сравнению со следующим условием route-map. Поясним на примере: access-list 101 permit 10.17.37.0 0.0.0.255 access-list 102 deny 10.17.35.0 0.0.0.127 route-map Test permit 5 match ip-address 101 route-map Test deny 10 match ip-address 102 В данном случае маршрут 10.17.37.0 будет обработан route-map 5, а маршрут 10.17.35.0 будет проигнорирован, так как в списке доступа под номером 102 он запрещён и не попадёт под критерий соответствия route-map. Приведём ключевые пункты работы route-map при фильтрации маршрутов: Команда route-map с опцией permit либо разрешит анонсирование маршрута, если он соответствует критерию, указанному в команде match, либо пропустит для обработки следующим пунктом. Команда route-map с опцией deny либо запретит анонсирование маршрута, если он соответствует критерию, указанному в команде match, либо пропустит для обработки следующим пунктом. Если команда match основывается на ACL или prefix-list-ы, а в ACL или prefix-list-ах указанный маршрут прописан с действием deny, то маршрут не будет отфильтрован. Это будет означать, что маршрут не соответствует критерию, указанному в команде match и его нужно пропустить для обработки следующим пунктом. В конце каждого route-map существует явный запрет; чтобы пропустить все маршруты, которые не попали под критерии, нужно указать команду route-map с действием permit без опции match. Для того чтобы задействовать route-map в фильтрации маршрутов используется та же команда distribute-list с опцией route-map route-map-name. Внесём некоторые изменения в конфигурацию маршрутизатора WAN1. Точно такие же изменения нужно будет сделать на WAN2. Используем те же префикс-листы, что и в предыдущем примере с незначительными редактированиями: ip prefix-list MANUFACTURING seq 5 permit 10.17.35.0/24 ge 25 le 25 ip prefix-list MANUFACTURING seq 10 permit 10.17.36.0/24 ge 26 le 26 ip prefix-list POINT-TO-POINT seq 5 permit 0.0.0.0/0 ge 30 le 30 После внесения изменений маршрутов в сеть производства, а также в сети точка-точка таблице маршрутизации на роутерах филиалов не окажется. Также на Core1 не будет маршрута до сетей point-to-point: Мы рассмотрели фильтрацию маршрутов в EIGRP тремя способами. Хорошим тоном считается использование списка префиксов, так как они заточены именно под эти цели. А использование карты маршрутизации или route-map-ов неэффективно из-за большего количества команд для конфигурации. В следующем материале рассмотрим фильтрацию в домене OSPF.
img
Так случилось что вам нужно работать удаленно из дома? Видеоконференции могут вам помочь продолжать работать продуктивно, позволяя вам общаться лицом к лицу, даже если это происходит через экран. К счастью, существует множество бесплатных приложений для видеоконференций, которые не затронут ваш бюджет, но при этом позволят полноценно пользоваться видеоконференцсвязью, и сейчас мы о них расскажем. Google Hangouts Если у вас есть аккаунт Google, то значит у вас есть доступ к Google Hangouts. Для бесплатных пользователей Gmail и G Suite Basic в Google Hangouts могут общаться до 10 человек по видеовызову. Сервис также поддерживает одновременный голосовой чат и позволяет участникам присоединиться к конференции по электронной почте или по общей ссылке. В ответ на кризис с коронавирусом Google ослабил некоторые ограничения для всех клиентов G Suite. Теперь клиенты могут проводить видеоконференции с участием до 250 участников до 1 июля 2020 года. Также существует Hangouts Meet - более удобный инструмент для бизнеса, чем классические Google Hangouts. Однако для использования этого программного обеспечения для собраний вам потребуется учетная запись G Suite. Meet by Google Hangouts позволяет проводить прямые видеоконференции. Количество людей, которых вы можете принять для своей онлайн-видеоконференции, варьируется. Если у вас есть G Suite Enterprise, вы можете разместить до 100 человек, c G Suite Business до 50 человек, с G Suite Basic до 25 человек. Вы можете использовать Google Hangouts в большинстве веб-браузеров или через приложения Google Hangouts для iPhone и Android. Лучшие бесплатные функции: До 10 участников видео Видео, аудио и мессенджер Запись видео встречи Присоединяйтесь к звонкам с помощью Календаря Google Возможность шарить экран Cisco Webex Meetings Cisco - это имя, которое обычно ассоциируется с дорогими продуктами Enterprise уровня, обычно недоступными для бесплатных пользователей. Cisco Webex Meetings - это решение для веб-конференций компании, которое поставляется с надежной бесплатной опцией для тех, кто ищет простое решение для видеоконференций. Cisco Webex Meetings является одним из лучших решений для видеоконференций благодаря обширному бесплатному тарифному плану. Принимайте до 100 участников за один звонок. В бесплатном плане звонки ограничены 40 минутами. Нет ограничений на количество звонков, которые вы можете совершать, и вы получаете 1 ГБ облачного хранилища с вашей бесплатной учетной записью. Конференции включают поддержку таких функций, как совместное использование экрана, запись видео, опросы, детекция голоса и обмен файлами. Все встречи и записи полностью зашифрованы. Webex позволяет пользователям в 52 странах использовать стандартный телефон для подключения к любой конференции. Участники могут использовать веб-сайт, специальные настольные приложения или мобильные приложения для iPhone и Android. Подробнее про этот продукт и про то как его получить можно прочитать здесь. Лучшие бесплатные функции: 1 ГБ хранилища До 50 участников Активный вид спикера Опросы в реальном времени Интеграция календаря Полное шифрование на встречах и записях HD видео Совместное использование экрана Zoom Meetings Zoom - это широко известный полный пакет видеоконференций, предназначенный для пользователей уровня предприятия, с привлекательной бесплатной опцией. Пользователи с бесплатной учетной записью могут проводить видеоконференции до 100 участников, но конференции с 3 участниками и более ограничены 40 минутами. Zoom позволяет участникам присоединяться через Интернет, специальные приложения, расширения браузера и мобильные устройства с помощью приложений iPhone и Android. Пользователи могут даже позвонить по телефону, если это необходимо. Пользователи с бесплатным планом также могут записывать видео или аудио локально и делиться изображением экрана с другими участниками конференции. Лучшие бесплатные функции: Многопользовательский шаринг экранов 720p HD видео Личный чат Неограниченные встречи Skype Skype - лучший файлообменник популярное приложение VoIP, о котором большинство пользователей уже слышали. Он подходит для видеоконференций для небольших групп до 50 человек бесплатно. В апреле 2019 года компания развернула расширенную функцию видеозвонков, увеличив предыдущий лимит в 25. Skype включает полезную облачную функцию записи звонков, которую может вызвать любой участник звонка. Это уведомит других участников о том, что звонок записывается, и позволяет пользователям сохранять и делиться записью на срок до 30 дней. Конечно же у Skype есть приложения для iOS и Android. Также там есть голосовой переводчик, который поддерживает 10 языков (английский, испанский, французский, немецкий, китайский, итальянский, португальский, арабский и русский), и текстовый переводчик поддерживает более 60 языков. Это делает многоязычные конференции проще, чем когда-либо прежде. Вам понадобится Skype для бизнеса, если вы хотите принять участие в конференциях с 250 участниками, хотя стоит отметить, что вышеупомянутая служба прекратит существование 2021 году, и на ее место придет Microsoft Teams, который также поддерживает видеозвонки. Лучшие бесплатные функции: До 10 человек на видео звонках HD видео звонки Совместное использование экрана Запись видео звонка Интерактивные видеочаты FreeConference Вопреки тому, что следует из названия, FreeConference не является бесплатным сервисом. Это премиум-сервис с приличной бесплатной опцией, которая может быть полезна в некоторых случаях. Для видеоконференций FreeConference поддерживает только до 5 участников на бесплатном уровне. Что делает FreeConference потенциально привлекательным, тем не менее, это поддержка до 1000 аудио-участников, которые могут звонить по телефону. В сервисе также используется безпрограммный подход к видеосвязи, позволяющий большинству пользователей подключаться только с помощью браузера. FreeConference также предлагает мобильные приложения для iPhone и Android, которые открыты для бесплатных пользователей. К сожалению, нет возможности записать ваш звонок, если вы не готовы перейти на премиум-пакет. Лучшие бесплатные функции: До 5 участников онлайн-встречи Совместное использование экрана Совместное использование документов Модератор встречи Текстовый чат Jitsi Jitsi - это 100% бесплатный проект с открытым исходным кодом и фантастическим набором функций. Вы можете выбрать между использованием уже готовой версии Jitsi по адресу meet.jit.si или загрузить и разместить собственное решение на своих серверах для проведения видеоконференций для полной гибкости. Следует отметить теоретически «неограниченное» количество участников сервиса. Сервис поддерживает аудио-звонки участников в телефонной и автономной версиях. Также сервис поддерживает совместное использование экрана и имеет мобильные приложения для iPhone и Android Лучшие бесплатные функции: Open-source Совместное использование экрана Чат TrueConf Online Российская разработка TrueConf предлагает бесплатный тариф до трех участников видеозвонков. Это решение отлично подходит для небольших групп или отдельных лиц, которым нужен простой инструмент для видеозвонков или совместной работы с небольшими группами. Функции совместной работы, такие как управление удаленным рабочим столом, полезны для тех, кто работает в поддержке, и кому может понадобиться возможность удаленно помочь клиенту решить проблему. Также можно подключаться с мобильных устройств на iOS и Android. Лучшие бесплатные функции: До трех участников в командных звонках HD видео Совместное использование экрана Управление удаленным рабочим столом Записанные звонки Передача файлов Виртуальная доска с общим доступом UberConference UberConference - это решение для видеоконференций, в котором присоединиться к конференции очень просто, нужно всего лишь ввести URL-адрес вместе с PIN-кодом участника. Решение поддерживает HD аудио и видео встречи. Одним из основных преимуществ использования UberConference является тот факт, что это полностью браузерное решение для видеозвонков. Нет необходимости загружать какие-либо программы, хотя мобильные приложения существуют для тех, кто хочет использовать UberConference на своем смартфоне или планшете с iOS и Android. Свободные пользователи могут проводить конференции с количеством участников до 10 и записывать их для дальнейшего просмотра. Максимальная продолжительность для конференций с бесплатным тарифом составляет 45 минут Лучшие бесплатные функции: До 10 участников Неограниченные конференции Запись звонка HD звук Совместное использование экрана и документов Мобильные приложения Lifesize Go Lifesize Go может использоваться удаленными сотрудниками, удаленными фрилансерами или теми, кто работает с клиентами, которые редко проводят большие групповые встречи до 8 участников. В то время как у них есть тарифные планы, которые включают решения для больших команд, бесплатная версия предлагает большое количество функций для отдельных лиц и небольших групповых бесед. Есть приложения для iOS и Android. Лучшие бесплатные функции: До 8 участников Нет ограничений по продолжительности встречи Совместное использование экрана Whereby Whereby (ранее Apper.in) - это гибкий и очень простой инструмент, предоставляющий вам видеоконференции в браузере - нет загрузок и нет логинов для гостей. Имеются приложения для iOS и Android. Лучшие бесплатные функции: До 4 участников встречи Легко читаемые ссылки конференц-зала Десктопный и мобильный доступ Совместное использование экрана Закрытые комнаты Интеграция с YouTube Slack Video Calls Пользователи Slack могут воспользоваться функцией вызова, просто используя команду /call или нажав значок телефона в верхней части разговора с другим пользователем Slack. Это простой способ совершать звонки прямо из Slack, если вам нужно быстро задать партнеру вопрос. Вы также можете создавать конференции до 15 человек, если вы начнете звонок в канале. Этот инструмент хорош для тех, кто ищет дополнительное решение для видеосвязи для небольших команд. Лучшие бесплатные функции: Групповые звонки до 15 человек Индивидуальные звонки Мессенджер
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59